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Abstract—In this study we investigate computational 
workloads for the Jaguar system during its tenure as a 2.3 
petaflop system at Oak Ridge National Laboratory.  The study 
is based on a comprehensive analysis of MOAB and ALPS job 
logs over this period.  We consider Jaguar utilization over 
time, usage patterns by science domain, most heavily used 
applications and their usage patterns, and execution 
characteristics of selected heavily-used applications.  
Implications of these findings for future HPC systems are also 
considered. 
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I.  INTRODUCTION 

Oak Ridge National Laboratory (ORNL) has a long 
lineage of involvement in state-of-the-art high performance 
computing (HPC) dating back to the early 1950s.  In recent 
years, the Oak Ridge Leadership Computing Facility 
(OLCF) has deployed a series of HPC systems of increasing 
computational power, from a 6.4 TF Cray X1 in 2004, a 18.5 
Cray X1e upgrade in 2005, a 26 TF Cray XT3 in 2005, a 54 
TF dual-core system in 2006, an upgrade to a 119 TF Cray 
XT4 in 2007, an upgrade to 263 TF in 2008, a 1.375 PF Cray 
XT5 in 2008, and an upgrade to 2.3 PF in 2009.  The Jaguar 
system has recently undergone an upgrade to a 3.3 PF XK6 
system in anticipation of NVIDIA GPUS to be installed in 
late 2012 to form the 20 PF Titan system.  Later, ORNL 
plans to site the OLCF-4 system of 100-250 PF in 2016 and 
the OLCF-5 exascale platform in the 2018-2020 period.  The 
continued growth in computational capabilities is driven by 
key priorities of the U.S. Department of Energy (DOE) to 
deploy computational tools enabling researchers to analyze, 
model, simulate and predict complex phenomena in order to 
solve urgent challenges in national and homeland security, 
energy security, economic competitiveness, health care and 
environmental protection. 

The effectiveness of these systems is ultimately tied to 
the quality of the science application codes that are run on 
these systems.  Assessing and assuring the efficiency and 
scalability of the applications used to produce science is a 
vital priority as hardware continues to grow in computational 
power and complexity. 

The purpose of this study is to investigate the usage of 
science applications on the Cray Jaguar XT5 system during 
its two-year tenure as a 2.3 PF system at ORNL.  The study 

is based on the corpus of MOAB and ALPS log data 
accumulated over this period of time.  The objective of this 
analysis is to give a better understanding of how Jaguar is 
being used as a representative petascale system to produce 
science and also to better inform the discussion of 
requirements for future multi-petascale and exascale 
systems. 

The remainder of this study is organized as follows. After 
discussing the study approach, we begin with a high-level 
view of Jaguar utilization over time.  We then analyze 
utilization by science area.  Following this we investigate 
usage by science application and then study in further detail 
the usage patterns of the specific applications that have been 
heavily used on Jaguar.  

II. APPROACH 

The system used for this study is the Jaguar Cray XT5 
platform located at Oak Ridge National Laboratory.  This 
system contains 18,688 compute nodes, with each compute 
node containing two hex-core 2.6 GHz AMD Opteron 2345 
Istanbul processors and 16 GB of DDR2-800 memory. Each 
node contains a SeaStar 2+ router with peak bandwidth of 
57.6 GB/s. The full system contains 224,256 processing 
cores, 300 TB of memory, and a peak performance of 2.3 
petaflops.  

Jaguar usage is aimed at capability computing, to run 
science problems too large to be run on smaller-scale HPC 
systems.  As such, Jaguar’s usage policy emphasizes 
applications and jobs that use a large fraction of the system.  

The data for this study are taken from a period of 
approximately two years, from November 2009 through 
September 2011.  Two primary sources of data are used.  
First, the MOAB scheduler [22], which underlies the PBS 
job queuing system [25] and reserves compute nodes for 
executing an application, stores entries in a database with 
information on every PBS job launched on the system.  
Second, the ALPS scheduler [1] stores entries for every 
execution of an “aprun” command which is used to launch 
an executable code within a PBS job.  By matching the 
entries of these two databases, it is possible to extract 
detailed data for every execution instance of an application, 
including job size and duration, user and project, and 
filename of the executable code.  

Jaguar does not have any automated method for 
identifying the science application name associated with 
each executable file that is run.  Thus, a manual process was 



 

 

used, utilizing data from multiple sources, including a 
secondary database containing the link commands used to 
build each parallel executable file built on Jaguar, a cross-
reference process based on the user name and project 
associated with each job execution, and in some cases 
interviews with developers and users to clarify the 
underlying application being used.  This process was used to 
identify and validate the application names associated with 
the most heavily-run codes on Jaguar, forming the basis of 
the application analysis given below.  

III. SYSTEM UTILIZATION 

Figure 1 shows Jaguar usage over the twenty-three month 
reporting period.  The theoretical peak usage per month is 
shown as the total available uptime assuming no outages.  
From this, the scheduled uptime is obtained by excluding 
time for scheduled outages, actual uptime excludes all 
outages, job scheduler shows time spent executing jobs as 
reported by the MOAB scheduler, and analyzed application 
utilization is time spent in “aprun” execution launches as 
reported by ALPS logs that can be successfully matched 
against MOAB logs.  Over this period, actual uptime was in 
excess of 90% of the theoretical maximum, and 83% of this 
time was spent executing user jobs. These figures indicate 
high usage of Jaguar compared to typical values for large 
HPC systems.  Furthermore, the analyzed application 
utilization is 86% of the job scheduler utilization, indicating 
that the data used for studying application usage is 
representative of the total time actually used. 
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Figure 1.  System usage over time.  

IV. UTILIZATION BY SCIENCE DOMAIN 

Figure 2 shows the proportion of core-hours spent for 
each science domain on Jaguar.  Of the twenty-three science 
domains shown, the top five science domains consume half 
of the total core-hours used: chemistry, fusion, computer 
science, materials and astrophysics.  Furthermore, the top 
nine science domains consume 75% of the total.  Jaguar 
supports a diverse portfolio of science domains with a few 
heavy-usage science domains.  General-purpose systems 
such as Jaguar that support diverse science codes, models 
and algorithms must deploy well-balanced hardware to 
perform well for the hot spots of the targeted algorithms. 

 

 
Figure 2.  Usage by science domain.  

Figure 3 shows usage over time for each science domain.  
Depending on science need, some science areas demonstrate 
a relatively uniform consumption of resources over time, 
while others show a more punctuated usage pattern, whether 
due to the science workflow pattern or due to the calendar 
year schedule by which much of the computer time on 
Jaguar is awarded. 

 

Figure 3.  Science domain usage over time.  

V. UTILIZATION BY APPLICATION 

We now consider usage of applications as derived from 
analysis of the ALPS log data.  The approach here is to 



 

 

classify the application runs during this time period by 
several characteristics, based on the number of core-hours 
spent, for each choice of a given quantity of interest.  Figure 
4 shows core-hours spent in each application in a cumulative 
graph ranging from the most heavily-used applications to the 
less-used ones.  The top 20 applications consume 50% of the 
total core-hour usage, and the top 50 applications consume 
80% of the total.  Thus the graph has a “short tail.”  This is in 
agreement with how computer time is awarded on Jaguar, 
emphasizing a comparatively small number of high-impact 
projects.  This is strategic, since it is difficult to deploy 
substantial developer support across a very large portfolio of 
projects, as leadership systems become increasingly complex 
and challenging to program efficiently. 

 
Figure 4.  Core-hour usage by application.  

Figure 5 shows how Jaguar core-hours are used in terms 
of job size.  Henceforth, by “job” we refer to an instance of 
running an application using the “aprun” command.  A full 
43% of core-hours are spent in jobs run on 20% or more of 
the full system, while 15% of core-hours are spent in truly 
large jobs that run on 60% or more of the full system.  Thus 
Jaguar is highly used for leadership-class jobs, but it is also 
well-used across the full spectrum of job sizes. 

 

Figure 5.  Core-hour usage by job size.  

Figure 6 shows the core-hour usage for jobs of a given 
duration.  During the reported period, the Jaguar scheduler 
set a 24 hour maximum time limit on user jobs.  A total of 
88% of core-hours were spent on jobs of 12 hours or less, 
and 50% of core-hours were spent on jobs of 6 hours or less.  
This should be compared to a MTTF of 65 hours for the 
period, and average system or node failure every 35 hours.  
The data suggest users are effectively running jobs within 
constraints of scheduler time limits and substantially below 
system failure rates.  The capability of applications to run for 
short durations may be of growing importance as future 
systems are expected to have increasing failure rates as the 
number of parts for high-end systems increases. 

 
Figure 6.  Core-hour usage by job duration.  

Figure 7 is a scatter plot showing the relationship 
between job size and job duration.  Jobs are binned by job 
size, and for each bin the weighted average job duration is 
plotted.  Here, all averages are weighted by the core-hour 
consumption to tie the statistics more directly to Jaguar 
resource consumption.  The incidence of data values is fairly 
well-distributed across the range.  Small jobs are limited by 
the scheduler to run no more than 12 hours, whereas very 
large jobs are unlikely to run for a very long time due to the 
high core-hour resource cost to run such jobs. 

 
Figure 7.  Job size vs. job duration.  



 

 

 
Figure 8.  Core-hour usage by job core-hours.  

Figure 8 shows the number of core-hours spent in jobs of 
a given core-hour usage value.  The qualitative features are 
similar to those of Figure 5, with uniform usage in the mid-

range of jobs consuming 10,000 to 1 million core-hours, 
while usage for very small and very large core-hour usage 
jobs is less. 

In summary, over the time period studied, Jaguar 
workload consisted primarily of a comparatively small 
number of applications, with execution of jobs across the 
entire range of job sizes including leadership-class jobs, run 
successfully within the constraints of system uptimes and 
scheduler limits. 

VI. UTILIZATION FOR SELECTED APPLICATIONS 

To get a better understanding of the usage pattern of 
specific applications, we now restrict to a study of twenty-
two selected applications taken from the top-used codes as 
well as several other strategically important codes.  These 
applications account for 50% of the entire analyzed 
application runtime on Jaguar.  A list of these applications is 
given in Table I. 

TABLE I.  SELECTED APPLICATIONS

Application  Primary Science Domain  Description  

NWCHEM  Chemistry  large scale molecular simulations  

S3D  Combustion  direct numerical simulation of turbulent combustion  

XGC  Fusion Energy  particle-in-cell modeling of tokamak fusion plasmas  

CCSM  Climate Research  climate system modeling  

CASINO  Condensed Matter Physics  quantum Monte Carlo electronic structure calculations  

VPIC  Fusion Energy  3-D relativistic, electromagnetic, particle-in-cell simulation  

VASP  Materials  ab-initio quantum mechanical molecular dynamics  

MFDn  Nuclear Physics  a Many Fermion Dynamics code  

LSMS  Materials  Wang-Landau electronic structure c multiple scattering  

GenASiS  Astrophysics  AMR neutrino radiation magneto-hydrodynamics  

MADNESS  Chemistry  adaptive multi-resolution simulation by multi-wavelet bases  

GTC  Fusion Energy  gyrokinetic toroidal momentum and electron heat transport  

OMEN  Nanoelectronics  multi-dimensional quantum transport solver  

Denovo  Nuclear Energy  3-D discrete ordinates radiation transport  

CP2K  Chemistry  atomistic and molecular simulations  

CHIMERA  Astrophysics  modeling the evolution of core collapse supernovae  

DCA++  Materials  many-body problem solver with quantum Monte Carlo  

LAMMPS  Chemistry  molecular dynamics simulation  

DNS  Fluids and Turbulence  direct numerical simulation for fluids and turbulence  

PFLOTRAN  Geological Sciences  multi-phase, multi-component reactive flow and transport  

CAM  Climate Research  global atmosphere models  

QMCPACK  Materials  diffusive quantum Monte Carlo simulations  

 
Many of these codes are well-known and widely used on 

multiple HPC platforms.  Figure 9 shows the number of 
Jaguar projects and science domains using each of these 
applications.  On average, each code is used by four projects 
and two science domains.  The code with the top number of 
science domains is VASP, followed by LAMMPS and 
NWCHEM.  Broadly-used codes offer more opportunity for 

leveraging code improvements to many target user 
communities. 

Figure 10 shows the core-hour usage of each of the 
selected applications.  Of the 2.3 billion core-hours studied, 
NWCHEM is the top user with 7.5% of the total, followed 
by S3D with 6.3%. 



 

 

The scalability characteristics of the applications are 
presented in Figure 11.  For each application, three values 
are presented: the largest core count ever run, the core count 
for the single job consuming the most core-hours, and the 
weighted average core count over the reporting period.  Over 
half of the codes have been run at least once at 90% or more 
of the full system, though typical usage often less.  Over half 
the codes are run on average at 20% of the full system or 
more.  Thus, many of the codes are scaling up to use 
significant fractions of the full system. 
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Figure 9.  Selected applications community usage. 

 
Figure 10.  Selected applications core-hour usage. 

 
Figure 11.  Selected applications scalability characteristics. 

The relationship between average job size and total core-
hour usage is shown in Figure 12.  The top three applications 
as well as numerous others are commonly used at high core 
counts, while some others are typically used at lower core 
counts.  It is advantageous for the most heavily-used codes to 
be as scalable as possible as leadership-class HPC systems 
continue to scale up in size. 

 
Figure 12.  Average job size vs. core-hour usage. 

Figure 13 gives a more detailed view of scaling behavior 
by representing the fraction of core-hours for each 
application spent in several job size brackets, including <1% 
of total system size, 1-5%, 5-20%, 20-60% and >60%.  The 
usage patterns here are diverse, with some codes heavily 
used at high core counts and others emphasizing lower core 
counts.  Some codes such as DCA++ and QMCPACK are 
highly scalable and generate science results at higher core 
counts but are also heavily used at lower core counts.  Codes 
executing typically at lower core counts might be candidates 
for greater effort to improve scalability characteristics going 
forward. 

 
Figure 13.  Usage for selected core-count ranges. 

The job duration characteristics of applications are shown 
in Figure 14.  For each application the figure shows the 



 

 

longest case ever run, the duration of the job with largest 
core-hours, and the weighted average duration.  Though one-
third of applications have run for the maximum length of 24 
hours, half of the codes run on average six hours or less.  
Furthermore, some codes such as VPIC and S3D which run 
for long durations on average are not required to do so since 
they have checkpoint/restart capabilities. 

 
Figure 14.  Selected applications job duration characteristics. 

The core counts at which each of these applications runs 
for long durations are demonstrated by the heat map in 
Figure 15.  The brightness of the respective square shows the 
average duration of jobs run with that application at that core 
count range.  S3D, XGC, VPIC and PFLOTRAN have long-
running jobs at high core counts.  Jobs running for long 
duration at high core counts are most susceptible to single-
node failures and thus a possible concern if failure rates 
increase on future systems due to increased numbers of 
components. 

 

 
Figure 15.  Selected applications job size of long jobs. 

The workflow patterns illustrating how these applications 
are used are shown in Figure 16, which shows the number of 
application launches via an invocation of the “aprun” 
command for each code.  Of the 4.4 million total application 
launches tracked, the figure shows the number of application 
launches for each application as well as the number of 
launches having core count at least half the weighted average 
job size for that application, the latter being a statistic that 

filters out an excess of small jobs.  The most frequently run 
codes are VASP and LAMMPS.  Log data suggests that 
frequently run jobs are often submitted by an automated 
process which may be part of a larger experiment, which 
might be considered another form of parallelism.  At the 
other extreme, VPIC runs a much smaller number of very 
large-scale jobs. 

 

 
Figure 16.  Selected applications number of application launches. 

VII. CONCLUSIONS 

We draw the following conclusions. 
 

• Jaguar has had a productive run as the world’s first 
petascale system for open science. 

• The workload of Jaguar has been diverse, whether by 
science domain, average job sizes, typical job durations 
or usage patterns. 

• Usage is dominated by a relatively small number of 
applications. 

• Many application codes are scaling to a large percentage 
of the machine, and workflow patterns show that 
application teams are running their codes effectively 
within the constraints of system uptime characteristics. 

• There is more work to be done.  Applications are at 
various points in the scale-up curve, and some 
applications require concentrated effort to improve their 
performance and scaling behaviors, particularly for cross-
cutting applications used across many science domains 
and projects. 
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