
Early Application Experiences with
the Intel MIC Architecture in a Cray CX1

R. Glenn Brook, Bilel Hadri, Vincent C. Betro, Ryan C. Hulguin, Ryan Braby
National Institute for Computational Sciences

University of Tennessee
Oak Ridge National Laboratory

Oak Ridge, TN USA
Email: glenn-brook@tennessee.edu, bhadri@utk.edu, vbetro@utk.edu, ryan-hulguin@tennessee.edu, rbraby@utk.edu

Abstract—This work details the early efforts of the National
Institute for Computational Sciences (NICS) to port and optimize
scientific and engineering application codes to the Intel Many
Integrated Core (Intel MIC) architecture in a Cray CX1. After
the configuration of the CX1 is presented, the successful portings
of several application codes are described, and scaling results
for the codes on the Intel Knights Ferry (Intel KNF) software
development platform are presented.

Index Terms—Intel MIC, Cray CX1, applications, porting

I. INTRODUCTION

With the stagnation of computer processor frequency due to
the constraints of power and density, processor manufacturers
are introducing additional parallelism within their designs to
attain increased performance for highly parallel applications.
General-purpose graphical processing units (GPGPUs) em-
ployed in most modern accelerators rely on a modest number
of streaming multiprocessors that perform extremely wide
vector calculations, expressed using a specialized (and largely
proprietary) programming model, to achieve high theoretical
peak performance. The Intel Many Integrated Core (Intel MIC)
architecture takes a different approach, instead relying on a
massive number of parallel, x86-compatible cores equipped
with high performance, wide vector processing units to achieve
similar performance using standard, parallel programming
models and languages. This design approach offers several
unique advantages that are expected to provide a much more
direct and cost-effective path for migrating existing scientifc
and engineering codes to accelerated architectures than that
currently available with GPGPUs.

To explore the potential impact of the Intel MIC archi-
tecture and related programming models on the scientific
supercomputing community, several applications are ported
to and subsequently studied on two 32-core Intel Knights
Ferry (Intel KNF) software development platforms deployed
in a Cray CX1 at the National Institute for Computational
Sciences (NICS). Three of the studied applications – an Euler
solver, a Boltzmann-BGK solver, and a Navier-Stokes solver
– employ the native execution model, in which the Intel
MIC acts as a standalone compute node on which parallel
code is executed directly via MPI or interactive login. The
final application – a Poisson solver – employs the offload
execution model, in which computational kernels or sections

of code that are flagged by special pragmas are automatically
migrated to the Intel MIC for execution while the primary
code runs on the host processor(s). Information regarding the
porting, application, and scalability of each application code
is presented, following a brief discussion of the configuration
of the Cray CX1.

II. INTEL MIC CONFIGURATION ON THE CRAY CX1

The Cray CX1 system has one management node and two
compute nodes. Each of the compute nodes has two Intel
Xeon 5600 processors and a single 32-core Intel KNF card.
Following initial configuration of the host and compute nodes
by Cray, NICS staff installed the drivers, compilers, and
support software for the Intel KNF cards. These cards are
supported by early Alpha software; but, despite the limitations
of this early software, the CX1 and its Intel KNF cards are
surprisingly stable and usable.

Each Intel KNF card boots a diskless Linux OS image when
initialized. This image has a virtual IP interface between it
and the host node, and it runs a ssh server that listens on this
interface. In the alpha releases of the software, no accounts
other than root are available on the Intel KNF card. So, each
user you want to enable to ssh into an Intel KNF card needs
a copy of the root ssh keys. Applications that have been
compiled for the Intel MIC can then be copied over to a Intel
KNF card and run in native mode.

Running MPI applications in native mode across multiple
Intel KNF cards requires a method of communication between
the cards in the different compute nodes. This is accomplished
by setting up TCP/IP communications between the cards.
Since the alpha software includes a default IP address for
the Intel KNF card card and does not support a method
for changing this on card initialization, Network Address
Translation (NAT) is used to make it appear that the Intel KNF
cards are on the same ethernet network as their host nodes.
Each Intel KNF card requires the following three NAT rules:

1) -A PREROUTING -d [virtual address for KNF/mask] -j
DNAT –to-destination 192.168.1.100

2) -A POSTROUTING -s 192.168.1.100/32 -j SNAT –to-
source [virtual address for MIC]

3) -A OUTPUT -d [virtual address for MIC/mask] -j DNAT
–to-destination 192.168.1.100

In addition, each Intel KNF card requires a default route to
the virtual interface on the host node. Each host node needs
IP forwarding enabled to allow for traffic to pass between
the virtual network connecting it and the Intel KNF it hosts
to the ethernet network connecting the nodes together. When
all of this is in place (and scripts are setup to reconfigure
it after each boot), the Intel KNF cards and compute nodes
can all ping each other, and applications built with MPI using
IP communications can communicate between the Intel KNF
cards. However, passwordless ssh between all of the hosts
needs to be configured to allow for task launching and control.

Copying the ssh keys from the Intel KNF cards to the host
nodes and syncing them across the nodes, enables users to
login to the OS on the Intel KNF cards. However, going from
one Intel KNF to another requires using the dropbearconvert
command to make the keys compatible with the dropbear ssh
on the Intel KNF cards. Like the networking changes above,
this needs to be put in place by scripts after each boot of an
Intel KNF card.

Much of this configuration work is necessary to work
around limitations of the early alpha software, and it is
expected that much of it will be handled differently as newer
versions of the software are made available. That said, the
quick configuration and work arounds allow early users to
accomplish significant work on this CX1 test system.

III. SOLVING THE EULER EQUATIONS AND THE BGK
MODEL BOLTZMANN EQUATION

Two computational fluid dynamics (CFD) solvers are devel-
oped for use on the Intel MIC architecture. The first solver is
based on the Euler equations (1− 5), and the second solver is
based on the BGK model Boltzmann equation (6− 8). These
particular solvers are vastly different from each other in terms
of their target applications and in their complexity. The Euler
equations are typically used to solve inviscid fluid flows, while
the BGK model Boltzmann equation is typically used to solve
non-continuum rarefied gas flow. The Euler equations only
need 5 state variables to be solved at each grid point, whereas
the BGK model Boltzmann equation could have hundreds of
thousands of state variables that need to be solved at each grid
point. Despite their differences, the same numerical algorithm
can be used to solve both sets of equations. A simple test
problem is simulated using each solver, and a strong scaling
study is performed to see how well the solvers scale across
the cores of the KNF card.

A. Governing Equations

The Euler equations are shown below

∂ ~Q

∂t
+
∂ ~F

∂x
+
∂ ~G

∂y
+
∂ ~H

∂z
= ~0 (1)

~Q = [ρ, ρu, ρv, ρw,E]T (2)

~F = [ρu, ρu2 + P, ρuv, ρuw, (E + P)u]T (3)

~G = [ρv, ρuv, ρv2 + P, ρvw, (E + P) v]T (4)

~H = [ρw, ρuw, ρvw, ρw2 + P, (E + P)w]T (5)

where ρ is the density ~u = (u, v, w) are the velocities, P is
the pressure and E is the total energy per unit volume.

The BGK model Boltzmann equation using a discrete
velocity model [1] is shown below

∂fk
∂t

+ ~Vk ·
∂fk
∂~x

= ν · (feqk − fk) (6)

feq =
n

(πT)
3/2

−
(
~Vk − ~u

)2
T

 (7)

ν =
8nT 1−ω

5
√
πKn

(8)

where fk is the probability distribution function at discrete
velocity k, ~Vk = (Vxk

, Vyk
, Vzk) are the discrete molecular

velocities, ~u = (u, v, w) are the bulk (average) velocities, n is
the number density, T is the temperature, ω is the gas viscosity
index, and Kn is the Knudsen number, which characterizes the
flow. The Knudsen number is defined as the ratio between the
mean free path λ∞ and the characteristic length L. When the
Knudsen number is larger than 0.1, the continuum assumption
that the Navier-Stokes equations are based on starts to break
down, and the Boltzmann equation becomes more appropriate
to use.

B. Numerical Algorithm

The Euler solver and the BGK model Boltzmann solver are
both developed using a point-iterative Jacobian-free Newton
algorithm [2]. Newton’s method is used to linearize the
nonlinear system of equations, and then the Jacobi method
is used to solve the resulting linear system. The Jacobian, J ,
is calculated implicitly through the use of dual numbers and
Taylor series expansions in the dual space. A dual number[3],
ε, is like an imaginary number i, except that ε2 ≡ 0. The
implicit Jacobian calculations are shown below

Jk (∆qp)
m−1 ≈ 1

h
Dual

[
Fk

(
~q p−1 + εh (∆~q p)

m−1
)]

(9)

Fk ≈ Real
[
Fk

(
~q p−1 + εh (∆~q p)

m−1
)]

(10)

Jkk ≈
1

h
Dual

[
Fk

(
~q p−1 + εh~ek

)]
(11)

where ~F (~q) = ~0 is the nonlinear set of equations being
solved with 1 < k < n, p is the Newton iteration, m is the
current Jacobi iteration, h ∈ R is an arbitrary perturbation,
and ek is the kth vector in the standard basis for RN . The
iterative process continues until either a convergence tolerance
is met or a maximum number of iterations have completed.
The convergence tolerance values are ‖∆q‖2 = 1 × 10−15

and ‖∆ [∆q]‖2 = 1 × 10−8 for the Newton and Jacobi
methods respectively, and the maximum number of iterations
are 15 Newton iterations with 3 Jacobi iterations per Newton
iteration.

C. Parallel Implementation

The Euler solver and the BGK model Boltzmann solver are
both compiled in native mode for use on a single KNF card
directly. OpenMP threads are used to achieve data parallelism
across the cores of the KNF card. The main computation
loop over all the grid points is made parallel through the use
of the #pragma omp parallel for directive. Since the
Jacobi method is used to solve the linearized set of equations,
the majority of the calculations become almost embarrass-
ingly parallel. Additional loops are also made parallel using
OpenMP directives.

D. Test Problems

The test problem run using the Euler solver is the Sod
shock [4] simulation. In a shock wave, the properties of a fluid
change almost instantaneously. The standard Sod shock starts
off with a fluid at rest with the following initial conditions:

ρleft = 0.0, uleft = 0.0, P left = 1.0

ρright = 0.125, uright = 0.0, P right = 0.1

The Sod shock is a popular test case for verifying a solver’s
ability to appropriately capture shocks and contact disconti-
nuities in unsteady fluid flows. The solution generated on the
KNF is shown below

-4 -2 0 2 4
x

0

0.2

0.4

0.6

0.8

1

Velocity in x direction

Pressure

Sod Shock

Fig. 1: Numerical simulation of the Sod shock test problem

The test problem run using the BGK model Boltzmann solver
is a Couette flow simulation. In a Couette flow, gas is initially
at rest between two infinitely long parallel plates. For this
simulation [5], the left plate is stationary while the right plate
moves at 300 m/s. The gas between the plates is initialized
with the following values:

ρ0 = 9.28× 10−8 kg/m3, ux0 = uy0 = 0.0m/s

T0 = 273.0 K,Kn = 0.1199

Both plates are held at a constant temperature of
273.0 K. Over time, the gas settles into a steady state solution.
The Couette flow problem is a good test case for verifying a
solver’s ability to handle solid surfaces and moving boundary

conditions. The test problem was simulated on a grid with
27 grid points in physical space and 36x36x36 grid points
in velocity space. The steady state velocity profile is shown
in Figure 2. Note that there is some slip at both walls. This
is in contrast to a continuum solution, where the velocities
near the left and right walls would be 0.0 m/s and 300 m/s
respectively.

0 0.2 0.4 0.6 0.8 1

X (m)

0

50

100

150

200

250

300

U
y
 (

m
/s

)

Couette Flow
Kn=0.1199, Right Wall = 300 m/s in y direction

Fig. 2: Numerical simulation of the Couette flow test problem

E. Parallel Performance

To see how well the solvers scale across the cores of the
KNF, each test problem was run with a varying number of
threads ranging from 1-120. The strong scaling study for the
Euler solver is shown in Figure 3, and the strong scaling study
for the BGK model Boltzmann solver is shown in Figure 4.
The Euler solver scaled very well across the KNF, obtaining
a speedup of 30.2 when 108 threads are used. The BGK
model Boltzmann solver did not scale well initially, because
there was not enough parallelism exposed. Rob Van der
Wjingaart, a senior software engineer from Intel, performed
some optimizations on the BGK model Boltzmann solver. The
strong scaling study is run again with optimizations, and the
scalability becomes similar to that achieved with the Euler
solver. The optimizations performed include fusing loops to
expose more parallelism, vectorizing loops through alignment
and compiler directives, and reducing the number of parallel
sections. The optimized BGK model Boltzmann solver obtains
a speedup of 30.2 when 76 threads are used.

IV. SOLVING THE NAVIER-STOKES EQUATIONS

Two MPI parallel Navier-Stokes (NS) simulations have been
ported and benchmarked on the Cray CX1 using native mode,
where the executable is run entirely on the Intel KNF. This

1 2 4 8 16 32 64 128

Number of OpenMP Threads

1

2

4

8

16

32

S
p
ee

d
u
p

Euler Solver on KNF
Run on Cray CX1

Fig. 3: Strong scaling study for Sod shock test problem

1 2 4 8 16 32 64 128

Number of OpenMP Threads

1

2

4

8

16

32

S
p
ee

d
u
p

With optimizations

Baseline

BGK Model Boltzmann Solver on KNF
Run on Cray CX1

Fig. 4: Strong scaling study for Couette flow test problem

was performed easily by compiling the code with the mpich
library with the -mmic flag.

The simulations, called Navier Stokes (NS) 2D and 3D,
use a domain decomposition technique with a one-dimentional
processor topology. The velocity-pressure formulation for the
NS equations is employed to obtain the pressure and flow
indicators for wall shear stress:

∂tV + (V · ∇)V +∇p− ν∇ · (∇V) = f, in Ω

div(V) = 0, in Ω

where V = V (X, t) is the velocity field at the point X ∈ Ω, p
is the normalized pressure field, f is the source term and ν is
the coefficient of kinematic viscosity. Ω denotes the relevant
geometrical domain. The second equation corresponds to the
incompressibility of the fluid.

The discretization of the NS equations is done with finite
differences on a Cartesian grid following the standard stag-
gered grid method. Regarding the resolution of the equation,

Fig. 5: Benchmark problem

a standard projection method [6] with two steps is employed.
First, the prediction of the velocity is performed by solving
the momentum equations explicitly; then, the projection of the
predicted velocity to the space of divergence free functions is
calculated.

A. Hemodynamic with Navier Stokes 2D

1) Description of the problem: The Navier Stokes 2D code
simulates a Poiseuille flow, a steady problem in a straight
pipe obstructed by an obstacle (the upper half of a disk as
described in Figure 5). The velocity profile in the inlet of
the pipe corresponds to a Poiseuille flow with a velocity of
maximum value one. Inlet and outlet boundary conditions on
the flow speed are imposed along the vertical walls at x = 0
and x = Lx. The flow field at the inlet satisfies the Dirichlet
boundary condition

u1(0, y, t) = g(y, t), y ∈ (0, Ly),

where g is set to zero inside the wall, i.e for y such that
(0, y) ∈ Ωw.

For simplicity a homogeneous Neumann boundary condition
is imposed on the flow field, i.e ∂u1

∂x = ∂u2

∂x = 0 at the outlet
x = Lx and a constant profile of the pressure along the outlet
wall x = Lx.

2) Parallel paradigm: Domain decomposition with Aitken
Schwartz: As described in [7], domain decomposition (DD)
techniques can be used as a process of distributing a compu-
tational domain among a set of interconnected processors for
the coupling of different physical models applied in different
regions of a computational domain. In all cases, DD methods:
• rely on a partitioning of the computational domain into

subdomains,
• solve in parallel the local problems using a direct or

iterative solver, and
• call for an iterative procedure to combine the local

solutions to obtain the solution of the global (original)
problem.

DD techniques have received much interest in recent years.
Indeed, they are suitable on multiprocessor computing systems
since they solve restrictions of the problem on different subdo-
mains independently and then integrate the partial solutions. It
is known that Additive Schwarz has a very slow convergence
rate. This can be a major drawback for a parallel application
since the algorithm requires communication at each iteration
until convergence is reached.

To accelerate the convergence, the Aitken acceleration has
been introduced by Garbey and Tromeur Dervout [8, 9] .
Aitken Schwarz(AS) is a DD method using the framework of
Additive Schwarz and based on an approximate reconstruction

Fig. 6: Strong Scaling

Fig. 7: Weak Scaling

of the dominant eigenvectors of the trace transfer operator.
This acceleration technique converges for the Laplacian op-
erator in only two iterations. It is friendly to cache use, and
it scales with the memory in parallel environments, providing
a fast means to solve the pressure equation. Further details
about the approach and its implementations are available in
prior works [10, 11].

3) Scaling Results: Figure 6 presents the strong scaling of
the parallel NS 2D for a problem size fixed to 400 grid points
along the x axis and 100 along the y axis. The speedup is
quasi linear up to 6 cores and it reaches a speedup close to
17 when using 20 cores.

Regarding the weak scaling, Figure 7 shows that the code
scales well. Indeed, the code employs nearest-neighbour com-
munication patterns where the communication overhead is
relatively constant regardless of the number of cores used.

B. Navier Stokes 3D

1) Numerical and parallel approach: The NS solver uses
an immersed boundary technique that relies on the proper
combination of three techniques. The L2 penalty approach
pioneered by Caltagirone [12, 13] is used to deal with complex
geometry for solving the NS equations. Furthermore, it com-
bines nicely with a level set method based on the Mumford-
Shah energy model [14] to acquire the geometry of a large
vessel from medical images. Finally, we use an AS domain

Fig. 8: Geometry

decomposition that has high numerical efficiency and scales
well.

The flow solver is an immersed-boundary-like method [15].
The wall boundary condition is immersed in the Cartesian
mesh thanks to a penalty term added to the momentum equa-
tion. Due to this, there is no need for tightly packed prismatic
viscous layers to impose the no slip boundary condition on
the wall.

The Aitken-Schwarz Domain decomposition technique is
used to solve the pressure equation; however, the main dif-
ference between the two and three dimensional simulation is
that the Fourier decomposition and the subdomain solver solve
only a tridiagonal problem. Indeed, the pressure unknown is
developed into the sine expansion in the physical space plane
y, z such that

p(x, y, z) =

My∑
j=1

Mz∑
k=1

p̂j,k(x).sin(jπy).sin(kπz)

with My and Mz correspondig to the number of modes
in the direction of y and z, respectively. Placing this decom-
position into the pressure equation results in one dimensional
My ×Mz problems based on the Helmotz operator, i.e., a
tridiagonal matrix which can be solved with a basic LU de-
composition[10]. Besides these changes, the general algorithm
is the same as described earlier.

Simulation results visualized with VisIt [16] are presented
in Figures 8 to 11.

2) Scaling Results: Unlike the 2D version, the acceleration
of Aitken-Schwarz step is done by only one processor, and
it is the only step that is not parallelized because of the
Aitken acceleration. Amdahl’s law[17] states that if P is the
proportion of a program that can be made parallel (i.e., benefit
from parallelization) and (1−P) is the proportion that cannot
be parallelized (remains serial), then the maximum speedup
that can be achieved by using N processors is:

Fig. 9: Velocity magnitude

Fig. 10: Particles flow

Fig. 11: Pressure field

Fig. 12: Strong Scaling

Fig. 13: Weak Scaling

S(N) =
1

(1− P) + P
N

.

Figure12 shows that when the problem size is large (400
grid points along the x axis, 100 along the y axis z axis), the
curve of speedup is close to the Amdahl’s law with P = 0.95.
When the number of cores and subdomains is increased,
the size of each subdomain is small, and the performance
decreases due to the increased amount of communication.
With respect to the weak scaling of the code presented in
the Figure13, a reasonable efficiency is observed, with a
performance of close to 75% on 20 cores.

V. SOLVING THE POISSON PROBLEM

The two dimensional Poisson equation is a partial differen-
tial equation as follows:

∇2T = S (x, y) (12)

where S is an arbitrary source term. A practical application of
Poisson’s equation is to model thermal conduction on a plate
with an added heat source. In this case, the variable T corre-
sponds to the temperature of a point on the rectangular plate
subject to Dirichlet (fixed temperature) boundary conditions.

The specific problem being solved in this paper is on the
domain

0 ≤ x ≤ 2 (13)

(a) Initial Temperatures on Flat Plate (b) Final Temperatures on Flat Plate

Fig. 14: Simulation results on a 1200 x 1200 flat plate

0 ≤ y ≤ 1 (14)

subject to the boundary conditions

T (0, y) = 0 (15)

T (2, y) = 2ey (16)

T (x, 0) = x (17)

T (x, 1) = ex (18)

and the source term

S(x, y) = xey. (19)

Three cases distinguised by the number of points (600,
1200, or 2400) in both the x and y directions are considered,
and the exact solution to the PDE is T = xey . A visual of
the temperature distribution on the plate both initially and
at equilibrium is presented in Figure 14, and there is no
appreciable difference in solution values when moving from a
1200x1200 discretization to a 2400x2400 discretization.

A. Mapping Physical Topology to Discretization

Denoting the x direction to be as i and the y direction
as j results in a direct mapping of the physical domain to
the row and column structure inherent in matrices. Thus, the
temperature positions on the flat plate are visualized as being
the entries in a matrix overlaying the flat plate. Additionally,
the Dirichlet boundary conditions result in the first and last
rows and columns of the resulting matrix being static.

B. Gauss-Seidel and Block Jacobi with SSOR Algorithm

Assuming a forward iteration through the mesh, the Gauss-
Seidel and symmetric successive over-relaxation (SSOR)
scheme depends on having the latest values of T available for
Ti−1,j and Ti,j−1, as seen in the second-order discretization

T k+1
i−1,j − 2T k+1

i,j + T k
i+1,j

∆x2
+

T k+1
i,j−1 − 2T k+1

i,j + T k
i,j−1

∆y2
= Sk (x, y) (20)

for Equation (12). However, this restriction is relaxed on the
subdomain boundaries by providing T k

i−1,j and T k
i,j−1 rather

than T k+1
i−1,j and T k+1

i,j−1. Thus, the parallel algorithm is termed a
Gauss-Seidel/Block Jacobi scheme, signifying that the interior
points are handled via a Gauss-Seidel scheme, and some of
the interfacial points are handled via a Jacobi scheme. In this
work, the SSOR scheme is employed with ω = 0.98, and the
solution is considered converged when the infinity norm of the
matrix is less than 10−3.

C. Use of Offload Mode on the Intel MIC Architecture

Offload mode is a very similar operation to the current
paradigm offered by GPGPUs. The serial portion of the code is
run on the CPU, and portions of the code are either explicitly
or implicitly migrated to the Intel MIC card for execution. In
this code, implicit offloading is used due to structures needed
in offload. This is accomplished by using directives such as
#pragma offload_attribute(push, _Shared)
and #pragma offload_attribute(pop) at the
beginnings and ends of sections to be offloaded. This
paradigm allows for simple conversion of hybrid MPI and

TABLE I: Speed Up for the Poisson Solver Offloaded to Intel MIC

Number of Threads Speed Up (600x600) Speed Up (1200x1200) Speed Up (2400x2400)

1 1.0000 1.0000 1.0000

15 5.3398 9.5367 14.9551

30 7.5597 14.1972 24.0569

60 8.3855 16.1706 29.9020

90 9.6261 18.6117 35.3985

120 1.2146 23.9031 45.6310

Fig. 15: Strong Scaling Plot for Three Matrix Sizes

OpenMP codes to MIC-capable codes in the same way that
OpenACC allows conversion to GPGPU-capable codes.

D. Parallel Performance Results: Strong Scaling Study on the
Intel MIC

In this work, the Poisson solver is run on one core of an
Intel Xeon 5600 processor, and the Gauss-Seidel solver loop
is offloaded to 1, 15, 30, 60, 90, and 120 threads on one
Intel KNF card. Speedup improves as the size of the matrix
being solved grows, as can be seen in Figure 15, in which the
baseline speed is that observed for each case when offloading
to only one thread. Also, the code performs well in comparison
to Amdahl’s law [17] for a serial fraction of 99%.

Table I and Figure 15 indicate that there is not enough
work in the 600x600 case to effectively use more than a small
amount the computational capability of the Intel KNF card and
that it would be necessary to grow the matrix considerably to
take full advantage of the Intel KNF in offload mode for this
problem.

VI. CONCLUSION

The Intel MIC architecture offers unique advantages that
make it an appealing choice for sustainable software devel-
opment for scientific computing. First and foremost, it offers
a standards-based programming model that maintains source
code compatibility with existing Xeon (and other x86-based)
architectures. Additionally, the MIC is expected to employ
a unified development environment (compiler, debugger, and
performance tools) that is applicable to all Intel architectures,

and the unified compiler is expected to produce binaries
that run appropriately on any Intel architecture. Aside from
providing fexibility and ease-of-use, the Intel MIC offers easily
accessible scalability across its many cores, as indicated by
the scaling results presented for the initial porting efforts of
the applications studied in this work. Based on the work pre-
sented here (and the results of other experiments planned for
future publication), it appears that codes exhibiting sufficient
medium-grain parallelism scale effectively across all of the
cores on the Intel MIC. This scaling behavior coupled with
Intel’s demonstration of a pre-release Intel Knights Corner
accelerator performing at 1 TFLOP per second at SC11 [18]
suggests that significant sustained performance is expected for
optimized codes that exhibit sufficient fine-grain and medium-
grain parallelism. For these reasons and those discussed above,
the Intel MIC is expected to be a highly productive platform
for scientific computing.

VII. ACKNOWLEDGEMENT

The authors thank Intel, the Joint Institute for Computational
Sciences of the University of Tennessee, and the National
Institute for Computational Sciences (NICS) for making this
research possible. Special thanks are extended to Rob Van der
Wijngaart of Intel for optimizing the BGK model Boltzmann
solver used in this work.

REFERENCES

[1] Z. H. Li and H. X. Zhang, “Study on gas kinetic unified algorithm for
flows from rarefied transition to continuum,” Journal of Computational
Physics, vol. 193, pp. 708–738, 2004.

[2] R. G. Brook, “A parallel, matrix-free newton method for solving
approximate boltzmann equations on unstructured topologies,” Ph.D.
dissertation, University of Tennessee at Chattanooga, 2008.

[3] H. H. Cheng, “Programming with dual numbers and its applications in
mechanisms design,” Engineering with Computers, vol. 10, no. 4, pp.
212–229, 1994.

[4] G. A. Sod, “A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws,” Journal of Computational
Physics, vol. 27, pp. 1–31, 1978.

[5] L. Mieussens, “Discrete velocity model and implicit scheme for the bgk
equation of rarefied gas dynamics,” Mathematical Models and Methods
in Applied Sciences, vol. 10, pp. 1121–1149, 2000.

[6] A. J. Chorin, “The numerical solution on the navier-stokes equations
for an incompressible fluid,” American Mathematical Society, vol. 73,
p. 928, 1967.

[7] B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition, Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cam-
bridge University Press, 1996.

[8] M. Garbey and D. T. Dervout, “On some aitken like acceleration of
the schwarz method,” International Journal for Numerical Methods in
Fluids, vol. 40, pp. 1493–1513, 2002.

[9] M. Garbey, “Acceleration of the schwarz method for elliptic problems,”
Journal on Scientific Computing, vol. 26, no. 6, pp. 1871–1893, 2005.

[10] B. Hadri, “Efficient parallel computation to simulate blood flow,” Ph.D.
dissertation, University of Houston, 2008.

[11] B. Hadri and M. Garbey, “A fast navier-stokes flow simulation tool for
image based cfd,” Journal of Algorithms and Computational Technology,
vol. 2, no. 24, pp. 527–556, 2008.

[12] P. Angot, C. Bruneau, and P. Fabrie, “A penalisation method to take into
account obstacles in viscous flows,” Numerische Mathematik, vol. 81,
pp. 497–520, 1999.

[13] E. Arquis and J. Caltagirone, “Sur les conditions hydrodynamiques au
voisinage d’une interface milieu fluide-milieux poreux: Application a la
convection naturelle,” CRAS, Paris II, vol. 299, pp. 1–4, 1984.

[14] T. Chan and L. Vese, “Active contours without edges,” IEEE Transaction
on Image Processing, vol. 10, no. 2, pp. 266–277, 2001.

[15] C. S. Peskin, “The immersed boundary method,” Acta Numerica, pp.
1–39, 2002.

[16] “Visit visualization software,” ”http://www.llnl.gov/visit”.
[17] G. Amdahl, “Validity of the single processor approach to achieving

large-scale computing capabilities,” in AFIPS Conference Proceedings,
vol. 30, 1967, pp. 483–485.

[18] P. Darling, “First intel many integrated core co-processor demonstrated
to deliver performance above 1 tflops,” http://newsroom.intel.com/
community/intel newsroom/blog/2011/11/15/intel-reveals-details-of-
next-generation-high-performance-computing-platforms, November
2011, accessed April 30, 2012.

