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Application Acceleration 
Center of Excellence (AACE) 
Joint Institute for Computational Sciences 
University of Tennessee & ORNL 

•  Established early in 2011 to investigate the application 
of future computing technologies to simulation in 
science and engineering  

•  An essential element of a sustainable software 
infrastructure for scientific computing 

•  Director: Glenn Brook 

  Managed by UT-Battelle  
for the U.S. Dept. of Energy  



AACE — Mission 
• To prepare the national supercomputing 

community to effectively and efficiently utilize 
future supercomputing architectures  
– To optimize applications for current and future 

compute systems  
– To develop expertise in the expression and 

exploitation of fine-grain and medium-grain 
parallelism 

– To conduct research and education programs focused 
on developing and transferring knowledge related to 
emerging computing technologies 

– To provide expert feedback to HPC vendors to guide 
the development of future supercomputing 
architectures and programming models 



NICS-Intel Strategic Engagement 

• Multi-year agreement with Intel to jointly pursue:  
– Development of next-generation, HPC solutions based 

on the Intel Many Integrated Core (MIC) architecture 
– Design of scientific applications emphasizing a 

sustainable approach for both performance and 
productivity 

• NICS receives early access to Intel technologies 
and provides application testing, performance 
results, and expert feedback  
– Help guide further development efforts by Intel 
– Help prepare the scientific community to use future 

HPC technologies immediately upon their deployment 
– Co-design for Scientific Computing 



Hardware Resources 

• Rook — Intel MIC “Knights Ferry” SDP 
– Workstation – 2 Westmere CPUs & 2 KNFs 

• Bishop — Cray CX1 cluster  
– 1 Head node – 2 Westmere CPUs 
– 2 Compute nodes –  2 Westmere CPUs & 1 KNF 

• Beacon – Appro cluster 
– 2 Service nodes – 2 Sandybridge CPUs 
– 16 Compute nodes – 2 Sandybridge CPUs & 2 KNFs 



Summary of Accomplishments   
• Migration of important libraries to the Intel MIC 

– mpich 1.2.7p1 
– HDF5 1.8.5 
– HYPRE 2.6.0b (with BLAS and LAPACK) 

• Ported millions of lines of code to the Intel MIC 
architecture in weeks 
– Full applications from a variety of scientific and 

engineering disciplines — MPI and/or OpenMP  

• Implemented MIC-to-MIC communications both 
on node and off node 
– Demonstrated MPI and Hybrid-MPI/OpenMP 

communications within a single MIC, between two 
MICs on a node, and across multiple MICs on multiple 
nodes 

 



Future Plans 

• Partner with NSF research teams to port and 
optimize key NSF research codes 

• Offer training to the scientific computing 
community on the Intel MIC architecture 
following its commercial debut 

• Publish accumulated knowledge in scientific 
papers, conference presentations, engineering 
reports, and training materials 

• Expand student exposure to next-generation 
Intel technologies through internships at NICS 
and on-going participation in AACE activities 
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Intel Knights Ferry Technical 
Specifications 

Core Count Up to 32 cores 

Core Speed Up to 1.2 GHz 

IO Bus PCIe Gen2 x16 

Memory Type GDDR5 

Memory Size 1 or 2 Gigabytes 

Peak Flops (Single 
Precision/ Double 
Precision) 

1229/153 
GFLOPS 

Operating System 
on Card 

Linux-based 

Networking 
Capability 

IP-Addressable 

Image Source: Kirk Skaugen, ISC 2010 keynote 

Intel Knights Ferry (Intel KNF) 
is the software development 
platform (SDP) for the Intel 
Many Integrated Core (Intel 
MIC) architecture. 
 



Intel MIC Architecture:  
An Intel Co-Processor Architecture 

• Many cores, and many, many more threads 
• Standard IA programming and memory model 
• Standard networking protocols 
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Bishop — Cray CX1 
•  1st Intel MIC cluster at NICS 
•  Interactive Intel MIC demo in the ORNL booth at SC11 

Vendor Cray 

Configuration 7u modular enclosure 

Nodes 1 head, 2 compute 

CPU model Intel Xeon 5670 — “Westmere” 

CPUs per node 2 

Cores per CPU 6 

CPU core speed 2.93 GHz 

RAM per node 24 GB 

Intel KNFs per 
compute node 

1 

Cores per Intel KNF 32 

Intel KNF core speed 1.2 GHz 

RAM per Intel KNF 2 GB 



Network Address Translation and 
Intel Knights Ferry Alpha SW 

Bishop0 

Bishop1 

Ethernet 

192.168.0.2 

192.168.0.3 

KNF0 

KNF0 

192.168.1.100 

192.168.1.99 

192.168.1.100 

192.168.1.99 

Default route to 
192.168.1.99 

Default route to 
192.168.1.99 

NAT: 192.168.1.100 to 192.168.0.10 

NAT: 192.168.1.100 to 192.168.0.11 

Running MPI applications in native 
mode across multiple Intel KNF cards 
requires a method of communication 
between the cards in the different 
compute nodes. 
 setting up TCP/IP communications 
between the cards. 
 
Network Address Translation (NAT) is 
used to make it appear that the Intel 
KNF cards are on the same Ethernet 
network as their host nodes. 
 

Each Intel KNF card requires the following three NAT rules: 
1) -A PREROUTING -d [virtual address for KNF/mask] –j DNAT –to-destination 192.168.1.100 
2) -A POSTROUTING -s 192.168.1.100/32 -j SNAT –to source [virtual address for MIC] 
3) -A OUTPUT -d [virtual address for MIC/mask] -j DNAT–to-destination 192.168.1.100 
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Comparison of the CFD solvers 

•  Two separate computational fluid dynamics (CFD) solvers 
are developed to showcase the capability of the Intel® MIC  

•  The first solver is based on the Euler equations 
•  The second solver is based on the Boltzmann equation 
•  Both solvers are developed using a Newton based 

iterative algorithm to converge the solutions 
•  Data parallelism on the Intel® MIC is achieved through the 

use of OpenMP threads. 
Euler Solver Boltzmann Solver 

Number of equations per 
physical grid point 

5 Hundreds of thousands 

Target applications Inviscid fluid flow Rarefied gas flow 
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BGK Model Boltzmann Equation 
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Numerical Algorithm 
Given&a&nonlinear&set&of&equations,&! ! = 0,&&
Application&of&Newton’s&method&results&in&

!! = !!!! − ! !!!! !!! !!!! &
where&!&is&the&Newton&iteration&and&!&is&the&jacobian&as&defined&below&

!!" = !!!
!!!
&:&1 < !, ! < !&

Rearranging&terms&leads&to&
!Δ!! = −!&

where&Δ!! = !! − !!!!&
Using&the&Jacobi&method&to&solve&the&
linearized&system&of&equations&gives&

Δ!! !
! = 1

!!! −!! − !!" Δ!! !
!!!

!!!
&

where&!&is&the&current&Jacobi&iteration&
&

More details can be found in the dissertation of Glenn Brook (glenn-brook@tennessee.edu) 
Brook, R. Glenn, “A Parallel, Matrix-Free Newton Method for Solving Approximate Boltzmann Equations on 
Unstructured Topologies,” PhD Dissertation, University of Tennessee at Chattanooga, December 2008. 
 



Implicit Jacobian Calulations 
The$Jacobi$iterative$update$equation$can$be$
cast$into$a$delta$formulation$as$shown$below$

Δ!! !
! − Δ!! !

!!! = 1
!!! −!! − !!" Δ!! !

!!!

!!!
− !!! Δ!! !

!!! $

Δ Δ!! !
! = 1

!!! −!! − ! Δ!! !!! $
The$jacobian$does$not$need$to$be$
explicitly$calculated$and$stored$

It$can$be$calculated$implicitly$through$
the$use$of$dual$numbers$and$Taylor$
series$expansions$in$the$dual$space.$

!! Δ!! !!! ≈ 1
ℎDual !! !
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!! ≈ Real !! !!!! + !ℎ Δ!! !!! $
!!! ≈

1
ℎDual !! !
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$

where$!! ≡ 0,$ℎ ∈ ℝ$is$an$arbitrary$perturbation$
and$!! $is$!th$vector$in$the$standard$basis$for$ℝ! .$



Test Problems Run on the Intel® MIC 

Unsteady flow problem using 
the Euler equations 

Sod Shock 
Initial conditions: 

ρ =1.0
u = 0.0
P =1.0

ρ = 0.125
u = 0.0
P = 0.1

•  The Sod shock was run with 
the Euler solver 

•  This problem showcases the 
solver’s ability to capture 
discontinuities 



Euler Solver Solution 



Test Problems Run on the Intel® MIC 

Steady state flow problem using the 
BGK model Boltzmann equation 

Couette Flow 

ρ0 = 9.28×10
−8kg/m3

ux0 = 0.0m/s
uy0 = 0.0m/s
T0 = 273.0K
Kn =1.199

uwall = 300m/suwall = 0m/s

Twall = 273.0KTwall = 273.0K

•  A Couette flow was run 
using the BGK model 
Boltzmann solver 

•  This problem showcases 
the solver’s ability to 
handle solid surfaces and 
moving boundaries 

This particular test problem used 27 grid 
cells in physical space and 36x36x36 grid 
points in velocity space  



BGK Model Boltzmann Solver Solution 



Intel® MIC Performance 



Intel® MIC Performance 

Note: Optimizations were provided by Intel senior software engineer Rob Van der Wjingaart 
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Methodology 
       Fact : The most consuming part of a code is in general the 
resolution of linear systems.     
 
       Focus: Fast elliptic solver For Incompressible Navier-Stokes Flow 
code 
 
        context:  - Finite Volume 

                 - mesh topologically equivalent to Cartesian mesh,   
            - distributed computing with high latency network. 

 
        Method : - L2 penalty method for a fast prototyping to the NS flow  

  - Level set method  
  - efficient subdomain solver 
               - Aikten Schwarz is a domain decomposition technique 

designed  for distributed computing with slow network. 



Navier Stokes Formulation 

Incompressible  NS flow in large Vessels 
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 Ωw : solid wall 
 
Ø L2 Penalty method  η <<1. ref( Caltagirone 84, Bruneau et al 99, Schneider et al 
2005). 
 
 Λ is a mask function provided by by a level set method used in the image 
segmentation of the blood vessel 
 



Navier Stokes Numerical Approximation 
Time Step : Projection Method (Chorin) 

Step 1: Prediction of the velocity ûk+1 by solving explicitely 
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 Focus: : design of the optimum solver 

Step 2:  Projection of the predicted velocity to the space of divergence free 
functions  
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Additive Schwarz 
• Additive Schwarz method  : 
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Additive Schwarz 
algorithm  : 

1/  Solve in each domain 

2/ Update the solution in 
the interface 

3/ Repeat until 
convergence  

•  If the approximation of the operator  follows the  maximum principal, 
then Additive Schwarz is converging and is a robust solver, however the 
convergence is slow ! 

•   Aikten like Acceleration method allows to accelerate this convergence.  
Ref (Garbey-Tromeur Dervout 2002) 



Aitken Schwarz Algorithm 
M. Garbey and D. Tromeur Dervout: "On some Aitken like acceleration of the Schwarz Method,“ International 
Journal for Numerical Methods in Fluids. Vol. 40(12),pp 1493-1513, 2002. 
 
Aitken Schwarz is a domain decomposition method using the framework of 
Additive Schwarz and based on an approximate reconstruction of the 
dominant eigenvectors of the trace transfer operator. 
 
Thanks to the IBM(Immersed Boundary Method), regular Cartesian grid can 
be used. 
àWe get a direct solver since the eigenvectors are known analytically. 
 

Algorithm : 
Step1:   

 -apply additive Schwarz with a subdomain solver 
 
Step 2:   

- compute the sine (or cosine) expansion of the traces on the artificial interface for the 
initial boundary condition u0

Γ and the solution given by on Schwarz iterative u1
Γ 

 - apply generalized Aitken acceleration to get u∞Γ 
 - recompose the trace in physical space 

 
Step 3 :  

 -Compute in parallel the solution in each subdomain, with the new inner BCs u∞Γ. 
 
 
 



NS Benchmark 2D 



NS 3D 
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Case information 

• Heat transfer over a flat plate to a cool boundary 
• Uses Poisson’s Equation (          ) 
• Source term is  
• Size:                  ,   
• Three structured meshes  

– 600x600, 1200x1200, 2400x2400 

• Symmetric Gauss-Seidel with SSOR* 
• Decomposed to 1, 15, 30, 60, 90, 120 threads 

offloaded from one processor 
*In non-blocking parallel mode, there are some Jacobi iterations 

∇2Φ = f

xey

x : 0→ 2 y : 0→ 1



Results 
Initial and Final plots of Temperature Contours (using VisIt) in °C 



Offload Mode Implementation 

• Offload mode is a very similar operation to 
the current paradigm offered by GPGPUs.   

• The serial portion of the code is run on the 
CPU, and portions of the code are either 
explicitly or implicitly (we use implicit) 
offloaded to the MIC card. 

• #pragma offload_attribute( push, _Shared) 
• #pragma offload_attribute(pop) 



Speedup 



Discussion and Conclusions 
• Larger matrices see better speed up 

• Offload time amortized into benefit of multiple 
threads 

• Eventually, will use mixed offload and native 
mode to map to Intel MIC topology 
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Conclusions and Future Work 
•  The Intel MIC architecture offers unique advantages that make it an 

appealing choice for sustainable software development for scientific 
computing: 

–  Offers a standards-based programming model that maintains source code 
compatibility with existing Xeon (and other x86-based) architectures.  

–  MIC is expected to employ a unified development environment (compiler, 
debugger, and performance tools) that is applicable to all Intel architectures, and 
the unified compiler is expected to produce binaries that run appropriately on any 
Intel architecture.  

•  Intel MIC offers easily accessible scalability across its many cores, 
as indicated by the scaling results presented for the initial porting 
efforts of the applications studied in this work. 

•   Codes exhibiting sufficient medium-grain parallelism scale 
effectively across all of the cores on the Intel MIC.  

•  Significant sustained performance is expected for optimized codes 
on Knight Corner.  

 Intel MIC is expected to be a highly productive platform for 
scientific computing 



Contact 
R. Glenn Brook, Ph.D.   
Director, Application Acceleration Center of Excellence 
Joint Institute for Computational Sciences 
University of Tennessee / Oak Ridge National Laboratory 
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