
Online Diagnostics at Scale

Don Maxwell

National Center for Computation Sciences

Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA

mii@ornl.gov

Dr. Jeff Becklehimer

Cray Inc.

Oak Ridge, Tennessee, USA

jlbeck@cray.com

Abstract—The Oak Ridge Leadership Computing Facility

(OLCF) housed at the Oak Ridge National Laboratory recently

acquired a 200-cabinet Cray XK6. The computer will

primarily provide capability computing cycles to researchers

through the Innovative and Novel Computational Impact on

Theory and Experiment (INCITE) program. The OLCF has a

tradition of installing very large computer systems requiring

unique methods in order to achieve production status in the

most expeditious and efficient manner.

More often than not, new computer systems of this size

employ the most recent processor, memory and interconnect

technology available from computer vendors. While

installation-to-production is an exciting time in the life cycle of

a computer, fielding systems of this size brings its own set of

challenges. New computer parts have neither time nor

experience on their side. Statistically speaking, a large system

will see many more early-life part failures than smaller

systems, and only time spent running the system will cause

those parts to fail. As for experience, new technology used in

these machines has traditionally not made it to the general

commodity market yet, so the benefit of having assistance in

finding potential issues that might be lingering in a new design

cannot be realized.

This paper will explore some of the methods that have

been used over the years at the OLCF to not only address

many of the issues noted above at installation but also ongoing

issues that occur during the life of the machine. Experience

has shown that parts can fail in many different ways causing

different failure modes for applications. While some

applications run just fine on a particular part, others fail every

time on that same part. Traditional offline diagnostics are

unable to detect these issues. However, ongoing online

diagnostics can be very helpful in tracking down these issues

and alerting systems staff to problem parts in the machine.

Early detection can prevent job failures and ongoing

frustration for users as they debug issues which are ultimately

hardware failures. Algorithms and applications that have been

developed for use in online diagnostics will be discussed as well

as tracking and reporting mechanisms. Ongoing and future

work will also be discussed.

I. INTRODUCTION

Computer users have an expectation that running the
same code on the same computer will generate the same
results over and over. While this is generally true, computers
are machines, and machines have parts that fail. When parts
do fail, the goal is always to minimize the impact to the user
with the ultimate goal being to hide the failure entirely from
the user.

Given that hardware will ultimately fail at some point,
software has to be designed to deal with these failures.
There are many different levels at which software can be
written to provide the user with the machine expected.
Offline diagnostics are the first line of defense in screening
parts for failures. These diagnostics are designed to test each
component for failures and to stress parts to the point that
marginal ones fail. Parts that have survived this round of
testing then move on to the next phase of testing which
involves a fully functioning operating system. The focus of
this paper will be the online portion of testing with the
operating system booted.

Some of these online tests are performed early in the life
of the machine during the bring-up and acceptance testing
while others are ongoing tasks that continue throughout the
life of the machine. The algorithms and infrastructure
needed to find and track parts that can fail in unconventional
ways are not complicated but require some thought and
effort. Many common tools already used at the OLCF
including MySQL databases and the Simple Event Correlator
(SEC) package are being employed to provide the tracking
and logic needed to attack this problem.

Following this process to its logical conclusion, once a

defective part is found, the next task is to replace it. The

new XK6 with the Gemini interconnect provides the

opportunity to replace defective parts while the machine

continues to run user jobs. This requires that the machine

be quiesced and the Gemini network rerouted. Generally,

this should just work, but experience has proven that at

times, it does not, which leads to a reboot of the machine.

Methods for attempting to ensure a successful machine

reroute as well as the actual warmswap procedure itself will

be discussed to complete the lifecycle of the defective part

in the machine.

II. MOTIVATION AND EXPERIENCE

Experience in bringing very large systems online at the

OLCF has shown that achieving a minimal state of stability

and reliability is a multistep process that begins with

processes designed and implemented by the manufacturer.

Often these state-of-the-art supercomputers are the first to

receive newly designed commodity processors, so the first

concern is generally centered on the design and manufacture

of the part. If there was either a flaw in the design of the

part that some in the business have seen in past deployments

or an issue in the manufacturing process, it can lead to

delays which have both scheduling implications and

financial impacts to the commodity part vendor, the

supercomputer vendor, the consumer and ultimately the user

of the computer. Not having realized the experience of the

market at this early stage in the life of the part, the challenge

becomes putting together the right processes at different

levels to deal with the risk.

First, once parts are manufactured, there is an intensive

screening process performed by the commodity part

manufacturer to eliminate defective and weak parts. This

process subjects the parts to environmental conditions

outside normal operating boundaries using both thermal and

electrical extremes. Using extremes, the goal is obviously

to provide the consumer with a part that should operate

properly under normal circumstances by eliminating weak

parts. Further, the hope is that this process eliminates the

need for further screening down the line by the consumer,

but as many have learned, that is often not the case.
The next attempt at verifying the part is usually the

responsibility of the supercomputer manufacturer. At times,
schedules dictate that parts bypass the supercomputer vendor
and instead ship directly to the final consumer, but that is
obviously not the preferred path. At a minimum, parts will
undergo a second round of screening once installed in the
machine of their ultimate destination using a series of tests
developed by the commodity manufacturer, the
supercomputer manufacturer, and the computing community
at large. These offline tests are used not only to identify
defective parts but other problems such as issues with seating
parts in the machine, etc. There are generally a few rounds
of this testing performed over several days with a system of
any significant size, but it is at this point that the online
diagnostic process begins.

Cray has gathered a collection of applications from
customers over the years that have traditionally stressed
machines of days gone by in different ways. Certainly the
Linpack benchmark is one of the most stressful applications
that any new supercomputer will run and has historically
been important to many sites. The online diagnostic process
begins by booting the new machine into an operating system
to provide an environment necessary for running Linpack
and the suite of other applications assembled for diagnostic

purposes. Ideally, after a few rounds of this testing are
performed over several days, the end result is a productive
machine; but again, experience says that this final goal has
not been reached just yet.

The next step in the process introduces customer
involvement with acceptance testing. During this phase,
customer applications are developed on new hardware
providing ample opportunity for any flaws and defects to be
brought to the forefront. Given the fact that this is the first
exposure of the customer to the hardware, it is no surprise
that issues arise at this stage. Problems can present
themselves in a variety of ways. Early-life failures that are
typical in most supercomputers manifest themselves in the
forms of complete hardware failures taking nodes down,
segmentation faults on either all applications or a select few
applications, and divergent answers.

III. DIAGNOSTIC HARNESS

A. Diagnostic Identification

In order to mitigate risk to users’ jobs, the OLCF

embarked upon a project to provide an ongoing online

diagnostic with the goal of finding early-life failures before

the users found them. Given that only certain applications

seem to stress the machine is such a way to identify these

nodes, applications had to be identified that have historically

met this requirement and that could be run in a reasonable

timeframe. Clearly, running these diagnostics takes

compute cycles from the users, so a balance had to be

achieved to minimize both run time and frequency.

During the initial thought process, the hope was to find

an application or small set of applications that met the

requirement of finding early-life failures and also ran in

such a small amount of time that it would be reasonable to

run them in the Cray NodeKARE™ package which

provides the node health check service for the Cray XK6

machine. This package provides a mechanism for running

site applications but unfortunately does not provide a

mechanism for running a parallel MPI application. The

check simply runs the application specified on each

individual node in the reservation. While this did not meet

the need for the diagnostic application, a batch system

prologue or epilogue script could have accomplished a

similar task, but ultimately, the real problem proved to be

finding a short-running application that could identify the

early-life failures.

The next best alternative to a short-running application

running at the beginning or ending of each job is one that

runs in a fairly short amount of time during batch

processing. The application that seemed to meet all the

criteria proved to be the Linpack benchmark. This

application had identified many of the early-life failure

nodes seen during several Cray X-series acceptance testing

periods, it could scale to the size of the machine, and it ran

in approximately 30 minutes with very predictable results

making verification simple. While other codes were

successful in identifying individual failed parts, Linpack

proved the most reliable in consistently finding the failures.

As for the frequency to employ this simulation to test for

parts failure, again a balance between compute cycles away

from the users versus confidence in the machine had to be

achieved. A 72-hour period between runs seemed to be a

reasonable compromise of the two factors. Two runs per

week minimizes the time taken from users but doesn’t

prolong the period between verification runs. Certainly, as

confidence is gained in the machine, this period will

increase and will ultimately just become a verification run

after a maintenance period.

B. Identifying the Failure

Now that the application has been identified, it is

necessary to determine what defines a failure and which

node is responsible for the failure. For our purposes there

are two types of failures.

A hard error is defined as a failure which results in the

application exiting. In these cases identifying the

responsible node is usually done by simple examination of

the error logs. Hardware errors such as machine check

exceptions are a good example of a hard error. Also, for

this discussion we consider segmentation faults as hard

errors. This is because the behavior of the application is

well known and any type of error exit is considered

abnormal.

A soft error occurs when the application completes

normally but the resulting output does not match the

expected output. In those cases identifying the responsible

node is not possible using only one run. Instead we must

introduce a twist into the process.

Rather than run one large application across the entire

system we split the system into blocks of N
2
nodes. For

each block we run N jobs which are N nodes wide as

portrayed in Fig. 1. If that block runs error free then the

nodes are good.

If there is a soft error we regroup the nodes along the

columns and repeat the run as in Fig. 2. Hopefully the

failure will repeat. The faulty node is then identified by the

node which intersects both sets of nodes involved in the

failing jobs.

C. Tracking the Diagnostic Runs

In order to ensure that each node in the machine was

verified in the appropriate interval of time, a simple MySQL

database was created to track the last diagnostic runtime on

each node in the system. Using this database described

below in Table I, determining which nodes were eligible for

a new diagnostic run became a simple matter of querying

the database.

A few experiments were conducted to determine what

combination of diagnostic jobs might be less intrusive for

the users. In order to ensure the jobs got executed in a

timely fashion, Moab® advance reservations were created

based on the node list query from the database.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 21 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Run one job per row N nodes wide
Figure 1. One Job Per Row

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 17 24

25 26 27 28 29 30 21 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Run one job per column N nodes wide
Figure 2. One Job Per Column

Table I. MySQL Schema

Field Type

last_runtime Datetime

processor_id int(10) unsigned

job_id varchar(80)

Hostname varchar(80)

Initially, the thought was that smaller diagnostic runs would

allow more user jobs to complete around those waiting to

run on particular nodes, but ultimately, the number of Moab

reservations needed to accommodate these smaller runs

became unmanageable and caused performance issues with

Moab, making the idea impractical. The implementation

used to accomplish the runs now uses the flowchart outlined

in Fig. 3. To summarize the steps to identify failed parts:

one large job runs, the database is queried to pick up the

residual nodes not covered by the large job, a Moab

reservation is created to cover those nodes, and a new job is

submitted against that reservation. This has proven to be the

most effective method to date.

IV. DIAGNOSING PERSISTENT SEGMENTATION FAULTS

A. The Problem

Persistent segmentation faults are difficult to detect and

report in an automated fashion. Most prevalent during

acceptance testing, segmentation faults can be another

manifestation of early life failures but they can also simply

be a programming error by the user. Differentiating a

programming error from a hardware failure can be difficult.

A few patterns have been observed in console logs where

segmentation faults are reported. First, a particular node can

be seen reporting faults on several different applications

typically from different users over a period of time. While

this would seem to indicate that the node has defective

hardware, the possibility exists that this could simply be

different users in debug cycles with their codes that are

coincidentally scheduled on this same node over time.

Next, a particular node has been seen generating

segmentation faults on the same code from the same user on

a very regular basis. This could also be interpreted as either

the user debugging code or a node experiencing hardware

problems. While this would seem to indicate a debugging

cycle, the OLCF has found through several different

generations of processors that particular codes can and do

generate segmentation faults on particular nodes over and

over while other codes run without problems on the same

nodes. Codes that have experienced this behavior include

LSMS, S3D, Madness and others. These codes cover

several different scientific disciplines with very different

coding practices and complexities, so it is believed that this

unique behavior is simply a defect in the part caused by

either a particular instruction or more likely a sequence of

instructions unique to the code.

Finally, a node might report only one segmentation fault

during a boot session. Again, how should this be interpreted

– a code problem or a defective part? As presented above,

particular applications can and do generate segmentation

faults when no other codes experience the behavior, so

making a definitive decision either way is challenging.

B. The Compromise

Given so many different possible interpretations of the

cause of segmentation faults, how can an algorithm be

developed to correctly diagnose each fault and associate it

with the correct root cause? There is no distinction in the

data reported for a segmentation fault generated by user

error versus hardware defect, so an automated diagnosis

becomes very difficult. Furthermore, a user engaged in a

debugging cycle often doesn’t know if problems being

experienced are hardware or software. Human nature is to

blame conditions beyond the control of the user for

problems being experienced, so the likelihood of getting a

meaningful diagnosis by including input from the user is

probably very low.

With these circumstances in mind, the OLCF has decided

to implement a compromise which attempts to capture

segmentation faults due to hardware failures. It is a

compromise since it attempts to limit the exposure of these

failures to the users by making assumptions that cannot

necessarily be confirmed. The algorithm monitors for

applications that experience failures on a particular node

multiple times while also using both context and thresholds

to limit false positives. Nodes will be flagged as potential

hardware failures when a single application experiences

repeated segmentation faults on a particular node three

times with no segmentation faults from any other node.

This would seem to indicate that only that node is causing

the application to fail since a coding problem should

experience segmentation faults from other nodes as jobs

move around the system. To cover the case whereby

multiple applications could be experiencing failure due to

defective hardware, a node that generates segmentation

faults from different applications over a three-day period

will also be flagged as a potential hardware failure. The

hope is that statistical probability will identify defective

parts while keeping false positives to a minimum.

The implementation of this algorithm will take advantage

of the SEC infrastructure already installed on the system

management workstation (smw). The OLCF has relied on

this existing system to monitor and diagnose problems with

the Cray X-series for several years now [1]. By adding new

SEC rules that have the ability to both count faults and

check context, the OLCF should be able to limit user

exposure to hardware failures that manifest themselves as

segmentation faults.

V. REMOVING FAILED NODES FROM THE SYSTEM

With the introduction of the Cray XK6, the OLCF now

has the capability of removing failed parts while the system

continues to run. The new Gemini interconnect has the

ability to dynamically reroute the network unlike the

previous generation Cray Seastar interconnect, so replacing

failed nodes no longer requires a complete system

downtime. However, the OLCF has occasionally

experienced failed reroutes of the Gemini network when

attempting to replace failed parts, so procedures have been

developed to attempt to verify that the entire node

replacement process will be successful. Once that

verification has been accomplished, the warmswap

procedure itself can be implemented.

A. Verifying Successful System Reroute

In order to remove a module from the system for repair,

the network must be rerouted to divert traffic away from

that module. This is done automatically when a module

fails on a running system. However, just as any other

software can fail, the reroute of the system can also fail

under the right conditions, and the OLCF has experienced

these failures. If the reroute fails, the entire system must be

rebooted resulting in the loss of multiple jobs and wasted

compute cycles. The OLCF has developed a very simple

procedure to ensure that the reroute will be successful when

performing maintenance. An option called –stage-routes

passed to the smw rtr command provides a mechanism for

calculating the new routes but not placing them and

provides feedback on any problems it encounters. Using

this command, the hardware engineers are provided some

assurance that the removal of a module will result in a

successful reroute before attempting the actual procedure

itself. Most recently, a software bug on the L0 controllers

that consumed too much of the CPU resulted in a failed

reroute. Using this new method, that condition is now

detectable and can be corrected before proceeding with the

warmswap procedure.

B. Warmswap Procedure

Prior to warmswapping a module we must first ensure

that the nodes on the module are idle and are not reserved

by a user. The first step in the process is to create a Moab

hostlist based reservation on the node to be swapped. We

have created a simple script that takes the module cname as

input and then generates and executes the appropriate Moab

command to create the reservation on the nodes.

The next step is to check with ALPS to make sure the

module is idle. Again, we have created a script which

accepts the module cname and returns the idle/busy status of

each node on the module.

The module is finally ready to be repaired. The hardware

engineers can execute the xtwarmswap command on the

smw, remove the module, make repairs and then replace the

module. A bounce/route/boot process is then performed on

the module.

Since there is a hostlist reservation no user jobs will start

when the module is booted. This allows the admins time to

run some test jobs on this module to validate repairs prior to

user jobs running on the nodes. We have put together a few

jobs in a command batch script which can be used to check-

out one module. There a driver script which accepts the

module cname as input and it generates the appropriate

hostlist based TORQUE™ qsub command to test the

module. The output is contained in a file with a name of the

form cname.batchid. This makes it easy to track modules

over time.

If the test jobs show that the module is functioning

properly the Moab reservation is released and user jobs will

begin to run on those nodes. Otherwise the module can be

returned to the hardware engineers for further work.

Figure 3. Diagnostic Run Flowchart

Investigate

Cause

Run Largest

Job That Fits

Results

Correct?

Update Database

for Verified nodes

Query Database for

Eligible Nodes

(Eliminate Down Nodes)

Submit New Large Job

to Run at Future

Interval

Create Moab Reservation

based on Eligible Nodes

Submit Job against Moab

Reservation

Results

Correct?

Delete Moab Reservation

VI. CONCLUSION

In summary, early-life failures cause loss of productivity

and frustration for users. At scale, these issues are

compounded not only by the sheer number of parts, but also

by issues that arise with software when attempting to run

diagnostics at scale. Methods can be developed to minimize

the impact of these problems to users, but a balance must be

struck between providing confidence in the system and

taking computing cycles away from the users. Work

continues at the OLCF to improve diagnostics along with

their runtimes in anticipation of incorporating runs into

prologues at job launch. With a proven diagnostic and a

small runtime, both goals of minimal impact and system

confidence could be achieved for the life of the system.

REFERENCES

[1] J. Becklehimer, C. Willis, J. Lothian, D. Maxwell, and D.

Vasil, “Real Time Health Monitoring of the Cray XT
Series Using the Simple Event Correlator (SEC),” Cray
User Group Conference 2007.

https://cug.org/5-publications/proceedings_attendee_lists/2007CD/S07_Proceedings/pages/Authors/Becklehimer/Becklehimer_paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/2007CD/S07_Proceedings/pages/Authors/Becklehimer/Becklehimer_paper.pdf

