
Simulating Laser-Plasma Interaction in Experiments
at the National Ignition Facility on a Cray XE6

Steven Langer∗, Abhinav Bhatele∗, Todd Gamblin∗, Bert Still∗, Denise Hinkel∗,
Mike Kumbera∗, Bruce Langdon∗, Ed Williams∗

∗ Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550
{langer1, bhatele, tgamblin, still1, hinkel1, kumbera1, langdon1, williams16}@llnl.gov

Abstract—The National Ignition Facility (NIF) [1] is a high
energy density experimental facility run for the National Nu-
clear Security Administration (NNSA) by Lawrence Livermore
National Laboratory. NIF houses the world’s most powerful laser.
The National Ignition Campaign (NIC) has a goal of using the
NIF laser to ignite a fusion target by the end of FY12. Achieving
fusion ignition in the laboratory will be a major step towards
fusion energy.

NIC is currently considering several possible ignition target
designs. The NIF laser can fire a limited number of shots, so
simulations play a major roll in selecting the designs to be used
in experiments.

The NIF lasers beams reach intensities of 1015W/cm2 in spots.
That is high enough that interactions between the laser beams
and fluctuations in the density of the ions and electrons may
scatter laser light away from the target.

pF3D [2], [3], [4] is a laser-plasma interaction code used
to assess proposed experimental designs for expected levels of
scattering and to help understand measurements of scattered
light in NIF experiments.

NIF experiments have shown that laser-plasma interactions
transfer significant amounts of energy between beams and
increase the amount of backscattered light relative to what would
occur without energy transfer. pF3D has run several simulations
with two interacting beams and is starting to run simulations
with three interacting beams. These simulations require over 200
billion zones and run for several weeks. The pF3D simulations
presented in this paper were run on Cielo, a Cray XE6 at
Los Alamos National Laboratory. These simulations help us
understand key experiments currently being carried out with
the NIF laser.

This paper reports on several modifications we have made to
pF3D in the past year. These changes help pF3D run better on
Cielo and they are also a step in preparing for future exascale
computers.

I. INTRODUCTION

The National Ignition Facility (hereafter NIF; [1]) is a
large NNSA experimental facility that houses the world’s most
powerful laser. One of the key goals of the NIF is to compress
a target filled with deuterium and tritium to a temperature
and density high enough that fusion ignition occurs. Figure 1
shows the laser beams entering a hohlraum through holes in
both ends and propagating through the plasma (ionized gas)
until they reach the hohlraum wall. The laser beams deposit
their energy and the wall becomes hot enough that it radiates
x-rays. The x-rays fall on the surface of the capsule at the
center of the hohlraum and cause it to implode.

Fig. 1: The figure shows the laser beams entering the hohlraum
through holes in both ends and propagating through the plasma
until they reach the hohlraum wall. The hohlraum is a can-like
object used to trap the x-rays emitted by the hot interior walls
of the hohlraum.

There are 192 beams in 48 beam clusters. and they heat the
plasma to a few tens of millions of degrees. The laser intensity
in a NIF hohlraum is high enough that laser-driven plasma
instabilities may grow to significant levels. In particular, it is
possible for some of the laser light to be backscattered and
leave the hohlraum without heating the plasma.

pF3D is a multi-physics code used to simulate interactions
between laser beams and the plasma in NIF experiments. pF3D
is used to evaluate proposed hohlraum designs and help pick
the ones with acceptably low levels of backscatter.

Exascale systems are expected to differ from current sys-
tems in several ways. The floating point performance will grow
faster than other system characteristics. The ratio of the mem-
ory size, the memory bandwidth, the interconnect bandwidth,
and the file system bandwidth to the floating point performance
will all decrease. The mean time between application interrupt
for full system simulations will decrease relative to current
systems. In all cases, the decrease is expected to be big enough
that significant modifications to applications will be required
to avoid a drop in application throughput relative to peak
performance.

Most of these trends are already apparent in systems coming
online today, but they are small enough that they have not yet
forced major rewrites of most existing multi-physics codes. We

mailto:langer1@llnl.gov
mailto:bhatele@llnl.gov
mailto:tgamblin@llnl.gov
mailto:still1@llnl.gov
mailto:hinkel1@llnl.gov
mailto:kumbera1@llnl.gov
mailto:langdon1@llnl.gov
mailto:williams16@llnl.gov

reported on our initial experience in tuning pF3D to run well
on Cielo, a Cray XE6 at Los Alamos National Laboratory, at
this conference in 2011 [4]. This article reports on additional
modifications that allow pF3D to work better on Cielo and
discusses how this work relates to our preparations for future
exascale systems.

Resolving the interactions between beams requires the use
of zones that are less than a laser wavelength (0.35 µm) across.
The plasma is several mm across, so simulations require many
billions of zones. We have completed three simulations of
two interacting beams using 32K Cielo processors. These
simulations used up to 225 billion zones. We are preparing
to simulate three interacting beams using 64k or 96k Cielo
processors. Three beam simulations will require 400-500 bil-
lion zones.

The remainder of our paper is organized as follows. In
Section II we give a general description of pF3D and its
communication patterns.

Section III presents results on message passing performance.
Message passing can consume a significant fraction of the run
time and controls the scaling of pF3D. Our results show that
the mapping between physical domains and position on the
Cielo interconnect has a significant impact on performance.

Section IV discusses our work on adding OpenMP paral-
lelism to the MPI parallelism already present in pF3D. This
hybrid form of parallelism should permit higher message
passing rates than would be possible using pure MPI on
systems with low memory per core.

Section V discusses a fault tolerance approach named SCR
that has been incorporated into pF3D [5], [6]. A system like
Cielo has a very large number of components so it is no
surprise that the mean time between interruption (MTBI) of
pF3D is short enough that we must have a resiliency strategy.
pF3D periodically writes the state of the simulation to storage
to permit recovery in the event of a system error. SCR uses
RAM disks or other local storage to permit rapid writing and
reading of checkpoints. Checkpoints are occasionally written
to a parallel file system. This approach reduces time spent
on defensive I/O and thereby allows pF3D to produce more
results per day.

Section VI shows some of the results from our simulations
and compares them to data from NIF experiments. The simula-
tions we have run on Cielo are helping us gain a more detailed
understanding of how multiple beams interact to produce
backscattered light.

In section VII we state our conclusions and discuss future
work.

II. PF3D OVERVIEW

pF3D [2], [3] is a multi-physics code that carries out time-
dependent simulations of the interaction between a laser beam
and a plasma in experiments being carried out at the National
Ignition Facility (NIF - http://lasers.llnl.gov). pF3D solves
wave equations for the laser light and two kinds of backscat-
tered light. The light waves are coupled together through
interactions with electron plasma waves and ion acoustic

(a) (b)

Fig. 2: The figure on the left shows a NIF laser beam
(blue) propagating through a hohlraum. pF3D solves the laser-
plasma coupling equations in a box surrounding the beam. The
hohlraum (gold) is shown to provide context but is not part of
the simulation. The capsule (dark blue) that will be imploded
by the x-rays generated at the hohlraum wall is shown at the
lower left. In this simulation, the beam propagates from the
hohlraum entrance on the right to the hohlraum wall at the
left. The figure on the right shows the light that was scattered
off of electron plasma waves. The scattered light is generated
near the wall and propagates back through the entrance hole.

Fig. 3: The 2D FFT message passing scheme. MPI Alltoall
is used to transpose from a checkerboard decomposition, to
decompositions by rows and columns, and back to a checker-
board. The FFTs are performed while the data is in rows or
columns.

waves. Figure 2 shows the laser beam and the backscattered
light from a pF3D simulation.

We present a brief overview of pF3D in this section. For
more details, see [4]. pF3D solves its equations on a 3D
Cartesian grid. The equations are solved in the paraxial ap-
proximation which assumes all light waves are traveling nearly
in the z-direction (the laser propagation direction). The wave
propagation and coupling are solved using Fourier transforms
in xy-planes. The Fourier transforms require message passing
across the full extent of an xy-plane. These messages are sent
using MPI Alltoall. Advection of the light and solving the
hydrodynamic equations require passing planes of information
to nearest neighbor domains using MPI Send and MPI Recv.
The hydrodynamic equations are solved every 50 light time
steps, so hydrodynamics consumes only a modest portion of
the run time.

The pF3D grid is split into np-by-nq-by-nr domains in the
x-, y-, and z-directions. A set of domains covering the full
extent of the grid in x and y but extending only one domain
in z is called an xy-slab. The messages passed to carry out a
2D FFT are confined to a single xy-slab.

Figure 3 shows a high-level overview of the message pass-
ing involved in performing a 2D FFT. A call to MPI Alltoall

System nxloc nyloc np nq xsize ysize
Intrepid 320 96 32 32 7680 7680
Dawn 640 288 32 16 46080 92160
Cielo 640 192 16 16 61440 61440
Sequoia 160 96 64 32 1920 3840

TABLE I: This table shows the sizes of the domains for
three recent pF3D runs and a possible run on Sequoia, a
Blue Gene/Q system. The number of zones in a domain in
a single xy-plane (nxloc*nyloc) and the number of processes
into which the grid is decomposed (np and nq) in the x and y
directions determine the size of the messages (xsize and ysize)
sent during an MPI Alltoall.

on x-communicators is used to transpose from the ”checker-
board” decomposition to a state where each process has
one or more rows of data. An ordinary single processor 1D
FFT of length nx is performed on the rows. MPI Alltoall is
called to transpose back to the ”checkerboard” decomposition.
MPI Alltoall on y-communicators is called to transpose to a
state where each process has one or more columns of data.
A 1D FFT of length ny is performed and MPI Alltoall is
called again to transpose back to the original ”checkerboard”
state. The message passing for the x-phase of the FFT is
performed on nq*nr x-communicators simultaneously. The
message passing for the y-phase of the FFT is performed on
np*nr y-communicators simultaneously.

III. MESSAGE PASSING PERFORMANCE

pF3D can spend over 30% of its run time passing messages
so optimizing message passing rates is important. Section
II described the message passing in pF3D as it occurs in
physical space. To understand how messages flow across the
interconnect, we must know how the spatial domains are
mapped into locations on the interconnect. The mapping can
have a large impact on message passing performance on
systems with mesh or torus based interconnects.

pF3D must run on very large numbers of processors, so the
first requirement for any mapping from physical location to
position on the interconnect is that it must be highly scalable.
The majority of the message passing occurs during 2D FFTs,
so it is important to choose a mapping that gives very good
performance for FFT messages. The mapping must also give
good performance for messages passed across faces to adjacent
domains, but this is lower priority than the other requirements.

An interconnect delivers its full bandwidth only if the
message size is greater than the product of the link bandwidth
and its latency. pF3D requires high message passing rates, so
we try to decompose the problem in such a way that we pass
”large messages”. The message size varies fairly rapidly as an
xy-slab is decomposed into more domains.

Table I shows the number of zones in the x- and y-
directions in each domain for recent large pF3D runs on
Intrepid, Dawn, and Cielo. Intrepid and Dawn are IBM Blue
Gene/P systems (hereafter BG/P) and Cielo is a Cray XE6. It
also shows the number of domains into which an xy-plane is
decomposed. The zones ”owned” by each process are equally

split amongst all processes in a row or column of the domain
grid when performing an MPI Alltoall. pF3D normally uses
float complex variables that require 8 bytes per zone. The
table shows the number of bytes per message if the Alltoall
is implemented using point-to-point messages. The fourth row
shows what the message sizes would be on Sequoia, an IBM
Blue Gene/Q, for a pure MPI run using all 4 hardware threads
per core. The number of zones per process was set to half that
of the Intrepid run because Intrepid has 512 MB of memory
per core and Sequoia has 256 MB per hardware thread.

The message sizes in row four are small enough that the
effective bandwidth will be lower than it would be for large
messages. A Sequoia run using 8 hardware threads per MPI
process would have 2 GB of memory per process and would
have the same large message sizes as the Cielo run.

The interconnect on BG/L and BG/P systems is a 3D torus,
as is the interconnect on the Cray XE6. There is an important
difference between these two systems. On a BG/L or BG/P
a job runs on a private torus (or a mesh for small jobs). On
an XE6, a job runs on a swath of nodes within the full torus.
It is easier to reason about the impact of how processes are
mapped from the 3D grid of domains in pF3D onto the private
3D torus on a Blue Gene system than it is to reason about the
irregular set of nodes assigned to a job on an XE6. For this
reason, we will start with a discussion of how we generate
scalable, high-performance mappings on a Blue Gene. This
includes a discussion of a tool we have written to easily
generate a wide variety of mappings. We then discuss the
message passing optimizations we employ on the XE6 and
the impact of running on an irregular set of nodes. We report
on the progress we have made in developing tools to generate
good mappings for the XE6.

A. Blue Gene Systems

pF3D uses a regular 3D decomposition of the grid into
domains and it runs on a private 3D torus on a BG/L or BG/P
system. This makes it relatively simple to generate mappings
between physical domains and locations on the torus.

A mapping will be (weakly) scalable if the hop count and
level of contention for links remains the same as the number
of xy-slabs is increased. A simple strategy for generating
scalable mapping is to first divide the partition up into equal
sized chunks with a number of cores equal to the number
of processes in an xy-slab. The next step is to map xy-slabs
that are adjacent in z to adjacent chunks on the torus. A job
running with a fixed number of processes on a BG/L or BG/P
will always get a partition of the same shape, so this mapping
can be generated once and used for the entire run.

On Blue Gene systems, the default is to assign domains
in ”array order”. In xyzt mode, the x-coordinate on the
interconnect varies fastest and the ”thread” coordinate varies
slowest as the MPI rank increases. In zyxt mode, the z-
coordinate on the interconnect varies fastest and the ”thread”
coordinate varies slowest as the MPI rank increases.

In the case of LLNL’s BG/L system, large partitions are
Nx32x32. If we run a simulation with np=nq=32 in xyzt mode,

an xy-slab is spread across an ever larger distance on the
torus as the number of slabs increases. If we run the same
simulations in zyxt mode, a 32x32 xy-slab maps to a 32x32
plane of the torus. Hop counts do not change as we add xy-
slabs and there is no contention between FFT messages in
different xy-slabs. Figure 4 (a) shows the message passing rate
averaged over all communication phases as a function of the
number of processes on a BG/L system using xyzt and zyxt
mappings. The zyxt mapping is very scalable. The downside
to this mapping is that it only uses one of the three sets of
links during a given FFT messaging phase and is therefore
slower than xyzt (which uses multiple sets of links) for small
process counts.

We would like to find a mapping that is as scalable as
zyxt, but which uses all three sets of links. We can do this
by mapping an xy-slab into a 3D block of the interconnect.
The blocks are placed on the torus so that domains which
are next to each other in physical space are also adjacent on
the interconnect. Messages passed in the z-direction are sent
from the source block to the same position in the (adjacent)
destination block. The number of links a z-message must cross
does not change as the number of xy-slabs is increased.

Messages for a 2D FFT are confined to the block for that
xy-slab. The message passing can use links in three directions
in contrast to the zyxt method which only uses links in
one direction. The messages are large enough that the extra
bandwidth obtained by using all three pairs of links outweighs
an increase in the number of hops for send/receive messages.

The scalable mappings discussed so far map an xy-slab in
physical space to a plane or rectangular block of the torus.
These mappings are simple enough that they can be generated
by custom scripts written for a particular case.

We create more complex network mappings using Rubik, a
tool designed at LLNL to create cartesian network mappings
for applications with structured domain decompositions. Rubik
allows the application developer to quickly specify groups
within arbitrary-dimensional cartesian spaces and map them
to potentially differently shaped groups in another cartesian
space. Rubik also allows us to perform permutations of ranks
within groups, e.g. the tilt operation discussed in this paper.
Rubik is designed to perform mappings onto 3- and higher-
dimensional torus networks used in large supercomputers like
the IBM BG/P, BG/Q, and Fujitsu K machines. Cray XT/XE
series systems have a toroidal interconnect, but applications
do not get their own private torus as on Blue Gene systems
or K. Future work will modify Rubik to work on the Cray
XE/XK. We use Rubik to map the planes in pF3D’s simulated
physical domain to blocks and tilted planes on the hardware
torus. Rubik is available on request from the authors of this
paper.

Rubik can easily reproduce both of the scalable mappings
described above. Rubik can also take one of these mappings
and apply a ”tilt” to it in one or more directions. Figure 5
shows how a simple partitioning of the BG/P torus can be
turned into a tilted mapping. The 8x8x8 BG/P partition has
been divided into 8 slabs on the left. Stopping at this point

Mapping CPU time (s) Msg time (s) Msg rate
TXYZ 457.496 55.218 54.735
XYZT 450.012 23.495 128.639
Tiling 449.505 22.737 132.929
TiltZ 449.331 17.756 170.213
TiltZY 449.481 15.435 195.814

TABLE II: This table shows message passing rates on a BG/P
system for five different mappings generated by Rubik.

would lead to messages that only use one pair of links during
a given message phase. Each slab is mapped to an xy-slab in
physical space. The slabs have been tilted in two directions on
the right. The mapping connects an xy-slab in physical space
to a tilted plane on the interconnect. Messages passed within
an xy-slab can use all three link directions with this mapping,
producing a higher message passing rate.

Table II shows message passing rates on Intrepid for 5
different mappings generated by Rubik. The best mapping for
this problem tilts the slabs shown in figure 5 in both the y
and z directions. There is nearly a factor of 4 difference in
performance between the slowest and fastest mappings.

The tilted mappings perform very well in these test prob-
lems run on an 8x8x8 node partition. We are currently starting
a three beam simulation on Dawn. This simulation has roughly
300 billion zones and runs on a 48x32x16 node partition. The
default xyzt mapping produces a rate of 8 MB/s, which leads
to the message passing time being about equal to the compute
time.

Three tilted mappings deliver rates high enough that pF3D is
compute bound, but they are significantly lower than the rates
in table II. The first custom scheme maps a 32x16 xy-slab to a
32x16 plane of the interconnect and then tilts twice to deliver a
rate of 28 MB/s. This mapping takes advantage of the toroidal
links, but the maximum hop count is 48=(32+16+48)/2, much
higher than the 12=(8+8+8)/2 of the test problems. The second
scheme maps a 32x16 xy-slab to an 8x8x8 chunk of the
partition and then tilts each block twice within its own volume.
This scheme has a maximum hop count of 24=8+8+8 (the
block is small enough that the toroidal wraparound links are
not used). The third scheme is a variant of the 8x8x8 chunking
scheme. The second and third schemes both deliver 31 MB/s.

These results suggest that the number of hops becomes more
important for large partitions, but using all three sets of links
is still very important. Additional mapping schemes will be
tried in the future to see if it is possible to get closer to the
200 MB/s rates obtained for small partitions.

B. Cielo

Cray XE6 systems have an interconnect that is a 3D torus.
The shape of the set of nodes assigned to a job is irregular
and will change from one submission to the next. There will
be holes in the allocation due to I/O nodes, out of service
nodes, and nodes already allocated to other jobs. Message
contention between applications can occur because they all run
on the same torus. Regular mappings from physical domain
to location on the torus are not possible due to the irregular

1.0 10.0 100.0
 0

 20

 40

 60

N processes / 1024

R
at

e
(M

B
/s

)

(a)

1.0 10.0 100.0
 0

 50

 100

 150

N processes / 1024
R

at
e

(M
B

/s
)

(b)

Fig. 4: Aggregate messing passing rate. (a) The xyzt mapping (black) works well on BG/L systems for small process counts
but is very slow for 192k processes. The zyxt message passing rate (blue) is essentially constant from 32k to 192k processes.
It is slightly faster for 8k processes than for the other points because the torus is 16x32 instead of 32x32 in the yz plane.
(b) The message passing rate on Cielo drops slowly as the number of processes increases. The error bar shows the rate when
Cielo uses a different node allocation strategy.

(a) (b)

Fig. 5: This figure shows how a simple partitioning of the BG/P torus can be turned into a tilted mapping. (a) The 8x8x8
partition has been divided into 8 slabs. Each slab corresponds to an xy-slab in physical space. (b) The slabs have been tilted
in two directions. The mapping connects an xy-slab in physical space to a tilted plane on the interconnect. Messages passed
within an xy-slab can use all three link directions with this mapping, producing a higher message passing rate.

shape of the node set. It is possible to create ”mostly regular”
mappings, but they must be generated at run time.

Our large Cielo runs have, so far, all used the default
mapping from processes to the set of nodes on the torus.
On Cray XE6 systems, the default is to assign domains in
”node order”. In this case, node order means in the numeric
order of the nodes assigned to the process. The Gemini
chips on the XE6 are numbered with the z-coordinate varying
fastest, then the y-coordinate, then the x-coordinate varying
slowest. Each Gemini chip is a 1x2x1 chunk of the torus.
The 32k simulations we have run on Cielo use a 16x16x128
decomposition. If we ignore the nodes dedicate to I/O and to
other jobs, a 16x16 slab of domains tended to map to a 1x2x8
chunk of the Cielo torus before September 2011. The default
node allocation strategy of Cielo was changed in September
2011. In our latest Cielo simulation, an xy-slab tends to map
to a 2x2x4 chunk of the torus.

The change in default node assignment has improved the
message passing rate. The pF3D message passing rates for 32k
process runs varied from job-to-job between 60 MB/s/process
and 80 MB/s/process with the original node assignment. The
rates vary between 110 MB/s/process and 145 MB/s/process
with the new strategy. In both cases, the variation from time
step to time step within a single run is at roughly the 5%
level. This suggests that the main variability is due to how the
communicators are laid out on the torus, not interference due
to messages from other processes.

One message passing optimization is easily performed on
Cielo. By decomposing into 16 domains in the x-direction, all
messages for x-FFTs are passed using shared memory within
a node. The on node rate is several times faster than the off
node rate, so this choice of decomposition allows pF3D to
pass x-messages quickly on Cielo.

The Cielo runs in the scaling study of figure 4 all used
the original default mapping between MPI rank and location
within the set of nodes. The message passing performance
drops slowly from 105 MB/s to 55 MB/s as the number
of processes increases from 1k to 128k. The roughly 25%
variation from job-to-job at 32k processes is nearly half the
size of the variation between 1k and 128k processes in the
scaling study. This suggests that much of the variation in both
cases is due to the placement of processes on the Cielo torus.

All Y messages go off node and are significantly slower
than the X messages. The message passing rate for Y messages
summed over all 16 processes is probably about 1 GB/s per
node for the older assignment scheme. That is significantly less
than the roughly 5 GB/s rate that MPI benchmarks achieve.
Our run times would be significantly shorter if we could pass
messages at 5 GB/s.

We are currently working on a dynamic mapping strategy
for Cielo. We will allocate a few extra nodes and select a sub-
set of the nodes such that all y-communicators have the same
shape. This should avoid Y-communicators that are longer than
the nominal 2x2x4 and thus avoid slow communicators. We do
not yet know if the improvement in communication speed will
be enough to justify idling a (presumably small) percentage of

the nodes. In the longer term, we hope to investigate clustering
strategies which achieve better performance than the default
mapping without idling a significant number of nodes.

IV. OPENMP AND SIMD VECTORIZATION

One approach to improving the performance per Watt of a
chip is to reduce the clock speed, simplify the cores, reduce
the cache per core, and put more cores on each chip. The Intel
MIC and IBM Blue Gene/Q processors are current examples
of this approach. The simplified instruction issue units on these
cores mean that multiple hardware threads must be used on
each core to attain peak performance. It may be advantageous
to use multiple hardware threads even on high performance
processors (see figure 9). With slowly growing memory per
chip and a rapidly growing number of hardware threads per
chip, the memory per hardware thread will decrease fairly
rapidly in the next few years. An application that employs only
MPI parallelism will have much less memory per process than
on current systems.

The trend of more cores per GB of memory will probably
force pF3D to move away from being a pure MPI code. The
pF3D executable is fairly small and pF3D doesn’t need any
large data tables. A pF3D run will fit in a small amount of
memory per process. If the overhead of thread coordination is
low, pF3D could still achieve good computational efficiency.
The main problem with running small processes may be
difficulties in achieving high enough message passing rates.

As the number of zones per process decreases, the size
of the messages passed drops even faster. Figure 6 shows
three possible decompositions of the same physical space. The
message size in (b) is 1/8 of the message size for (a) because
each process has 1/4 as many zones and it sends messages
to twice as many processes. The resulting messages may be
short enough that the effective bandwidth will drop. In (c),
there are 4 threads per process. Each thread has the same
amount of memory as a process in (b). Messages are passed
by processes, so their size is the same as in (a).

We are in the process of adding OpenMP parallelism to
the MPI parallelism already present in pF3D. Messages will
be passed by the process, not OpenMP threads. The number
of zones in a domain will remain large, so messages will
remain large. The challenge then becomes obtaining OpenMP
overheads low enough that several threads can cooperate
efficiently on an amount of work previously handled by one
core. Once we have an efficient OpenMP+MPI code, we intend
to add OpenAcc directives and explore the use of accelerators
like the Nvidia Tesla.

Several of the pF3D functions that consume the most time
during a run have been converted into kernels. OpenMP
directives have been added to the kernels and are being used
to investigate how to obtain good performance when using
multiple threads.

An OpenMP loop has a barrier at the end and it takes time
to start up the threads and assign loop iterations to them at
the top of the loop. The computation time needs to be long
compared to these overhead times to achieve good OpenMP

0.0 0.5 1.0 1.5 2.0
 0

 1

 2

 3

Decomposition for 2 GB per process

(a)
 0 1 2 3 4

 0

 2

 4

 6

Decomposition for 0.5 GB per process

(b)
 0 1 2 3 4

 0

 2

 4

 6

Decomposition for 2 GB and 4 threads per process

(c)

Fig. 6: This figure shows two decompositions for a single xy-slab. (a) The slab is decomposed into 2 domains in the x-direction
and 3 domains in the y-direction. (b) The slab is decomposed into 4 domains in the x-direction and 6 domains in the y-direction.
(c) The slab is decomposed into 2 domains in the x-direction and 3 domains in the y-direction. There are 4 threads per domain
(shown by 4 colors). Green lines show domain boundaries. The domains in the bottom ”row” are divided by dashed cyan lines
into the portions that will be sent to other processes during an alltoall message.

performance. This effect means that the number of zones per
process may need to grow as the number of threads per process
grows to maintain good performance. The limited memory on
future systems may make it difficult to increase the zones per
process. Another solution is to modify chips to have faster
thread synchronization primitives so that more threads can be
used before running into an overhead problem.

The number of zones per process for a run of the kernels
is chosen to be similar to the number of zones per process in
Table I.

There are several different ways of evaluating the efficiency
of an OpenMP code. In a strong scaling study, the total amount
of work (zones) is held fixed and the number of threads
is increased. At some point, thread overhead will become
important. In a weak scaling study, the work per thread is held
fixed. Thread overhead is much less important than for strong
scaling. In both cases, contention for memory bandwidth or
other shared resources increases as the number of threads
increases. If there isn’t enough bandwidth to go around, pure
OpenMP scaling will suffer.

The third sort of study (hereafter hybrid scaling) is per-
formed using a code with mixed MPI and OpenMP paral-
lelism. The product of the number of processes and the number
of threads per process is held fixed, typically at the number of
cores (or hardware threads) on the node. The work per core
and the load on shared resources like memory is independent
of the number of processes.

pF3D simulations will use all the cores on a chip. Our goal
when running a scaling study is to determine what combination
of threads and processes will deliver the highest throughput.
A hybrid scaling study is the best way to answer this question.

Figure 7 shows the rate at which a core can update zones
for the advancefi kernel. In an ideal computer system with
no contention for shared resources like memory bandwidth
and no overhead for thread coordination, the rate would be
independent of the number of threads. The strong scaling study

 5 10 15
0.

1.

2.

10+6

rate for advancefi

Fig. 7: The figure shows the zones updated per second per
core for the advancefi kernel on a Sandy Bridge processor
as a function of the number of threads. Weak scaling (green)
and hybrid scaling (blue) have times nearly independent of the
number of threads. The performance drops significantly in the
strong scaling study (black).

shows a drop of roughly 30% between 1 and 16 threads. Weak
scaling and hybrid scaling show only a modest drop. This
sort of difference between weak and strong scaling indicates
that the thread coordination time becomes comparable to the
compute time in the strong scaling study.

Several of the other pF3D kernels (absorbdt, couple4, and
couple5) have good strong scaling, indicating that there is
enough work to amortize thread coordination costs when the
total number of zones is similar to the zones per domain of
typical pF3D simulations.

Another trend in recent processors is an increase in the
width of the SIMD (single-instruction, multiple-data)registers
in the floating point unit. pF3D usually operates on 3D arrays
of float complex numbers. Older x86 processors have 128 bit
wide SIMD registers with a peak float vector performance
4X the scalar peak. The Intel Sandy Bridge has 256 bit wide
registers with a peak float performance of 8X times the scalar
rate. The Intel MIC chip has 512 bit wide registers with a peak
float performance of 16X times scalar. The AMD Interlagos
chip has a 256 bit wide floating point unit shared by two
integer cores. Its peak float performance is 4X times its scalar
peak, the same as earlier x86 systems. It is worth putting effort
into SIMD vectorization when there is a potential 16X gain
in peak performance.

A fairly high fraction of the key loops in pF3D vectorize
if the C99 restrict modifier is applied to the appropriate array
pointers. In practice, speedups are much less than the ratio of
peak performance. The limited speedups may be due to main
memory bandwidth constraints or even to cache bandwidth
(some cores can only fetch one SIMD register from the L1
cache per clock tick).

Figure 8 compares the rate at which zones are updated per
core for a SIMD vectorized and an unvectorized version of the
couple4 kernel in a hybrid scaling study. There is a significant
performance advantage (of order 2X) to SIMD vectorization,
but the advantage is much less than the theoretical 8X increase
in peak performance. The reason for the limited speedup might
be contention for memory bandwidth.

Several recent processors have multiple hardware threads
per core. Each thread has its own set of registers, so in-
structions can be issued from any of the hardware threads
without a context switch. The figure shows the performance
with hyperthreading (Intel’s name for Xeon hardware threads)
enabled and the same number of zones per core as the
other runs. Hyperthreading produces a noticeable increase in
throughput.

The SIMD performance for a single process using all
cores/threads is significantly lower (1) than with two or
more processes (1.5-2X). The single process allocates all of
its memory on a single socket. Two or more processes use
memory on both sockets. The single process job runs slower
because only half the memory bandwidth of the socket is used.

There is more thread-to-thread variability in performance
for the SIMD vectorized kernel than for the scalar kernel. The
reason for that behavior is not yet understood.

Figure 9 shows the benefit of SIMD vectorization and

 10 20 30
0.0

0.5

1.0

1.5

2.0

HT couple4 vs. couple4nc on Sandybridge

thread #
R

at
e

Fig. 8: The figure shows the rate at which zones are updated
per core for the couple4 kernel on an Intel Sandy Bridge
processor. The solid lines are for a SIMD vectorized version
while the dashed lines are for a ”scalar” version. Black is
16 processes with 1 thread each, green is 8 processes with
2 threads each, blue is 4 processes with 4 threads each, and
red is 8 processes with 2 threads each, and magenta is 16
processes with one thread each. The dotted lines are for the
SIMD vectorized kernel with hyperthreading enabled. Black
is 32 processes with 1 thread each, green is 16 processes with
2 threads each, blue is 8 processes with 4 threads each, red is
4 processes with 8 threads each, magenta is 2 processes with
16 threads each, and cyan is 1 process with 32 threads. The
zones per core are the same for all runs.

hyperthreading on an Intel Sandy Bridge processor for the
couple4 kernel. These curves were obtained by averaging the
rates in 8 over threads. SIMD vectorization provides a speedup
in all cases. Hyperthreading provides little benefit for one
process, but generally increases the throughput by 20% for
2 or more processes. The variability in the benefit may reflect
the larger thread-to-thread variations for the hyperthreaded
runs. Hyperthreading provides benefits in the 10-30% range
for several other pF3D kernels and for two other LLNL codes.

Figure 10 compares the rate at which zones are updated
per floating point unit by the couple4 kernel on Intel Sandy
Bridge and AMD Interlagos processors. The rates for the
Sandy Bridge are the same for all combinations of threads
and processes and are very uniform from core to core during
a given run. The Interlagos rates have significant variations
from core to core. The variability in the Interlagos numbers

 10 20 30
0.0

0.5

1.0

1.5

2.0

Sandybridge couple4 SIMD and SIMD−HT rates

N procs

R
at

e

Fig. 9: The figure shows the rate (averaged over threads) at
which zones are updated per core as a function of the number
of processes for the couple4 kernel on an Intel Sandy Bridge
processor. Solid lines are for the non-SIMD version and dashed
lines for the SIMD version of the couple4 kernel.The black
lines are for one thread per core and the green lines are for
two threads per core. The zones per core are the same for all
runs.

may be due to thread binding and memory affinity not being
set properly (this is a test node).

Figure 11 compares the rate at which zones are updated per
core by the couple4 kernel for Intel Sandy Bridge and AMD
Magny Cours processors. The rates for the both processors are
nearly the same for all combinations of threads and processes
and are very uniform from core to core during a given run.
The Sandy Bridge code was compiled with version 12.1 of
the Intel C compiler, icc. icc does not bind threads to cores
properly on Cielo, so we used gcc 4.6 for the Magny Cours.
This kernel does not vectorize, so gcc produces competitive
performance. The Sandy Bridge processor is faster than the
Magny Cours for this kernel, but not by as much as these
results generated with different compilers suggest.

V. EFFICIENT CHECKPOINTING

Large computers like Cielo have large numbers of compo-
nents. Even with carefully designed RAS systems, applications
running on a large fraction of the system must be prepared
to deal with errors that interrupt execution. Jobs may be
interrupted by hardware errors that cause a node to fail, they
may be interrupted by ”soft” hardware errors (the hardware

 10 20 30
0.0

0.2

0.4

0.6

0.8

Sandybridge and Interlagos couple4 rates

core #
R

at
e

Fig. 10: The figure shows the rate at which zones are updated
per core for the couple4 kernel on Intel Sandy Bridge (dashed
lines) and AMD Interlagos (solid lines) processors. Black is
16 processes with 1 thread each, green is 8 processes with 2
threads each, blue is 4 processes with 4 threads each, and red
is 8 processes with 2 threads each. The rates for the Interlagos
chip are for a floating point unit and its two associated integer
cores.

is still usable if the job is relaunched), and they may be
interrupted by system software errors.

A resiliency strategy for dealing with hardware and system
software faults is an important part of a massively parallel
code today and it will become even more important on future
systems. pF3D uses application checkpoints as its resiliency
strategy. pF3D writes the state of the simulation to the parallel
file system after a user selected number of simulation time
steps. ”Productive I/O” is the I/O performed to permit the
scientist to understand the simulation, extract results, and
generate presentations. Writing a checkpoint set is an example
of ”defensive I/O”. A checkpoint is no longer needed once
a newer checkpoint has been written. Checkpoints are often
deleted without ever having been read. A checkpoint written at
the end of a batch time slot is not ”defensive” - it is required
to resume the simulation at a later time.

If a fault occurs, the simulation is resumed from the most
recent checkpoint. A restart involves the loss of the time spent
computing since the last checkpoint and the time required
to read in the checkpoint at the start of the new run. The
checkpoint interval is chosen to balance the time spent in
defensive I/O against the time lost recovering from a fault.

 5 10 15
0.0

0.2

0.4

0.6

Sandybridge and Magny Cours couple4 rates

core #

R
at

e

Fig. 11: The figure shows the rate at which zones are updated
per core for the couple4 kernel on Intel Sandy Bridge (dashed
lines) and AMD Magny Cours (solid lines) processors. Black
is 16 processes with 1 thread each, green is 8 processes with
2 threads each, blue is 4 processes with 4 threads each, red is
8 processes with 2 threads each, and magenta is 16 processes
with one thread.

System N-proc Size (TB) Rate (GB/s) FS type
Intrepid 128k 31.9 24.7 GPFS
Dawn 96k 58.0 27.6 Lustre
Cielo 32k 44.8 33.9 Panasas

TABLE III: This table shows the rate at which pF3D wrote
checkpoint sets to disk in recent large runs on three different
systems.

In practice, the checkpoint interval is chosen to be something
like half the MTBI for the application.

pF3D uses a file-per-process strategy for restart dump files.
Table III shows the rate at which checkpoint files were written
in recent pF3D runs on three different systems. We have put
significant effort into obtaining good I/O rates in pF3D. The
I/O rates are the highest of any code currently running on
Intrepid. The I/O rate on Cielo nearly matches the rate for
the IOR benchmark code. The rate on Dawn is probably the
highest of any code running on that system.

In spite of the very good performance we have achieved,
defensive I/O performance is still an issue. It takes half an
hour to write a checkpoint to disk for a 32k process run on
Cielo. A simulation reads a checkpoint at the start of the run
and writes three checkpoints to disk for a total of 2 hours of
defensive I/O during a run that lasts roughly 23 hours. A 64k

process run with twice as many zones would take twice as
long for its checkpoint I/O - 4 hours out of 23.

Exascale systems are expected to need much longer to copy
all of memory to magnetic disk than current systems. Writing
checkpoints on future systems may take longer than the MTBI
of the system. Writing checkpoints to disk is not a viable a
resilience strategy on a system of that sort.

Defensive I/O produces files that only need to be retained
for a short while - less than the duration of one batch job. That
means they can be written to local storage that will be lost at
the end of a batch job. Local storage often has a much higher
aggregate bandwidth than a parallel file system, so it is an
interesting target for defensive I/O. Most current large systems
do not have local disks due to the operational difficulties of
replacing them when they fail. A few systems have local flash
disk and it is also possible to use memory as a RAM disk. The
aggregate bandwidth of per-node flash disk and RAM disk is
high enough that checkpoints can be written in a time much
shorter than the MTBI. A checkpoint would only need to be
copied to disk once per batch job.

SCR [5], [6] can write checkpoints to RAM disk in a few
seconds. Checkpoints are broken up into several data chunks
plus a parity chunk and written to the RAM disks of multiple
nodes. When a node fails, SCR still has a complete checkpoint
set on the remaining nodes. If a job allocates a few extra nodes,
it can be restarted from RAM disk by issuing another aprun
command within the same batch job. SCR copies a checkpoint
to disk at the end of a batch slot (or more often, if desired).

Using SCR to write checkpoints can significantly improve
the efficiency of pF3D. In the case of the 64k run mentioned
above, the checkpoint I/O time would drop from 4 to 2 hours
per 23 hour job, producing a throughput improvement of 10%.

The benefit of SCR is actually much larger than that. Local
checkpointing is so fast that it can be done after every time
step rather than every 6-7 hours. When a job crashes, the
most recent checkpoint is less than an hour old and little
compute time is lost. As noted above, SCR can also restart
pF3D multiple times during a single batch time slot. Restarts
during a job read the checkpoint from local storage and take a
few seconds to complete. A pF3D run on 16k AMD Barcelona
cores increased the results delivered per day by roughly 50%
when it switched to using SCR.

SCR is currently undergoing testing on Cielo. Cielo is in
the process of switching from a Panasas file system to a Lustre
file system. We will evaluate the improvements in efficiency
provided by SCR after that transition is complete.

VI. LPI RESULTS

pF3D obtains its initial conditions (temperatures, densities,
and materials) from a HYDRA simulation of the full capsule
implosion. HYDRA includes all the physics necessary to
model the implosion, but it does not have the ability to model
backscattered laser light. The HYDRA simulations cover the
full 20 ns duration of the experiment. pF3D simulations cover
roughly 50 ps at interesting times in the pulse. The backscatter

levels from the pF3D simulation can be fed back to HYDRA
as an energy loss from the laser.

The simulation we discuss here was run using the tempera-
ture and density at a time early in the peak of the laser pulse.
The simulation shows bursts of SRS and SBS backscattered
light. The experiments cannot resolve time scales this short,
so we compare time-averaged backscatter levels to the data.

Experimental data at this time show SRS levels ranging
from 22% to 55% and SBS levels ranging from 6% to 22%.
The simulation has time averaged levels of 16% SRS and
4.4% SBS. The levels of backscatter in the simulation are a
bit lower than the lower end of the experimental range. The
simulation was expected to have somewhat lower levels of
backscatter than the experiments for a couple of reasons. Some
of the region where SBS is generated was not included in this
simulation. Experiments have shown that overlapping beams
increase the level of backscatter. The reference beam in the
simulation only has a neighbor on one, not both, sides. The
agreement between simulation and experiment is fairly good,
given these issues, and should improve as we continue to refine
our simulations.

The SRS and SBS start in a few small regions near the
back of the simulation volume, then grow in strength as
they propagate back towards the laser entrance plane. The
SRS spreads more rapidly in the transverse direction as it
propagates than does the SBS. The SRS and the SBS both
have multiple bursts. SRS bursts are strong enough to reflect
a high percentage (over 40%) of the laser light at their peak.
The unreflected light is at an intensity low enough that it does
not trigger backscattering when it reaches the SRS and SBS
generation region. This leads to the SRS and SBS turning on
and off with a period roughly equal to the time it takes the laser
to propagate through the region that has strong SRS growth.

Figure 12 shows the SRS backscattered light at a time
shortly before the peak of the first burst. The SRS from the
two beams is spatially separated at this time. Later on in the
burst there is SRS in the region where the two beams overlap.

Figure 13 shows the SRS and SBS power as a function
of time. The SRS has bursts with a regular period. The SBS
starts later than the SRS. The first two SBS bursts coincide
with an SRS burst. There are two SBS bursts at the time of the
final SRS burst. These results are still being investigated, but
it appears that the different temporal behavior of the two kinds
of backscatter is due to a portion of the SBS being generated
in a region of the beam that doesn’t have much SRS.

VII. CONCLUSIONS AND FUTURE WORK

We have successfully run three pF3D laser-plasma simula-
tion of NIF experiments on Cielo. We obtained good I/O rates,
good message passing rates, and good CPU performance. We
have developed a tool that makes it easy to generate custom
mappings between the location of a domain in physical space
and its location on a Blue Gene interconnect. We are currently
working on extending that capability to the Cray XE6. We
are adding OpenMP threading to pF3D so that we can run
efficiently with fewer zones per core than current simulations.

Fig. 12: The figure shows the SRS backscattered light at a time
shortly before the peak of the first burst. The SRS from the
two beams is spatially separated at this time. Later on there
is SRS in the region where the two beams overlap.

 20 40 60
0.0

0.2

0.4

Fig. 13: The figure shows the SRS and SBS backscattered
light as a function of time. The scattered light is shown as a
fraction of the incident light.

We are currently testing SCR on Cielo. Using SCR should
significantly reduce the time pF3D spends on defensive I/O.

When the changes we have been working on go into full
production on Cielo later this year, we should be able to
generate significantly more results per day than with the
current version of pF3D. The changes we have made will also
put us in a good position to exploit even larger systems like
Sequoia, a 20 Pflop/s IBM Blue Gene/Q.

ACKNOWLEDGMENT

This work was performed under the auspices of the
Lawrence Livermore National Security, LLC, (LLNS) under
Contract No. DE-AC52-07NA27344. This document was re-
leased as LLNL-PROC-547711.

This research used the Cielo capability computing resource
at Los Alamos National Laboratory which is managed by the
Los Alamos National Security, LLC, under Contract No. DE-
AC52-06NA25396.

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department

of Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] E. I. Moses, “Overview of the national ignition facility,” Fusion Science
and Technology, vol. 54, no. 2, pp. 361–366, 2008.

[2] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and
E. A. Williams, “Filamentation and forward brillouin scatter of entire
smoothed and aberrated laser beams,” Physics of Plasmas, vol. 7, no. 5,
p. 2023, 2000.

[3] R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B. Kaiser, B. B. Afeyan,
B. I. Cohen, C. H. Still, and E. A. Williams, “Influence of spatial
and temporal laser beam smoothing on stimulated brillouin scattering in
filamentary laser light,” Phys. Rev. Lett., vol. 75, no. 6, pp. 1078–1081,
Aug 1995.

[4] S. Langer, B. Still, T. Bremer, D. Hinkel, B. Langdon, and E. A. Williams,
“Cielo full-system simulations of multi-beam laser-plasma interaction in
nif experiments,” CUG 2011 proceedings, 2011.

[5] A. Moody and G. Bronovetsky, “Scalable i/o systems via node-local stor-
age: Approaching 1 tb/sec file i/o,” SuperComputing 2008 Proceedings,
2008.

[6] A. Moody, G. Bronovetsky, K. Mohror, and B. R. de Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
systems,” SuperComputing 2010 Proceedings, 2010.

[7] D. H. Munro, “Using the yorick interpreted language,” Computers in
Physics, vol. 9, no. 6, p. 609, 1995.

[8] D. H. Munro, “The yorick home page,” http://yorick.sf.net, 2011.

http://yorick.sf.net

	Introduction
	pF3D Overview
	Message Passing Performance
	Blue Gene Systems
	Cielo

	OpenMP and SIMD vectorization
	Efficient Checkpointing
	LPI Results
	Conclusions and Future Work
	References

