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Abstract—Coarrays are a feature of the Fortran 2008
standard that enable parallelism using a small number of
additional language elements. The execution model is that of a
Partitioned Global Address Space (PGAS) language. The Cray
XE architecture is particularly interesting for studying PGAS
languages: it scales to very large numbers of processors; the
underlying GEMINI interconnect is ideally suited to the PGAS
model of direct remote memory access; the Cray compilers
support PGAS natively. In this paper we present a detailed
analysis of the performance of key coarray operations on XE
systems including the UK national supercomputer HECToR,
a 90,000-core Cray XE6 operated by EPCC at the University
of Edinburgh. The results include a wide range of communi-
cations patterns and synchronisation methods relevant to real
applications. Where appropriate, these are compared to the
equivalent operation implemented using MPI.
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I. INTRODUCTION

Partitioned Global Address Space (PGAS) languages such
as Unified Parallel C [1] have been the subject of much
attention in recent years, in particular due to the exas-
cale challenge. There is a widespread belief that existing
message-passing approaches such as MPI will not scale
to this level due to issues such as memory consumption
and synchronisation overheads. PGAS approaches offer a
potential solution as they provide direct access to remote
memory. This reduces the need for temporary memory
buffers, and may allow for reduced synchronisation and
hence improved message latencies. Some modern distributed
memory architectures allow for Remote Memory Access
(RMA) directly over the interconnect, meaning the PGAS
model maps directly onto the underlying hardware. PGAS
features have been introduced into the Fortran 2008 standard
with coarrays [2]. Programming using coarrays has many
potential advantages compared to MPL. Amongst these are
simplicity, compiler checking and scope for automatic opti-
misation of communications by the compiler. Coarrays can
also be introduced incrementally to existing MPI codes to
improve performance-critical kernels.

Coarrays have a long history on Cray systems, with
implementations dating back to 1998 on the Cray T3E.
The original coarray extensions proposed by Bob Numrich
and John Reid [3] were implemented as an option in Cray
Fortran 90 release 3.1. The direct RMA capabilities of

the T3E torus interconnect enabled this PGAS model to
be implemented easily and efficiently. The first generation
of more modern Cray systems, the XT architecture, used
the Seastar interconnect which had an underlying message-
passing (i.e. two-sided) data-transfer model. As a result,
PGAS languages had to be implemented on top of some
software layer such as GASNET [4] to emulate true RMA
capabilities. However, the most recent Cray XE systems use
the GEMINI interconnect which once again offers native
RMA capabilities. Coupled with the increasing maturity of
coarray support in Cray’s Fortran compiler, this makes it an
interesting time to evaluate the performance of coarrays on
machines such as the Cray XE6.

II. FORTRAN COARRAYS

The fundamental extension is a new declaration syntax
enabling variables (scalars or arrays) to be replicated across
multiple images executing in an SPMD fashion, e.g.

real, dimension(10), codimension[*] :: X

declares that a one-dimensional array z with 10 ele-
ments exists on every parallel image. The distribution across
images is achieved by having an additional codimension,
indicated by square brackets, which spans the images; its
size is set automatically at runtime. Remote data is accessed
simply by indexing within the codimension, e.g.

xX(2) = x(3)[7] !

) get value from image 7
x(6) [4] = x(1) !

set value on image 4

If the codimension is omitted then access refers to the local
copy, meaning there need be no overhead for local operations
on coarrays. Multiple codimensions are also supported.

A number of image synchronisation mechanisms are
available, e.g. to enable the programmer to ensure that
remote writes have completed at the required point of
execution. These include global synchronisation, mutual
synchronisation with one or more remote images, critical
sections and locks. In general, Fortran does not perform any
automatic synchronisation: although this maximises perfor-
mance, it very much places the onus for ensuring correctness
on the programmer.



A. Fortran Coarray Benchmark

It is important that any benchmark measures character-
istics of performance that are relevant to a wide range of
applications. Given that Fortran coarrays are relatively new
to the standard, it seems rather early to port full applications
codes, although a number of performance studies have
already been done on kernels such as the NAS Parallel
Benchmarks [5]. We prefer to focus on a small number
of low-level operations and measure their performance in
isolation. In all cases the basic data type is a double precision
floating-point value.

The benchmark design is described in [6], which also
presents initial results from a range of Cray systems (X2, XT
and XE). That paper also has some comparisons with results
on an Intel Infiniband cluster, obtained using the coarray
support recently available in the Intel ifort compiler.

III. CRAY XE6 RESULTS

Although some XE6 performance results were presented
in [6], they were mainly used to illustrate differences in
performance between different compilers (Cray and Intel)
and between architectures with and without native hardware
support (e.g XT and XE). Not surprisingly, performance
on the XE systems was much better than for the XT,
particularly in terms of reduced latency and synchronisation
overheads. Here we present new data, obtained on more
recent XE systems with Interlagos processors, and a much
more detailed analysis of performance. It is also interesting
to investigate if and how the Cray compiler has improved
in terms of its coarray support.

Results were obtained on two machines. The first is
HECTOoR, the 90,112-core UK National Supercomputer op-
erated by EPCC at the University of Edinburgh on behalf
of EPSRC. HECToR comprises 2816 compute notes, each
containing two 16-core AMD Opteron Interlagos 2.3 GHz
processors, connected by the GEMINI interconnect. We also
had access to an internal Cray development system which
is the same basic architecture but with 2.1 GHz CPUs. The
difference in clock speed had no noticeable effect on the
coarray communications performance. We used version 8.0
of the Cray Fortran compiler; the internal Cray systems were
running pre-release software.

A. Point-to-point transfer

The simplest data transfer is the equivalent of an MPI
ping-pong, i.e. data is repeatedly transferred between a pair
of images. In MPI this is achieved using a pair of send/recv
calls. Using coarrays an image can either write data remotely
to the other image (using a put), or it can read data directly
from the other image (using a ger). Equally important,
however, is the choice of synchronisation mechanism. Using
coarrays, only one image actively participates in the data
transfer (the sender for put; the receiver for get) meaning that
synchronisation calls must be inserted explicitly by the user

to ensure correctness. For a ping-pong with remote writes
this means mutual synchronisation after every put so that the
target image knows when the data has arrived and can then
proceed to return the data with its own put call. Similarly, for
remote reads mutual synchronisation is also required after
each get so that the source image knows when its data has
been read, meaning it can then proceed to read the data back
from the target with its own get call. If these synchronisation
calls are omitted then the pattern will not be a ping-pong:
the images will not wait for each other so will be performing
a simultaneous ping-ping. More importantly, we will have
an incorrect code and will almost certainly be transferring
the wrong data.

Figure 1 shows the time taken for small messages using
coarrays, and using MPI_ Send for comparison. Synchroni-
sation is either global (sync all) or point-to-point (sync
images). The data is for put, although the timings for get
are almost identical. All MPI timings presented here come
from the standard Intel MPI Benchmark [7], although we
have checked that simply inserting MPI calls directly into
our coarray benchmark framework gives equivalent results.

To ensure that the GEMINI network is used rather than
shared-memory copies, the tests are done using two images
(or MPI processes) placed on different compute nodes of
the XE6. For coarrays, this is not necessarily the same test
as having fully populated nodes where all but one of the
images on each node simply does not participate. For global
synchronisation (using sync all) the non-participating
nodes will still have to make the collective synchronisation
call do avoid deadlock, increasing the overall time taken. It
should be noted that the results in Figure 1 are a best-case
scenario: not only are the global synchronisation overheads
minimised by having a single process per node, that process
also runs on core 0 which has direct access to the GEMINI
network without having to communicate over any additional
internal hyper-transport links.
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Figure 1. Latency of point-to-point data transfer using coarrays (with

sync all and sync images) and MPI_Send

The results show that the MPI ping-pong is faster than



using coarrays for fewer than 1024 doubles. For these small
messages, the coarray time is dominated by the synchro-
nisation call, with point-to-point synchronisation about a
microsecond more expensive than global synchronisation.
Above 1024 doubles the superior bandwidth of coarray
transfers leads to coarrays outperforming MPI. Interestingly,
the point-to-point and global synchronisation overheads also
appear to be the same in this regime. To fully understand
the performance of coarrays it would be necessary to mea-
sure the synchronisation overheads in isolation, which is
attempted in Section III-B.

The ping-pong results are summarised in Table I where
we also include the coarary results for get and the asymp-
totic bandwidths for completeness. Although the latency
for coarray transfers is substantially larger than for MPI,
it should be noted that in real coarray application we would
not normally synchronise after each single-word transfer. We
would expect that multiple small transfers would be enclosed
by a single pair of image synchronisation calls, thus reducing
the effective latency per transfer. This is different from MPI
where synchronisation occurs on a per-message rather than
a per-image (or per-process) basis.

Mode latency (us) | bandwidth (GB/s)
MPI Send 1.6 6.1
Put (sync images) | 3.6 6.8
Put (sync all) 2.7 6.8
Get (sync images) | 3.5 6.8
Get (sync all) 2.6 6.8

Table 1
PING-PONG STATISTICS FOR MPI AND COARRAYS

B. Basic synchronisation overheads

The benchmark measures a variety of patterns of syn-
chronisation which are discussed in detail in Section III-E.
However, to attempt to understand the ping-pong results
in Section III-A the basic timings for global and pairwise
synchronisation are required. We plot the time taken for
a sync all in Figure 2, alongside MPI_Barrier for
comparison. The results are encouraging as they show that
the coarray synchronisation out-performs MPI, whereas we
previously observed the opposite [6].

We also measure the global and point-to-point synchro-
nisation overheads for two images, each on separate nodes,
as 2.3 ps and 3.6 us respectively. Although these numbers
appear reasonable in isolation, they do not make sense when
compared to Table I. If we subtract these independently
measured synchronisation overheads from the overall ping-
pong latencies it does not give consistent results: it would
appear that the point-to-point synchronisation overhead of
3.6 us is an overestimate.

35 T T T T

T T
MPI Barrier

Sync all
30 - B
ot
g 25r pd -
c
§ " ///
S _
E 15+ 4//// R
() -~
£ _—
F 10+ e i
5+ i
1 1 1 1 1 1
16 32 64 128 256 512 1024 2048

Number of images

Figure 2. Time taken for global synchronisation

C. Aggregate Bandwidth

The ping-pong tests, although useful in understanding
the fundamental characteristics of the interconnect, are not
particularly relevant to the communications patterns used in
real codes. Most importantly, real codes typically have all
cores performing communications simultaneously (unless a
hybrid model has been used with explicit threading on a
node). The simplest way to investigate this with a benchmark
is to perform multiple ping-pongs between pairs of images
on different nodes. For example, with 64 cores on two fully
populated nodes of HECToR this means pairing up core 0
with core 32, core 1 with core 33, etc.

The results for this “Multi-Put” benchmark are shown in
Figure 3 for both synchronisation mechanisms. For com-
parison the curves for the single ping-pong benchmarks
are shown for both coarrays and MPI, as well as those
for multiple MPI Sends. The results for get are virtually
identical.
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Figure 3. Bandwidth of single and multiple point-to-point data transfers

using coarrays and MPI_Send

The multi-put results with global synchronisation are quite
easy to interpret. Many data transfers are competing for the



same network connection, so the bandwidth is split almost
equally between the 32 pairs of images. The aggregate
bandwidth of 5.6 GB/s is therefore close to the 6.8 GB/s for a
single put (assuming that the single put already saturates the
bandwidth). This implies that there is some small overhead
of around 20% from contention for the network.

The multi-put results for point-to-point synchronisation
are almost twice this figure at 9.5 GB/s. This is simply
because, in the absence of global synchronisation, the dif-
ferent ping-pongs naturally become de-synchronised with
each other after sufficiently many iterations. In other words,
when half of the images on a node are sending the other
half are receiving. Since data is travelling in both directions
we benefit from the bi-directional capabilities of the GEM-
INI network. The same is true for MPI where again the
individual send/recv pairs are not mutually synchronised.
This hypothesis has been confirmed by performing a test
using global synchronisation but manually staggering the
communications so that half the pairs send while the other
half receive. Under these conditions, we achieve a bandwidth
of 9.3 GB/s.

The only surprising feature of Figure 3 is the peak in
the multi-put bandwidths between 64 and 512 doubles.
Presumably the various thresholds for switching between
different internal protocols have been optimised for MPI
performance and should probably be changed for coarrays,
although this was not investigated.

D. Strided data transfers

The standard ping-pong benchmark is not only unrealistic
in assuming that just a single pair of processes are com-
municating: it also assumes a single block of contiguous
data. In real applications the data is often non-contiguous,
for example if it is a halo region which comprises a slice
of some higher-dimensional array (see Section III-F). If we
take the simple case of single words of data separated by a
fixed stride then this can be expressed directly using Fortran
array syntax or as an explicit DO loop, and we measure the
performance of both constructs.

The results are presented in Table I where we show data
for both the single and multiple versions of the ping-pong.
As well as aggregate bandwidth, we report the time per
double precision value as this enables a useful comparison
with the previous ping-pong latencies. Since for these strided
patterns we transfer many thousands of words between
a single pair of synchronisation calls, the synchronisation
overhead per word should be negligible. We find that per-
formance is generally not sensitive to the stride between
words, so here we use a stride of 2. Note that bandwidth
figures are in megabytes per second, not gigabytes.

The “DO loop” results can be compared to the latencies
in Table I. There is some agreement in that the time taken
for put of a single word is marginally higher (around 0.1 pus)

Mode time per double (us) | total bandwidth (MB/s)
Single ping-pong

Put (DO loop) 1.3 6.1
Put (array syntax) 0.3 25.3
Get (DO loop) 1.2 6.5
Get (array syntax) 1.2 6.6
Multi ping-pong

Put (DO loop) 0.06 129
Put (array syntax) 0.02 364
Get (DO loop) 0.06 142
Get (array syntax) 0.06 141

Table II

RESULTS FOR STRIDED TRANSFERS

than a get. However, they also suggest that we have overes-
timated the synchronisation overheads in Section III-B.

Unlike a contiguous ping-pong, strided transfers are a long
way from saturating the interconnect bandwidth. However,
this does mean they overlap very well with other strided
transfers: when utilising all 32 cores in a node, we get a
substantial increase in bandwidth.

What is also interesting is that these results give some
insight into what optimisations the compiler is performing.
The put results show that the compiler can take advantage of
array syntax, presumably generating a single strided RMA
call as opposed to multiple single-word calls. This gives an
improvement of a factor of four, although we do not see the
same benefit for get.

The compiler is similarly able to take advantage of vec-
torisation analysis to recognize that an explicit DO loop with
stride-1 access (as opposed to the stride-2 access above) can
be implemented as one large contiguous put or get, achieving
6.8 GB/s for these cases. However, it does currently have
a blind spot where array syntax with an explicit stride 1
access pattern is not vectorised (although this is fixed in an
upcoming compiler release).

E. Synchronisation

In a real application, each image will normally have to
communicate with a set of neighbours and then synchronise
with them prior to entering any subsequent calculation
phase. The pattern of communication (and hence synchro-
nisation) will be different depending on the application.
To investigate this, we benchmark a wide set of different
synchronisation patterns. These include patterns with fixed
numbers of neighbours: pairwise and with the six neighbours
in a 3D grid. We also measure patterns where images
synchronise with a variable number of neighbours n: the
n nearest neighbours in a ring, or n randomly chosen
neighbours.

Perhaps the most representative patterns for regular and
irregular problems are the 3D and random cases respectively.
In Figure 4 we plot the time taken for the regular 3D pattern,
and random patterns with 4 and 10 neighbours (R4 and



R10). We also show the cost of global synchronisation for
comparison.

The results show that for relatively small numbers of
neighbours, point-to-point synchronisation is faster than
global synchronisation for sufficiently many images. The
crossover is at about 128 images for 4 random neighbours, or
1024 images for the 3D grid (six neighbours). However, it is
clear that the global synchronisation is very highly optimised
and for as few as 10 neighbours the crossover point will be
above 10,000 images.

These results have changed quite significantly from those
reported previously [6]. All the synchronisations are faster,
but more importantly the cost is roughly constant with
increasing numbers of images for all patterns. Previously, for
example, the cost for the R10 pattern increased substantially
with image number.
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Figure 4. Time taken by various synchronisation patterns

FE. Halo swaps

To simulate the communications and synchronisation in
a simple regular domain application, we benchmark the
performance of repeated halo swaps of the six external faces
of a 3D array. We consider weak scaling with the array size
per image held fixed, and implement put and get versions
with local and global synchronisation. Halo swaps are coded
using simple Fortran array syntax. The results are show in
Figure 5 and Figure 6 for local array sizes of 10% and 1003
respectively.

For the smaller array size, the fact that global synchronisa-
tion is very fast for small numbers of images means that this
version initially outperforms point-to-point synchronisation.
However, above 512 images the point-to-point version is
always faster, in rough agreement with the results in Fig-
ure 4. In all cases, the get version outperforms put which is
somewhat surprising given the results for strided transfers
in Table II where it appeared that the compiler had much
better pattern matching for strided puts than gets.

For the larger array size, the synchronisation overhead
is much smaller in relative terms and so is much less

important at small numbers of images. The get versions are
faster than put for fewer than 2048 images regardless of
the synchronisation method. Above this the synchronisation
overheads become more significant and, for the largest
number of images, the point-to-point version is fastest for
both puts and gets.
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Figure 5. Performance of 3D halo swaps for 10x10x10 local arrays
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IV. CONCLUSIONS AND FURTHER WORK

The results show here are generally encouraging, showing
significant improvements in performance since 2011 and
with coarrays outperforming MPI in several cases. It is
clear that point-to-point synchronisation can have significant
performance benefits compared to global synchronisation for
large numbers of images. However, this does require that the
number of neighbouring images is less than around 10. The
performance of strided transfers is substantially less than for
contiguous ones. Although this could easily be improved by
explicitly copying data to and from temporary buffers, this
rather defeats one of the purposes of coarrays which is to
enable users to write simpler source code. There are however
some cases where the conclusions are quite clear, e.g. that



halo swaps should be implemented using gets rather than
puts.

There are several cases where it is difficult to interpret the
results quantitatively, e.g. the small message latencies do not
appear to be the sum of the separately measured data transfer
and synchronisation times. This is not particularly surprising
as we are making simple assumptions about what runtime
calls the compiler generates and how these are implemented.
These assumptions may not be true, as illustrated by the
substantial difference in performance between strided puts
and gets. It would require a more detailed analysis of the
binary executable to fully understand these issues.

Although the Cray compiler continues to improve in its
support for coarrays, we have encountered a number of
bugs (particularly at higher levels of optimisation). These
have always been fixed very rapidly once reported, but
it is important that all coarray codes have some form of
internal verification. The benchmark used here can be run
in a debug mode where the correctness of all data transfers
is checked (although this is not enabled by default as it
severely impacts performance). Note that this also picks
up user bugs, often arising from race conditions due to
incorrect synchronisation. As the benchmarks execute for
many iterations, it is essential to use iteration-dependent data
for all verification: a synchronisation bug may not manifest
itself on the first iteration.

In the future we plan to extend the benchmark to measure
the effect of overlapping communications and calculation,
although this may require additional directives to inform the
compiler that this is safe to do (e.g. PGAS DEFER_SYNC
for the Cray compiler). We also plan to make the coarray
benchmark suite publicly available.
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