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Abstract—The Oak Ridge Leadership Computing Facility 

(OLCF) housed at the Oak Ridge National Laboratory recently 

acquired a 200-cabinet Cray XK6.  The computer will 

primarily provide capability computing cycles to researchers 

through the Innovative and Novel Computational Impact on 

Theory and Experiment (INCITE) program.  The OLCF has a 

tradition of installing very large computer systems requiring 

unique methods in order to achieve production status in the 

most expeditious and efficient manner. 

More often than not, new computer systems of this size 

employ the most recent processor, memory and interconnect 

technology available from computer vendors. While 

installation-to-production is an exciting time in the life cycle of 

a computer, fielding systems of this size brings its own set of 

challenges.  New computer parts have neither time nor 

experience on their side. Statistically speaking, a large system 

will see many more early-life part failures than smaller 

systems, and only time spent running the system will cause 

those parts to fail.  As for experience, new technology used in 

these machines has traditionally not made it to the general 

commodity market yet, so the benefit of having assistance in 

finding potential issues that might be lingering in a new design 

cannot be realized. 

This paper will explore some of the methods that have 

been used over the years at the OLCF to not only address 

many of the issues noted above at installation but also ongoing 

issues that occur during the life of the machine.  Experience 

has shown that parts can fail in many different ways causing 

different failure modes for applications.  While some 

applications run just fine on a particular part, others fail every 

time on that same part.  Traditional offline diagnostics are 

unable to detect these issues. However, ongoing online 

diagnostics can be very helpful in tracking down these issues 

and alerting systems staff to problem parts in the machine.  

Early detection can prevent job failures and ongoing 

frustration for users as they debug issues which are ultimately 

hardware failures.  Algorithms and applications that have been 

developed for use in online diagnostics will be discussed as well 

as tracking and reporting mechanisms.  Ongoing and future 

work will also be discussed. 

I. INTRODUCTION 

Computer users have an expectation that running the 
same code on the same computer will generate the same 
results over and over.  While this is generally true, computers 
are machines, and machines have parts that fail.  When parts 
do fail, the goal is always to minimize the impact to the user 
with the ultimate goal being to hide the failure entirely from 
the user. 

Given that hardware will ultimately fail at some point, 
software has to be designed to deal with these failures.  
There are many different levels at which software can be 
written to provide the user with the machine expected.  
Offline diagnostics are the first line of defense in screening 
parts for failures.  These diagnostics are designed to test each 
component for failures and to stress parts to the point that 
marginal ones fail.  Parts that have survived this round of 
testing then move on to the next phase of testing which 
involves a fully functioning operating system.  The focus of 
this paper will be the online portion of testing with the 
operating system booted.   

Some of these online tests are performed early in the life 
of the machine during the bring-up and acceptance testing 
while others are ongoing tasks that continue throughout the 
life of the machine.  The algorithms and infrastructure 
needed to find and track parts that can fail in unconventional 
ways are not complicated but require some thought and 
effort.  Many common tools already used at the OLCF 
including MySQL databases and the Simple Event Correlator 
(SEC) package are being employed to provide the tracking 
and logic needed to attack this problem.   

Following this process to its logical conclusion, once a 

defective part is found, the next task is to replace it.  The 

new XK6 with the Gemini interconnect provides the 

opportunity to replace defective parts while the machine 

continues to run user jobs.  This requires that the machine 

be quiesced and the Gemini network rerouted.  Generally, 

this should just work, but experience has proven that at 

times, it does not, which leads to a reboot of the machine.  

Methods for attempting to ensure a successful machine 

reroute as well as the actual warmswap procedure itself will 



be discussed to complete the lifecycle of the defective part 

in the machine. 

 

II. MOTIVATION AND EXPERIENCE 

Experience in bringing very large systems online at the 

OLCF has shown that achieving a minimal state of stability 

and reliability is a multistep process that begins with 

processes designed and implemented by the manufacturer.  

Often these state-of-the-art supercomputers are the first to 

receive newly designed commodity processors, so the first 

concern is generally centered on the design and manufacture 

of the part.  If there was either a flaw in the design of the 

part that some in the business have seen in past deployments 

or an issue in the manufacturing process, it can lead to 

delays which have both scheduling implications and 

financial impacts to the commodity part vendor, the 

supercomputer vendor, the consumer and ultimately the user 

of the computer.  Not having realized the experience of the 

market at this early stage in the life of the part, the challenge 

becomes putting together the right processes at different 

levels to deal with the risk. 

First, once parts are manufactured, there is an intensive 

screening process performed by the commodity part 

manufacturer to eliminate defective and weak parts. This 

process subjects the parts to environmental conditions 

outside normal operating boundaries using both thermal and 

electrical extremes.  Using extremes, the goal is obviously 

to provide the consumer with a part that should operate 

properly under normal circumstances by eliminating weak 

parts.  Further, the hope is that this process eliminates the 

need for further screening down the line by the consumer, 

but as many have learned, that is often not the case. 
The next attempt at verifying the part is usually the 

responsibility of the supercomputer manufacturer.  At times, 
schedules dictate that parts bypass the supercomputer vendor 
and instead ship directly to the final consumer, but that is 
obviously not the preferred path.  At a minimum, parts will 
undergo a second round of screening once installed in the 
machine of their ultimate destination using a series of tests 
developed by the commodity manufacturer, the 
supercomputer manufacturer, and the computing community 
at large.  These offline tests are used not only to identify 
defective parts but other problems such as issues with seating 
parts in the machine, etc.  There are generally a few rounds 
of this testing performed over several days with a system of 
any significant size, but it is at this point that the online 
diagnostic process begins. 

Cray has gathered a collection of applications from 
customers over the years that have traditionally stressed 
machines of days gone by in different ways.  Certainly the 
Linpack benchmark is one of the most stressful applications 
that any new supercomputer will run and has historically 
been important to many sites.  The online diagnostic process 
begins by booting the new machine into an operating system 
to provide an environment necessary for running Linpack 
and the suite of other applications assembled for diagnostic 

purposes.  Ideally, after a few rounds of this testing are 
performed over several days, the end result is a productive 
machine; but again, experience says that this final goal has 
not been reached just yet. 

The next step in the process introduces customer 
involvement with acceptance testing.  During this phase, 
customer applications are developed on new hardware 
providing ample opportunity for any flaws and defects to be 
brought to the forefront.  Given the fact that this is the first 
exposure of the customer to the hardware, it is no surprise 
that issues arise at this stage.  Problems can present 
themselves in a variety of ways.  Early-life failures that are 
typical in most supercomputers manifest themselves in the 
forms of complete hardware failures taking nodes down, 
segmentation faults on either all applications or a select few 
applications, and divergent answers.   

III. DIAGNOSTIC HARNESS 

A. Diagnostic Identification 

In order to mitigate risk to users’ jobs, the OLCF 

embarked upon a project to provide an ongoing online 

diagnostic with the goal of finding early-life failures before 

the users found them.  Given that only certain applications 

seem to stress the machine is such a way to identify these 

nodes, applications had to be identified that have historically 

met this requirement and that could be run in a reasonable 

timeframe.  Clearly, running these diagnostics takes 

compute cycles from the users, so a balance had to be 

achieved to minimize both run time and frequency. 

During the initial thought process, the hope was to find 

an application or small set of applications that met the 

requirement of finding early-life failures and also ran in 

such a small amount of time that it would be reasonable to 

run them in the Cray NodeKARE™ package which 

provides the node health check service for the Cray XK6 

machine.  This package provides a mechanism for running 

site applications but unfortunately does not provide a 

mechanism for running a parallel MPI application.  The 

check simply runs the application specified on each 

individual node in the reservation.  While this did not meet 

the need for the diagnostic application, a batch system 

prologue or epilogue script could have accomplished a 

similar task, but ultimately, the real problem proved to be 

finding a short-running application that could identify the 

early-life failures. 

The next best alternative to a short-running application 

running at the beginning or ending of each job is one that 

runs in a fairly short amount of time during batch 

processing.  The application that seemed to meet all the 

criteria proved to be the Linpack benchmark.  This 

application had identified many of the early-life failure 

nodes seen during several Cray X-series acceptance testing 

periods, it could scale to the size of the machine, and it ran 

in approximately 30 minutes with very predictable results 

making verification simple.  While other codes were 

successful in identifying individual failed parts, Linpack 



proved the most reliable in consistently finding the failures.  

As for the frequency to employ this simulation to test for 

parts failure, again a balance between compute cycles away 

from the users versus confidence in the machine had to be 

achieved.  A 72-hour period between runs seemed to be a 

reasonable compromise of the two factors.  Two runs per 

week minimizes the time taken from users but doesn’t 

prolong the period between verification runs.  Certainly, as 

confidence is gained in the machine, this period will 

increase and will ultimately just become a verification run 

after a maintenance period. 

B. Identifying the Failure 

Now that the application has been identified, it is 

necessary to determine what defines a failure and which 

node is responsible for the failure. For our purposes there 

are two types of failures. 

A hard error is defined as a failure which results in the 

application exiting.  In these cases identifying the 

responsible node is usually done by simple examination of 

the error logs.  Hardware errors such as machine check 

exceptions are a good example of a hard error.  Also, for 

this discussion we consider segmentation faults as hard 

errors.  This is because the behavior of the application is 

well known and any type of error exit is considered 

abnormal. 

A soft error occurs when the application completes 

normally but the resulting output does not match the 

expected output.  In those cases identifying the responsible 

node is not possible using only one run. Instead we must 

introduce a twist into the process. 

Rather than run one large application across the entire 

system we split the system into blocks of N
2 
nodes.  For 

each block we run N jobs which are N nodes wide as 

portrayed in Fig. 1.  If that block runs error free then the 

nodes are good. 

If there is a soft error we regroup the nodes along the 

columns and repeat the run as in Fig. 2.  Hopefully the 

failure will repeat.  The faulty node is then identified by the 

node which intersects both sets of nodes involved in the 

failing jobs. 

C. Tracking the Diagnostic Runs 

In order to ensure that each node in the machine was 

verified in the appropriate interval of time, a simple MySQL 

database was created to track the last diagnostic runtime on 

each node in the system.  Using this database described 

below in Table I, determining which nodes were eligible for 

a new diagnostic run became a simple matter of querying 

the database.   

A few experiments were conducted to determine what 

combination of diagnostic jobs might be less intrusive for 

the users.  In order to ensure the jobs got executed in a 

timely fashion, Moab® advance reservations were created 

based on the node list query from the database. 
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33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 
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57 58 59 60 61 62 63 64 

Run one job per row N nodes wide 
Figure 1. One Job Per Row 
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Figure 2. One Job Per Column 

 
Table I. MySQL Schema 

Field Type 

last_runtime Datetime 

processor_id int(10) unsigned 

job_id varchar(80) 

Hostname varchar(80) 

 

Initially, the thought was that smaller diagnostic runs would 

allow more user jobs to complete around those waiting to 

run on particular nodes, but ultimately, the number of Moab 

reservations needed to accommodate these smaller runs 

became unmanageable and caused performance issues with 

Moab, making the idea impractical.  The implementation 

used to accomplish the runs now uses the flowchart outlined 

in Fig. 3.  To summarize the steps to identify failed parts: 

one large job runs, the database is queried to pick up the 

residual nodes not covered by the large job, a Moab 

reservation is created to cover those nodes, and a new job is 

submitted against that reservation.  This has proven to be the 

most effective method to date. 



IV. DIAGNOSING PERSISTENT SEGMENTATION FAULTS 

A. The Problem 

Persistent segmentation faults are difficult to detect and 

report in an automated fashion.  Most prevalent during 

acceptance testing, segmentation faults can be another 

manifestation of early life failures but they can also simply 

be a programming error by the user.  Differentiating a 

programming error from a hardware failure can be difficult. 

A few patterns have been observed in console logs where 

segmentation faults are reported.  First, a particular node can 

be seen reporting faults on several different applications 

typically from different users over a period of time.  While 

this would seem to indicate that the node has defective 

hardware, the possibility exists that this could simply be 

different users in debug cycles with their codes that are 

coincidentally scheduled on this same node over time. 

Next, a particular node has been seen generating 

segmentation faults on the same code from the same user on 

a very regular basis.  This could also be interpreted as either 

the user debugging code or a node experiencing hardware 

problems.   While this would seem to indicate a debugging 

cycle, the OLCF has found through several different 

generations of processors that particular codes can and do 

generate segmentation faults on particular nodes over and 

over while other codes run without problems on the same 

nodes. Codes that have experienced this behavior include 

LSMS, S3D, Madness and others.  These codes cover 

several different scientific disciplines with very different 

coding practices and complexities, so it is believed that this 

unique behavior is simply a defect in the part caused by 

either a particular instruction or more likely a sequence of 

instructions unique to the code. 

Finally, a node might report only one segmentation fault 

during a boot session.  Again, how should this be interpreted 

– a code problem or a defective part?  As presented above, 

particular applications can and do generate segmentation 

faults when no other codes experience the behavior, so 

making a definitive decision either way is challenging. 

B. The Compromise 

Given so many different possible interpretations of the 

cause of segmentation faults, how can an algorithm be 

developed to correctly diagnose each fault and associate it 

with the correct root cause?  There is no distinction in the 

data reported for a segmentation fault generated by user 

error versus hardware defect, so an automated diagnosis 

becomes very difficult.  Furthermore, a user engaged in a 

debugging cycle often doesn’t know if problems being 

experienced are hardware or software.  Human nature is to 

blame conditions beyond the control of the user for 

problems being experienced, so the likelihood of getting a 

meaningful diagnosis by including input from the user is 

probably very low. 

With these circumstances in mind, the OLCF has decided 

to implement a compromise which attempts to capture 

segmentation faults due to hardware failures.   It is a 

compromise since it attempts to limit the exposure of these 

failures to the users by making assumptions that cannot 

necessarily be confirmed.  The algorithm monitors for 

applications that experience failures on a particular node 

multiple times while also using both context and thresholds 

to limit false positives.  Nodes will be flagged as potential 

hardware failures when a single application experiences 

repeated segmentation faults on a particular node three 

times with no segmentation faults from any other node.  

This would seem to indicate that only that node is causing 

the application to fail since a coding problem should 

experience segmentation faults from other nodes as jobs 

move around the system. To cover the case whereby 

multiple applications could be experiencing failure due to 

defective hardware, a node that generates segmentation 

faults from different applications over a three-day period 

will also be flagged as a potential hardware failure.  The 

hope is that statistical probability will identify defective 

parts while keeping false positives to a minimum.   

The implementation of this algorithm will take advantage 

of the SEC infrastructure already installed on the system 

management workstation (smw).  The OLCF has relied on 

this existing system to monitor and diagnose problems with 

the Cray X-series for several years now [1].  By adding new 

SEC rules that have the ability to both count faults and 

check context, the OLCF should be able to limit user 

exposure to hardware failures that manifest themselves as 

segmentation faults. 

V. REMOVING FAILED NODES FROM THE SYSTEM 

 

With the introduction of the Cray XK6, the OLCF now 

has the capability of removing failed parts while the system 

continues to run.  The new Gemini interconnect has the 

ability to dynamically reroute the network unlike the 

previous generation Cray Seastar interconnect, so replacing 

failed nodes no longer requires a complete system 

downtime.  However, the OLCF has occasionally 

experienced failed reroutes of the Gemini network when 

attempting to replace failed parts, so procedures have been 

developed to attempt to verify that the entire node 

replacement process will be successful.  Once that 

verification has been accomplished, the warmswap 

procedure itself can be implemented. 

A. Verifying Successful System Reroute 

In order to remove a module from the system for repair, 

the network must be rerouted to divert traffic away from 

that module.  This is done automatically when a module 

fails on a running system.  However, just as any other 

software can fail, the reroute of the system can also fail 

under the right conditions, and the OLCF has experienced 

these failures.  If the reroute fails, the entire system must be 

rebooted resulting in the loss of multiple jobs and wasted  

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

compute cycles.  The OLCF has developed a very simple 

procedure to ensure that the reroute will be successful when 

performing maintenance.  An option called –stage-routes 

passed to the smw rtr command provides a mechanism for 

calculating the new routes but not placing them and 

provides feedback on any problems it encounters.  Using 

this command, the hardware engineers are provided some 

assurance that the removal of a module will result in a 

successful reroute before attempting the actual procedure 

itself.  Most recently, a software bug on the L0 controllers 

that consumed too much of the CPU resulted in a failed 

reroute.  Using this new method, that condition is now 

detectable and can be corrected before proceeding with the 

warmswap procedure. 

B. Warmswap Procedure 

Prior to warmswapping a module we must first ensure 

that the nodes on the module are idle and are not reserved 

by a user. The first step in the process is to create a Moab 

hostlist based reservation on the node to be swapped. We 

have created a simple script that takes the module cname as 

input and then generates and executes the appropriate Moab 

command to create the reservation on the nodes. 

The next step is to check with ALPS to make sure the 

module is idle. Again, we have created a script which 

accepts the module cname and returns the idle/busy status of 

each node on the module. 

The module is finally ready to be repaired. The hardware 

engineers can execute the xtwarmswap command on the 

smw, remove the module, make repairs and then replace the 

module. A bounce/route/boot process is then performed on 

the module. 

Since there is a hostlist reservation no user jobs will start 

when the module is booted. This allows the admins time to 

run some test jobs on this module to validate repairs prior to 

user jobs running on the nodes. We have put together a few 

jobs in a command batch script which can be used to check-

out one module. There a driver script which accepts the 

module cname as input and it generates the appropriate 

hostlist based TORQUE™ qsub command to test the 

module. The output is contained in a file with a name of the 

form cname.batchid. This makes it easy to track modules 

over time. 

If the test jobs show that the module is functioning 

properly the Moab reservation is released and user jobs will 

begin to run on those nodes. Otherwise the module can be 

returned to the hardware engineers for further work. 

Figure 3. Diagnostic Run Flowchart 
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VI. CONCLUSION 

In summary, early-life failures cause loss of productivity 

and frustration for users.  At scale, these issues are 

compounded not only by the sheer number of parts, but also 

by issues that arise with software when attempting to run 

diagnostics at scale.  Methods can be developed to minimize 

the impact of these problems to users, but a balance must be 

struck between providing confidence in the system and 

taking computing cycles away from the users.  Work 

continues at the OLCF to improve diagnostics along with 

their runtimes in anticipation of incorporating runs into 

prologues at job launch.  With a proven diagnostic and a 

small runtime, both goals of minimal impact and system 

confidence could be achieved for the life of the system. 
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