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Abstract—Porting and optimising applications to a new
processor architecture, a different compiler or the introduc-
tion of new features in the software or hardware environment
can generate a large number of new parameters that have
the potential to affect application performance. Vendors
attempt to provide sensible defaults that perform well in
general, for example grouping compiler optimisations into
flag groupings and setting the default value of environment
variables, they are inevitably based on the experience gained
or expected behaviour of a normal application. In many
cases applications will exhibit some behaviour that differs
from the norm, for example requiring identical floating point
results when changing MPI decompositions, or sending or
receiving messages of unusual or irregular sizes. Manually
finding the combination of flags and environment variables
that provide optimum performance whilst maintaining a set
of application specific criteria can be time consuming and
tedious. There are a wide variety of potential algorithms
and techniques that can be employed, each with various
merits and suitability to the problem of optimising an HPC
application. This paper explores, evaluates and compares
techniques for automated optimisation HPC application pa-
rameters within fixed numbers of iterations.

Index Terms—Parameter Optimisation, Particle Swarm,
Simulated Annealing, Curve Fitting, Interpolation, CUG
2012.

I. MOTIVATION

Achieving optimal performance is critical to High Per-
formance Computing (HPC). The combined complexity
of applications, system software and hardware present
a wide variety of configurable settings that can affect
runtime performance. The rapid pace and evolving na-
ture of cutting edge technology and the demand for
ever greater application performance means application
settings have to be regularly revised to keep applications
in peak condition.

As a result of this complexity it is difficult and time
consuming to make predictions about how changing an
individual setting will affect the overall performance of
an application. Parameters may produce a non-linear
and/or discontinuous response, or, in the case of ap-
plication code, documentation may be inaccurate or
incomplete. In other cases the application may have

specific requirements, like bit-reproducibility1, or numer-
ical stability which place additional restrictions on the
range and value of certain parameters. It may often be
the case that a whole application has to be compiled
with many optimisation disabled because of the side-
effect some have on only a few files. Resolving this
leads to vast search spaces which cannot be optimised
using exhaustive search like those used in the Flamingo
framework[1], or simple techniques like a binary search.

Instead, this paper evaluates some common heuristic
optimisation algorithms to some typical example prob-
lems encountered by users of HPC.

II. SEARCH METHODS

An HPC application can be considered a function,
f (x), that maps a multi-dimensional parameter space
(e.g. cache blocking parameters, MPI protocol bound-
aries, or individual compiler flags) to a scalar value to be
minimised (typically the running time of the simulation).
There are, however, no guarantees about the differen-
tiability or continuity of f (x) which eliminates use of
standard analytical optimisation techniques. Also, each
evaluation of f (x) is potentially very expensive, limiting
the number of evaluations and precluding exhaustive
searches the entire parameter space. A selection of opti-
misation algorithms that do not require differentiable or
continuous functions are described below:

Interval Search (IS): Perhaps the most common tech-
nique employed, the search space is sampled at regular
intervals with equal distance between points. This ap-
proach can be very successful for smooth and shallow
search spaces, however can be subject to aliasing if
there are insufficient samples. To allow the measurement
of statistical properties of what is essentially a static
technique, a randomised offset is applied to the first
point which causes the interval samples to be offset by
different values each time the algorithm is started. As
the simplest and most commonly used technique, its

1Bit-reproducibility is the requirement that the application will
produce an identical result when run in different parallel decompo-
sitions. This places additional requirements on the application, system
libraries, compiler and system hardware. It is a common requirement
for applications used to study the natural environment.



performance is used as the benchmark from which to
compare other techniques.

Random Search (RS): A naive stochastic search that
randomly selects and evaluates points from the pa-
rameter space. Though this technique is very simple
to implement, it uses no information from the search
history, other than to avoid previously sampled points;
each point is selected independently of all others.

Simulated Annealing (SA): Simulated Annealing is
well established advanced textbook technique for
optimisation[2]. The algorithm emulates the real-world
process of liquid to solid annealing and the associated
energy minimisation. The algorithm starts from a current
configuration or position, x, which has an associated
energy, e = f (x) (or time in the case of HPC optimi-
sation). At each iteration a new configuration, xnew, is
randomly selected within distance, d, of x (using a stan-
dard Euclidean metric) and the new energy calculated,
enew = f (xnew). The algorithm then accepts or rejects the
new configuration over the previous one according to
the Metropolis probability function:

P(enew, e, T) = exp
(

e− enew

T

)
This function depends upon differences in energy

between the two states, and the current temperature
T. If the temperature is zero then the algorithm will
become greedy and only accept new states that have
lower energy than the current state.

To simulate the cooling process, the value of T de-
creases with each iteration. This is calculated as an ex-
ponential decay from the initial maximum temperature
Tmax with a half-life of λT , (i.e. the temperature halves
every λT iterations), the equations for the temperature
at iteration i, Ti is:

Ti = Tmaxeik, k =
ln( 1

2 )

λT

Therefore this algorithm has three user tunable argu-
ments that control the performance of the algorithm: d,
Tmax and λT .

Particle Swarm (PS): Just as Simulated Annealing is
inspired by the real world processes in cooling materials,
the Particle Swarm techniques are inspired by the real-
world movements of flocks or swarms[3]. By storing
information about previously encountered minima and
communicating information between the members of the
swarm the parameter space is explored with feedback
from each particle.

N search particles are generated, with the ith particle
having properties that are analogous to position, xi, and
velocity, vi, both of which are initialised to random val-
ues. In addition, each particle also stores the position of
the minimum value encountered, xi

min and the position
of the global minimum found by all the members of the

swarm, xi
g. Each particle has its new velocity calculated

in turn using the formula:

vi
new = ωvi

old + φlrl(x
i − xi

min) + φgrg(xi − xi
g)

where rlocal , rglobal ∈ U [0, 1]. The particle is then moved
to its new position, xi

new, using a simple Euler step time-
integration (with periodic boundary conditions):

xi
new = xi

old + xi
new

The values of the tunable arguments ω, φl ,φg and the
number of particles N will affect the performance of the
algorithm.

Curve Fitting (CF): Though the response of an applica-
tion to an input parameter could be potentially be highly
sensitive or chaotic, in general it is not. In most cases
there is a clear, if undetermined, relationship between
the input parameter and the output energy (or run
length). Therefore it is likely to be possible to interpolate
between individual results and hopefully identify the
global minimum in the parameter space.

To initialise this algorithm three random points are
evaluated and used to construct an N dimensional inter-
polating fit using the Radial Basis Function (RBF) routine
available in the SciPy[4] scientific software library. The
resulting interpolation function is then used to quickly
find the estimated global minimum using standard op-
timisation techniques for analytical functions. The pre-
dicted global minimum point is then used as the next
evaluation point and process repeated with all points
previously evaluated incorporated in the interpolation
function. Algorithm 1 provides a pseudo-code imple-
mentation of the technique. To avoid being trapped by
local minima, if the algorithm selects a previously evalu-
ated point any required next point is selected at random.
This provides the algorithm with the ability to escape
local minimums and sample a the wider parameter space
within the fixed number of iterations.

It is, however significantly more expensive computa-
tionally than other techniques due to the intensity of cre-
ating and evaluating the fitting solution. However, this
cost is insignificant compared to the cost of evaluating,
f (x) which may be on the order of minutes or hours and
require many cores.

As previously described algorithms, there are argu-
ments which can affect the performance of the algorithm.
Specifically, arguments affecting the quality of the fit like
the choice of basis function and the amount of smooth-
ing applied. Small experiments have shown that most
successful solutions use either the multi-quadric and
cubic spline basis functions and include some degree of
smoothing. The smoothing value determines how far the
interpolation is allowed to deviate from the know valued
points, a value of 0 forces the interpolation function
to pass through each real valued point. Tests will be
conducted to determine the optimum basis function and
value for the smoothing argument for general use.



Algorithm 1 Fortran style pseudo-code for the Curve
Fitting Algorithm

! I n i t i a l i s e t h r e e random p o i n t s
do i =1 ,3

samples ( i ) = randomPoint ( )
end do

do i =4 , max_ i tera t ions
in te rp o la t i on Fu nc = RBF( samples ( 1 : i ) , smoothing )
newpoint = find_minimum ( i n te rp o l a t io nF un c )
i f ( newpoint in samples ) then

newpoint = randomPoint ( )
samples ( i ) = newPoint

end do

return min ( samples )

III. EXAMPLE SEARCH SPACES

Most real or integer valued search spaces can be qual-
itative described as being somewhere between smooth
and shallow or sharp and steep. The exact nature of
a particular search space is impossible to determine
beforehand, therefore any potential search methodology
must ideally be able to efficiently optimise search spaces
at either extreme or at any point between. The search
space may also be multidimensional if the result depends
upon the value of more than one parameter.

To test the algorithms in Section II data was collected
from an exhaustive search of four parameter spaces
which exhibit the extremes of Smooth and Shallow
to Sharp and Steep in both one and two dimensions.
Though these search spaces were small enough to be
analysed by exhaustive search, they do exhibit behaviour
which is typical of the types of problems encountered in
HPC and have the advantage of being measurements on
real hardware.

• 1D Smooth and Shallow - The results of sweeping over
a single cache blocking parameter. The space can be
described as smooth and shallow with a clear global
minimum once measurement noise is accounted for.
The global minimum is 8.3% faster than the mean
value of the space. (Figure 1)

• 1D Sharp and Steep - The results of sweeping the
same cache parameter as the first space, but this
time the OpenMP parallel region is active with four
threads. The space becomes sharper and steeper
with at least five identifiable local minima. The
global minimum is 32.0% faster than the mean
value. (Figure 2)

• 2D Smooth and Shallow - A sweep over two pa-
rameters controlling the cache blocking of a simple
matrix-multiplication. The optimum results will typ-
ically depend upon the properties of the processor
being used and features like the cache architecture.
Even though the space can be described as smooth
and shallow, the global minimum is 44.4% faster
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Figure 1: 1D Smooth and Shallow Dataset
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Figure 2: 1D Sharp and Steep Dataset

than the mean value, a significant potential speed
up over the expectation value. (Figure 3)

• 2D Sharp and Steep - The Cartesian product of two
1D parameters with similar features as the 1D Sharp
and Steep dataset. Two 1D Sharp and Steep datasets
were added combined to produce this 2D sharp and
steep dataset. The global minimum is 32.2% faster
than the mean value. (Figure 4)

IV. EVALUATION METHOD

In production situations there is no method of de-
termining whether the minimum value found is the
global or just a local minimum without having explored
the entire parameter space. As most experiments are
limited by the number of evaluations that can be run
with the resources available the priority is finding the
algorithm and arguments that find the best solution in
a fixed number of iterations, rather than the algorithm



Figure 3: 2D Smooth and Shallow Dataset

Figure 4: 2D Sharp and Steep Dataset

that converges in the fewest number (though these may
be one and the same).

Each algorithm’s performance was evaluated by run-
ning 1000 experiments with fixed numbers of iterations
on each dataset. Iterations were limited to 4, 8, 16, 32
and 64. Each experiment returned the optimum value
that it found, fbest, which was converted to a relative
solution value, r, by taking the global maximum, fmax,
and the global minimum, fmin, values for the dataset and
applying the following equation:

r =
fbest − fmin

fmax − fmin

This results was then averaged to find the mean relative
solution, the value that might be expected to be found for
this algorithm when applied to this problem. This value
can then be used to fairly compare different algorithms;
a lower value implying the algorithm was more efficient
and more likely to find a better optimum value.

V. RESULTS

Simulated Annealing, Particle Swarm and Fitting
search, each take additional arguments which affect their
performance. Finding the optimum values is a separate
optimisation problem and can be be performed recur-
sively by applying the algorithms to their own optimi-
sation. For the requirements of this paper, however, the
values should have good (if not optimal) performance
properties for as wide a variety of data sets and algo-
rithms as possible.

ALGORITHM PARAMETER SETTINGS

Simulated Annealing Tmax = 0.25, d = 0.5, λT = 2.0
Particle Swarm N = 2, ω = 0.8, φl =, φg = 0.0
Fitting Search Basis function = Multi-quadric, Smoothing=0.02

Table I: Optimised algorithm arguments for continuous
parameter search

Table I shows the arguments found to provide the
best results across each of the search spaces iteration
count limits tested. The results from experiments with
these argument values, being the best for the individual
algorithms, are then used to compare performance across
algorithms.

Full results for each algorithm and data space are
recorded in Table II and illustrated in Figures 5 and 6

ITERS IS RS SA PS CF
4 1.73 2.80 4.07 2.77 2.29
8 1.05 1.57 2.46 1.48 1.62
16 0.720 0.891 1.12 0.894 0.622
32 0.472 0.549 0.518 0.559 0.334
64 0.256 0.297 0.215 0.342 0.226

(a) 1D Smooth and Shallow

ITERS IS RS SA PS CF
4 8.46 14.2 19.1 13.8 13.9
8 5.69 7.48 10.4 7.16 6.56
16 3.31 3.88 5.53 4.00 2.49
32 1.04 1.99 2.50 2.05 0.841
64 0.627 0.775 0.691 1.02 0.349

(b) 1D Sharp and Steep

ITERS IS RS SA PS CF
4 3.45 3.32 5.37 3.24 3.30
8 2.97 2.35 2.73 2.22 1.65
16 2.02 1.47 1.37 1.43 1.05
32 1.59 0.925 0.861 0.909 0.944
64 1.26 0.590 0.537 0.623 0.391

(c) 2D Smooth and Shallow

ITERS IS RS SA PS CF
4 20.1 21.9 24.2 21.1 21.7
8 15.8 15.0 16.7 14.3 15.6
16 9.89 10.4 11.7 10.7 10.8
32 7.44 7.50 7.55 7.48 6.27
64 5.97 5.62 5.36 5.72 3.93

(d) 2D Sharp and Steep

Table II: The mean relative solution (×10−2) for each
algorithm and search space
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Figure 5: Mean relative solution of each algorithm on
each problem
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Figure 6: Relative improvement of each algorithm vs
interval search on each problem.



VI. CONCLUSIONS

From this study it is possible to conclude, for these
search spaces and with the algorithms tested, that:

• Performing more iterations produces consistently
better results with all algorithms, though in all cases
the relative improvement diminishes as increasingly
more iterations are applied.

• Smooth and Shallow search spaces are optimised in
fewer iterations than Sharp and Steep ones - There
is almost an order of magnitude difference between
the Sharp and Steep spaces versus the Smooth and
Shallow for each corresponding algorithm and iter-
ation limit.

• Optimising in multiple dimensions simultaneously
is less efficient than optimising independent pa-
rameters separately. Optimising the 2D Sharp and
Steep space as independent arguments rather than
as the combined 2D space would have produced
a significantly better result in the same number or
fewer iterations (using 1D Sharp and Steep as a
reference).

• Particle Swarm and Simulated Annealing do appear
to be efficient methods for these search spaces with
the limited number of iterations. In most cases
they do not produce results significantly better than
Random Search. This is most likely due to the limit
on the number of iterations of the algorithm.

• When performing very few iterations (e.g. 4) inter-
val search performs best however for counts be-
tween 8 and 16 using a standard Random Search
method produces better results. The Curve Fitting
technique provides excellent results on the larger
iterations counts (32 and 64), producing a means
solution that significantly better than any other for
the more compilcated search spaces. The Curve
Fitting technique should be considered, when large
numbers of iterations are possible (evaluations are
cheap and quick), the search space is very large (e.g.
it spans more than one dimension), or when the
parameter has a signficant impact on performance.

VII. APPLICATION TO OPTIMISING COMPILER FLAGS

Motivation

An extension and frequently encountered problem is
searching for the optimal combinations of compiler flags,
especially when there are additional complications like
maintaining a executable’s bit-reproducibility or numer-
ical stability. Certain combinations of compiler optimisa-
tions have the potential to adversely affect the numerical
properties of calculations. This, combined with the fact
that the majority of applications only choose a single
set of flags to be used by the compiler, mean applica-
tions may be compiled without beneficial optimisation
included.

Ideally it would be possible to identify the optimal
flags for each file while still having the required nu-
merical properties. In the simplest cases, where only
a single file requires modification, binary search can
be used to identify the file requiring different settings,
however it is typically impossible to know beforehand
how many files require modification. Binary search is
also limited to a choice of only two sets of compiler
options. However, this problem has much in common
with the well-studied travelling salesman problem, to
which Simulated Annealing has been very successfully
applied[2], so the same is tried here.

Method

The reference solution is the Random Search algorithm
which selects a random set of options for each file and
provides the benchmark to compare performance of the
Simulated Annealing algorithm. The SA algorithm dif-
fers from that described in Section II by being initialised
to a known valid base state (usually with the value fmax).
The distance property is also modified and becomes the
probability that individual file will have its compiler
options changed at any iteration. e.g. d = 0.5 will result,
on average, in 50% of the files having their options
changed from the current state.

Unfortunately, it has been not been possible to perform
a full exhaustive search of a real application across
all possible combinations of options for each file to
create a dataset. Instead two synthetic dataset have been
generated that try and emulate the behaviour expected
in real-life. The two spaces are:

• a small dataset of just eight files, each of which can
be set to one of four compiler option sets. Two of
the file/option combinations will cause the model
to experiment to fail if selected to emulate situa-
tions where the executable does not produce the
right answer or fails to complete due to numerical
instability.

• a second larger dataset, with 1024× 5 file/options
combinations of which 339 will cause the model to
fail if selected (6%).

Each experiments is run 1000 times with limited number
of iterations between 4 and 256. The results are recorded
and averaged to find the relative mean solution for the
particular algorithm/iteration count combination.

Results

Just as in previous sections, the arguments to the
algorithm have a significant affect on the performance of
the evaluation. Table III describes the arguments used,
and Table IV shows the results for each dataset for
the Random Search algorithm and Simulated Annealing
with two different sets of arguments.



ALGORITHM PARAMETER SETTINGS

Simulated Annealing d=0.01 Tmax = 16.0, d = 0.01, λT = 32.0
Simulated Annealing d=0.64 Tmax = 16.0, d = 0.64, λT = 32.0

Table III: Two sets of arguments to the Simulated An-
nealing algorithm for compiler options

ITERS RS SA d=0.64 SA d=0.01
4 0.411 0.431 0.977
8 0.294 0.190 0.962
16 0.210 0.068 0.917

(a) The mean relative solution for 8× 4 dataset

ITERS RS SA d=0.64 SA d=0.01
4 1.0 1.0 0.988
8 1.0 1.0 0.976
16 1.0 1.0 0.953
32 1.0 1.0 0.901
64 1.0 1.0 0.830

128 1.0 1.0 0.701
256 1.0 1.0 0.518

(b) The mean relative solution 1024× 5 dataset

Table IV: The mean relative solutions for compiler flag
search

Conclusions

The results show that Simulated Annealing can sig-
nificantly outperform Random Search with the right
settings when allowed more than 8 iterations. However
the results also show that if the diameter is too large or
small it can severely affect the ability to find any new
solutions.

The reason for this becomes clear when considering
the number of failure cases in the datasets. If 6% of
options will result in a failure then, the probability of
randomly selecting 1024 working cases at random is:

P = (1− 0.06)1024 = 7.01× 10−19

Similarly, the probability of finding any solution
through Simulated Annealing with d = 0.64 becomes:

P = (1− 0.06)0.64×1024 = 2.41× 10−12

If the diameter reduced, such that d = 0.01 then the
probability of finding any new solution becomes a much
more likely:

P = (1− 0.06)0.01×1024 = 0.658

Therefore it is highly unlikely, with the small number
of iterations being evaluated, that a working solution
will be discovered by either Random Search or SA d =
0.64 on the large data set, let alone one that has better
performance.

Instead, the algorithm could be improved, such that P,
the probability of finding a new working solution was
the tunable argument (rather than d). This would mean
increasing or decreasing the value of d depending upon
the ratio of failing compiler options, something which is

not available to the algorithm before hand, but could be
estimated from the number of evaluations, creating an
adaptive algorithm.

Either way, Simulated Annealing is still probably the
only valid technique for improving the performance of
compiler flags, even if the value of d has to be held
artificially low for any progress to be made.
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