
R. Glenn Brook, Bilel Hadri*, Vincent C. Betro,
Ryan C. Hulguin, and Ryan Braby

Cray Users Group 2012
Stuttgart, Germany – April 29 – May 3, 2012

* presenting author

Contents

• Overview on AACE

• Overview on MIC and its Configuration on the Cray CX1

• Applications code, description, porting and results

• Euler solver and Boltzmann-BGK solver,

• Navier-Stokes solver (2D and 3D)

• Poisson solver for simulating Flat Plate Heat Transfer

• Conclusions and Future Work

Contents

• Overview on AACE

• Overview on MIC and its Configuration on the Cray CX1

• Applications code, description, porting and results

• Euler solver and Boltzmann-BGK solver,

• Navier-Stokes solver (2D and 3D)

• Poisson solver for simulating Flat Plate Heat Transfer

• Conclusions and Future Work

Application Acceleration
Center of Excellence (AACE)
Joint Institute for Computational Sciences
University of Tennessee & ORNL

•  Established early in 2011 to investigate the application
of future computing technologies to simulation in
science and engineering

•  An essential element of a sustainable software
infrastructure for scientific computing

•  Director: Glenn Brook

 Managed by UT-Battelle
for the U.S. Dept. of Energy

AACE — Mission
• To prepare the national supercomputing

community to effectively and efficiently utilize
future supercomputing architectures
– To optimize applications for current and future

compute systems
– To develop expertise in the expression and

exploitation of fine-grain and medium-grain
parallelism

– To conduct research and education programs focused
on developing and transferring knowledge related to
emerging computing technologies

– To provide expert feedback to HPC vendors to guide
the development of future supercomputing
architectures and programming models

NICS-Intel Strategic Engagement

• Multi-year agreement with Intel to jointly pursue:
– Development of next-generation, HPC solutions based

on the Intel Many Integrated Core (MIC) architecture
– Design of scientific applications emphasizing a

sustainable approach for both performance and
productivity

• NICS receives early access to Intel technologies
and provides application testing, performance
results, and expert feedback
– Help guide further development efforts by Intel
– Help prepare the scientific community to use future

HPC technologies immediately upon their deployment
– Co-design for Scientific Computing

Hardware Resources

• Rook — Intel MIC “Knights Ferry” SDP
– Workstation – 2 Westmere CPUs & 2 KNFs

• Bishop — Cray CX1 cluster
– 1 Head node – 2 Westmere CPUs
– 2 Compute nodes – 2 Westmere CPUs & 1 KNF

• Beacon – Appro cluster
– 2 Service nodes – 2 Sandybridge CPUs
– 16 Compute nodes – 2 Sandybridge CPUs & 2 KNFs

Summary of Accomplishments
• Migration of important libraries to the Intel MIC

– mpich 1.2.7p1
– HDF5 1.8.5
– HYPRE 2.6.0b (with BLAS and LAPACK)

• Ported millions of lines of code to the Intel MIC
architecture in weeks
– Full applications from a variety of scientific and

engineering disciplines — MPI and/or OpenMP

• Implemented MIC-to-MIC communications both
on node and off node
– Demonstrated MPI and Hybrid-MPI/OpenMP

communications within a single MIC, between two
MICs on a node, and across multiple MICs on multiple
nodes

Future Plans

• Partner with NSF research teams to port and
optimize key NSF research codes

• Offer training to the scientific computing
community on the Intel MIC architecture
following its commercial debut

• Publish accumulated knowledge in scientific
papers, conference presentations, engineering
reports, and training materials

• Expand student exposure to next-generation
Intel technologies through internships at NICS
and on-going participation in AACE activities

Contents

• Overview on AACE

• Overview on MIC and its Configuration on the Cray CX1

• Applications code, description, porting and results

• Euler solver and Boltzmann-BGK solver,

• Navier-Stokes solver (2D and 3D)

• Poisson solver for simulating Flat Plate Heat Transfer

• Conclusions and Future Work

Intel Knights Ferry Technical
Specifications

Core Count Up to 32 cores

Core Speed Up to 1.2 GHz

IO Bus PCIe Gen2 x16

Memory Type GDDR5

Memory Size 1 or 2 Gigabytes

Peak Flops (Single
Precision/ Double
Precision)

1229/153
GFLOPS

Operating System
on Card

Linux-based

Networking
Capability

IP-Addressable

Image Source: Kirk Skaugen, ISC 2010 keynote

Intel Knights Ferry (Intel KNF)
is the software development
platform (SDP) for the Intel
Many Integrated Core (Intel
MIC) architecture.

Intel MIC Architecture:
An Intel Co-Processor Architecture

• Many cores, and many, many more threads
• Standard IA programming and memory model
• Standard networking protocols

VECTOR
IA CORE

INTERPROCESSOR NETWORK

INTERPROCESSOR NETWORK

FI
X

E
D

 F
U

N
C

TI
O

N
 L

O
G

IC

M
E

M
O

R
Y

an
d

I/O
 IN

TE
R

FA
C

E
S

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

COHERENT
CACHE

…

…
…

…

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

Source: Kirk Skaugen, ISC 2010 keynote

Bishop — Cray CX1
•  1st Intel MIC cluster at NICS
•  Interactive Intel MIC demo in the ORNL booth at SC11

Vendor Cray

Configuration 7u modular enclosure

Nodes 1 head, 2 compute

CPU model Intel Xeon 5670 — “Westmere”

CPUs per node 2

Cores per CPU 6

CPU core speed 2.93 GHz

RAM per node 24 GB

Intel KNFs per
compute node

1

Cores per Intel KNF 32

Intel KNF core speed 1.2 GHz

RAM per Intel KNF 2 GB

Network Address Translation and
Intel Knights Ferry Alpha SW

Bishop0

Bishop1

Ethernet

192.168.0.2

192.168.0.3

KNF0

KNF0

192.168.1.100

192.168.1.99

192.168.1.100

192.168.1.99

Default route to
192.168.1.99

Default route to
192.168.1.99

NAT: 192.168.1.100 to 192.168.0.10

NAT: 192.168.1.100 to 192.168.0.11

Running MPI applications in native
mode across multiple Intel KNF cards
requires a method of communication
between the cards in the different
compute nodes.
 setting up TCP/IP communications
between the cards.

Network Address Translation (NAT) is
used to make it appear that the Intel
KNF cards are on the same Ethernet
network as their host nodes.

Each Intel KNF card requires the following three NAT rules:
1) -A PREROUTING -d [virtual address for KNF/mask] –j DNAT –to-destination 192.168.1.100
2) -A POSTROUTING -s 192.168.1.100/32 -j SNAT –to source [virtual address for MIC]
3) -A OUTPUT -d [virtual address for MIC/mask] -j DNAT–to-destination 192.168.1.100

Contents

• Overview on AACE

• Overview on MIC and its Configuration on the Cray CX1

• Applications code, description, porting and results

• Euler solver and Boltzmann-BGK solver,

• Navier-Stokes solver (2D and 3D)

• Poisson solver for simulating Flat Plate Heat Transfer

• Conclusions and Future Work

Ryan Hulguin

Comparison of the CFD solvers

•  Two separate computational fluid dynamics (CFD) solvers
are developed to showcase the capability of the Intel® MIC

•  The first solver is based on the Euler equations
•  The second solver is based on the Boltzmann equation
•  Both solvers are developed using a Newton based

iterative algorithm to converge the solutions
•  Data parallelism on the Intel® MIC is achieved through the

use of OpenMP threads.
Euler Solver Boltzmann Solver

Number of equations per
physical grid point

5 Hundreds of thousands

Target applications Inviscid fluid flow Rarefied gas flow

!!
!" +

!!
!" +

!!
!" +

!!
!" = 0!

! = !,!",!",!",! ! !
! = !",!!! + !,!"#,!"#, ! + ! ! ! !
! = !",!"#,!!! + !,!"#, ! + ! ! ! !
! = !",!"#,!"#,!!! + !, ! + ! ! ! !

!
!!is!the!density!

!! = !, !,! !are!the!velocities!
!!is!the!pressure!

!!is!the!total!energy!per!unit!volume!

Euler Equations

BGK Model Boltzmann Equation
!!!
!" + !! ⋅

!!!
!! = ! ⋅ !!!" − !! !

!!" = !
!" ! ! − !! − !

!

! !

! = 8!! !!!

5 !Kn !
!

!! !is!the!probability!distribution!function!at!discrete!velocity!!!
!! = !!! ,!!! ,!!! !are!the!discrete!molecular!velocities!

! = !, !,! !are!the!bulk!(average)!velocities!
!!is!the!number!density!
!!is!the!temperature!

!!is!the!gas!viscosity!index!
Kn!is!the!Knudsen!number!which!characterizes!the!flow!

Kn!is!the!ratio!between!
the!mean!free!path!!! !and!the!characteristic!length!!!

Numerical Algorithm
Given&a&nonlinear&set&of&equations,&! ! = 0,&&
Application&of&Newton’s&method&results&in&

!! = !!!! − ! !!!! !!! !!!! &
where&!&is&the&Newton&iteration&and&!&is&the&jacobian&as&defined&below&

!!" = !!!
!!!
&:&1 < !, ! < !&

Rearranging&terms&leads&to&
!Δ!! = −!&

where&Δ!! = !! − !!!!&
Using&the&Jacobi&method&to&solve&the&
linearized&system&of&equations&gives&

Δ!! !
! = 1

!!! −!! − !!" Δ!! !
!!!

!!!
&

where&!&is&the¤t&Jacobi&iteration&
&

More details can be found in the dissertation of Glenn Brook (glenn-brook@tennessee.edu)
Brook, R. Glenn, “A Parallel, Matrix-Free Newton Method for Solving Approximate Boltzmann Equations on
Unstructured Topologies,” PhD Dissertation, University of Tennessee at Chattanooga, December 2008.

Implicit Jacobian Calulations
The$Jacobi$iterative$update$equationcanbe$
cast$into$a$delta$formulationasshown$below$

Δ!! !
! − Δ!! !

!!! = 1
!!! −!! − !!" Δ!! !

!!!

!!!
− !!! Δ!! !

!!! $

Δ Δ!! !
! = 1

!!! −!! − ! Δ!! !!! $
The$jacobian$doesnotneedtobe$
explicitly$calculated$and$stored$

Itcanbe$calculated$implicitly$through$
theuseof$dual$numbersandTaylor$
series$expansions$inthedual$space.$

!! Δ!! !!! ≈ 1
ℎDual !! !

!!! + !ℎ Δ!! !!! $
!! ≈ Real !! !!!! + !ℎ Δ!! !!! $
!!! ≈

1
ℎDual !! !

!!! + !ℎ!! $
$

where$!! ≡ 0,$ℎ ∈ ℝisan$arbitrary$perturbation$
and$!! is!th$vector$inthestandard$basisforℝ! .$

Test Problems Run on the Intel® MIC

Unsteady flow problem using
the Euler equations

Sod Shock
Initial conditions:

ρ =1.0
u = 0.0
P =1.0

ρ = 0.125
u = 0.0
P = 0.1

•  The Sod shock was run with
the Euler solver

•  This problem showcases the
solver’s ability to capture
discontinuities

Euler Solver Solution

Test Problems Run on the Intel® MIC

Steady state flow problem using the
BGK model Boltzmann equation

Couette Flow

ρ0 = 9.28×10
−8kg/m3

ux0 = 0.0m/s
uy0 = 0.0m/s
T0 = 273.0K
Kn =1.199

uwall = 300m/suwall = 0m/s

Twall = 273.0KTwall = 273.0K

•  A Couette flow was run
using the BGK model
Boltzmann solver

•  This problem showcases
the solver’s ability to
handle solid surfaces and
moving boundaries

This particular test problem used 27 grid
cells in physical space and 36x36x36 grid
points in velocity space

BGK Model Boltzmann Solver Solution

Intel® MIC Performance

Intel® MIC Performance

Note: Optimizations were provided by Intel senior software engineer Rob Van der Wjingaart

Bilel Hadri

Methodology
  Fact : The most consuming part of a code is in general the
resolution of linear systems.

  Focus: Fast elliptic solver For Incompressible Navier-Stokes Flow
code

  context: - Finite Volume

 - mesh topologically equivalent to Cartesian mesh,
 - distributed computing with high latency network.

  Method : - L2 penalty method for a fast prototyping to the NS flow

 - Level set method
 - efficient subdomain solver
 - Aikten Schwarz is a domain decomposition technique

designed for distributed computing with slow network.

Navier Stokes Formulation

Incompressible NS flow in large Vessels

() () ()

0

1

=

−Λ
η

−=∇⋅∇ν−∇+∇⋅+∂
ωΩ

)U(div

)t(UUUpUUU wt

 Ωw : solid wall

Ø L2 Penalty method η <<1. ref(Caltagirone 84, Bruneau et al 99, Schneider et al
2005).

 Λ is a mask function provided by by a level set method used in the image
segmentation of the blood vessel

Navier Stokes Numerical Approximation
Time Step : Projection Method (Chorin)

Step 1: Prediction of the velocity ûk+1 by solving explicitely

Ω∂=

Ω∇−=Δ−
Δ

−

+

+
+

on ˆ
conditionsBoundary

in
ˆ

1

1
,*1

gu

pfu
t
uu

k

kkk
kk

ν

ppp
ptuu

)û(div
t

pdiv

kk

kk

k

δ+=

δ∇Δ−=
Δ

−=δ∇−

+

++

+

1

11

11

Momentum equation

Pressure equation

 Focus: : design of the optimum solver

Step 2: Projection of the predicted velocity to the space of divergence free
functions

2RHSP =Δ

1 RHScUUt =−ΔΔ− ν

89.9%

Additive Schwarz
• Additive Schwarz method :

 in f]u[L n
1

1
1 Ω=+

 in f]u[L n
2

1
2 Ω=+

 in f]u[L Ω=

Ω

Ω1 Ω2

 Γ1 Γ 2

n
 |

n
 | uu

11 2
1

1 Γ
+
Γ =

n
 |

n
 | uu

22 1
1

2 Γ
+
Γ =

Additive Schwarz
algorithm :

1/ Solve in each domain

2/ Update the solution in
the interface

3/ Repeat until
convergence

•  If the approximation of the operator follows the maximum principal,
then Additive Schwarz is converging and is a robust solver, however the
convergence is slow !

•  Aikten like Acceleration method allows to accelerate this convergence.
Ref (Garbey-Tromeur Dervout 2002)

Aitken Schwarz Algorithm
M. Garbey and D. Tromeur Dervout: "On some Aitken like acceleration of the Schwarz Method,“ International
Journal for Numerical Methods in Fluids. Vol. 40(12),pp 1493-1513, 2002.

Aitken Schwarz is a domain decomposition method using the framework of
Additive Schwarz and based on an approximate reconstruction of the
dominant eigenvectors of the trace transfer operator.

Thanks to the IBM(Immersed Boundary Method), regular Cartesian grid can
be used.
àWe get a direct solver since the eigenvectors are known analytically.

Algorithm :
Step1:

 -apply additive Schwarz with a subdomain solver

Step 2:

- compute the sine (or cosine) expansion of the traces on the artificial interface for the
initial boundary condition u0

Γ and the solution given by on Schwarz iterative u1
Γ

 - apply generalized Aitken acceleration to get u∞Γ
 - recompose the trace in physical space

Step 3 :

 -Compute in parallel the solution in each subdomain, with the new inner BCs u∞Γ.

NS Benchmark 2D

NS 3D

Vincent C. Betro, Ph.D.

Case information

• Heat transfer over a flat plate to a cool boundary
• Uses Poisson’s Equation ()
• Source term is
• Size: ,
• Three structured meshes

– 600x600, 1200x1200, 2400x2400

• Symmetric Gauss-Seidel with SSOR*
• Decomposed to 1, 15, 30, 60, 90, 120 threads

offloaded from one processor
*In non-blocking parallel mode, there are some Jacobi iterations

∇2Φ = f

xey

x : 0→ 2 y : 0→ 1

Results
Initial and Final plots of Temperature Contours (using VisIt) in °C

Offload Mode Implementation

• Offload mode is a very similar operation to
the current paradigm offered by GPGPUs.

• The serial portion of the code is run on the
CPU, and portions of the code are either
explicitly or implicitly (we use implicit)
offloaded to the MIC card.

• #pragma offload_attribute(push, _Shared)
• #pragma offload_attribute(pop)

Speedup

Discussion and Conclusions
• Larger matrices see better speed up

• Offload time amortized into benefit of multiple
threads

• Eventually, will use mixed offload and native
mode to map to Intel MIC topology

Contents

• Overview on AACE

• Overview on MIC and its Configuration on the Cray CX1

• Applications code, description, porting and results

• Euler solver and Boltzmann-BGK solver,

• Navier-Stokes solver (2D and 3D)

• Poisson solver for simulating Flat Plate Heat Transfer

• Conclusions and Future Work

Conclusions and Future Work
•  The Intel MIC architecture offers unique advantages that make it an

appealing choice for sustainable software development for scientific
computing:

–  Offers a standards-based programming model that maintains source code
compatibility with existing Xeon (and other x86-based) architectures.

–  MIC is expected to employ a unified development environment (compiler,
debugger, and performance tools) that is applicable to all Intel architectures, and
the unified compiler is expected to produce binaries that run appropriately on any
Intel architecture.

•  Intel MIC offers easily accessible scalability across its many cores,
as indicated by the scaling results presented for the initial porting
efforts of the applications studied in this work.

•  Codes exhibiting sufficient medium-grain parallelism scale
effectively across all of the cores on the Intel MIC.

•  Significant sustained performance is expected for optimized codes
on Knight Corner.

 Intel MIC is expected to be a highly productive platform for
scientific computing

Contact
R. Glenn Brook, Ph.D.
Director, Application Acceleration Center of Excellence
Joint Institute for Computational Sciences
University of Tennessee / Oak Ridge National Laboratory
glenn-brook@tennessee.edu

THANKS !

