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Abstract—Two-sided communication, with its linked send
and receive message construction has been the dominant
communication pattern of the MPI era. With the rise of
multi-core processors and the consequent dramatic increase
in the number of computing cores in a supercomputer this
dominance may be at an end. One-sided communication is
often cited as part of the programming paradigm which
would alleviate the punitive synchronisation costs of two-sided
communication for an exascale machine. This paper compares
the performance of one-sided communication in the form of
put and get operations for MPI, UPC and Cray SHMEM on
a Cray XE6, using the Cray C compiler. This machine has
support for Remote Memory Access (RMA) in hardware, and
the Cray C compiler supports UPC, as well as environment
support for SHMEM. A distributed hash table application is
used to test the performance of the different approaches, as
this requires one-sided communication.

I. I NTRODUCTION

MPI has been the standard communication library used
in High Performance Computing (HPC) for the past fif-
teen or so years. Two-sided, point-to-point communication,
where the sending MPI task and receiving MPI task both
call the MPI library, is widely used in applications. More
recently, an alternative point-to-point communication model,
namely one-sided communication has been implemented
in Partitioned Global Address Space (PGAS) languages
and libraries. In one-sided communication, one process
accesses the remote memory of another process directly
without interrupting the progress of the second process.
Using this programming model could reduce the punitive
synchronisation costs of a machine with230 processes or
threads, compared to two-sided communication. There are
now several PGAS languages or libraries which implement
one-sided communications. Indeed, since the MPI 2 standard
was released, MPI implementations also have one-sided
communication in the form of put and get library calls. In
this work the performance of one-sided MPI is compared
with one-sided UPC and Cray SHMEM. MPI, UPC and
SHMEM have differences in the way the memory accessible
by RMA operations is arranged and the locking mechanisms
used to prevent race conditions on particular data entries.
These differences have performance implications and they
are explored in detail.

Rather than a synthetic benchmark, an application bench-
mark is used to measure the performance. This application

arose from the HPCGAP project1. The aim of this project is
to produce a parallel version of the symbolic algebra soft-
ware system, Groups, Algebra and Programming (GAP) [1].
The GAP software system is an interpreted software for sym-
bolic algebra computations. It is written in C, which restricts
the choice of PGAS models which could be deployed, ruling
out for example, Co-Array FORTRAN. The GAP software
system comprises of a kernel, which runs a cycle, creates and
destroys objects and manages the memory. The HPCGAP
project is implementing a parallel version of GAP for tightly
coupled HPC machines. A complimentary project, called
SymGridPar2 [2], is also implementing parallel symbolic
algebra calculations by linking parallel Haskell [3] with
many individual instances of GAP. In contrast to HPCGAP,
this software targets loosely coupled architectures of grids
or clouds.

As implied by its name, Group theory calculations are
one of the targets for HPCGAP. A particular problem, called
the orbit problem [4], is of interest to the symbolic algebra
community. The problem is the calculation of the orbit of a
setm acting on a groupg. This calculation corresponds to a
graph traversal problem, where at each vertex of the graph
some computation of properties of the vertex is required,
including the determination of which other vertices the
vertex is connected. Keeping track of whether a vertex has
been visited before is done by employing a hash table.
Current orbit calculations are limited to certain size of group
by the amount of memory available in serial. A parallel
implementation of the algorithm would allow much larger
orbits, corresponding to graphs with billions of vertices,
to be computed. The characteristics of the distributed hash
table, such as what fraction total memory does the table
consume and how often are entries accessed would depend
on both the group and the set acting upon it. Current serial
implementations are unable to perform such calculations.
A parallel implementation would enable a completely new
class of problems to be solved, rather than improving the per-
formance on current problems. A distributed implementation
exists for a loosely coupled cluster, using multiple instances
of different programs over UNIX sockets and exploiting task
rather than data parallelism and is reported in [5]. However,
for a HPC implementation on supercomputers a different

1see http://www-circa.mcs.st-and.ac.uk/hpcgap.php



approach is merited.
A distributed hash table application is used to test the

performance of the different approaches. This application
requires the use of RMA, as a node determining the hash of
a particular data object will know the position in the table
to enter object, and thus be able to determine which remote
node holds that entry. This would be problematic for a send
and receive model as the sender would know the identity
of the receiver, but notvice versa. Moreover, the receiver
would not know when it should be expecting to receive the
data. This problem does not arise with RMA operations of
the put and get type.

Comparing the performance of one-sided MPI and UPC
on a Cray XE6 was reported in [6]. This machine, called
HECToR2, is the UK national High Performance Computing
Service. The compute nodes have subsequently been up-
graded from two AMD 12-core processors (Magny-Cours) to
two AMD 16-core processors (Interlagos). The benchmarks
have been repeated and extended for one-sided MPI and
UPC and these new results are compared to those for
SHMEM.

II. I MPLEMENTATION OF A DISTRIBUTED HASH TABLE

A simple hash table C code was used as a demonstrator.
This C code creates integer typed objects from some random
element, computes the hash of the object using a suitable
hash function, and inserts a pointer to the object into the hash
table. If a pointer to a different object is already resident,
the collision counter is incremented and the pointer inserted
into the next unoccupied table entry. The code repeats this
process so that the populated hash table can be probed,
thus the performance of both creation and access of the
hash table can be measured. There are three points to note,
firstly, the amount of computation is small compared to
the memory access. The code is completely memory bound
and therefore the performance of a parallel version would
be communication bound. Secondly, to reduce the amount
of memory transactions in the serial code, thepointer to
the object is inserted into the hash table, not the object
itself, thus reducing the amount of memory access required.
In a parallel version, some of the pointers would point to
remote objects, which would be undefined locally. Thus in
a parallel version, theobject itself must be stored in the
hash table. This has the consequence of further increasing
the communication costs. For the UPC version, a model
where asharedpointer to asharedobject can be envisioned.
Indeed, this could even have less remote memory access
(RMA) operations if the pointer is smaller than the object
and thus be faster. However, this would consume more of
the shared memory, as both the object and the pointer live
in the shared space. From the perspective of comparing
UPC with MPI and SHMEM, they would no longer be

2http://www.hector.ac.uk/

doing the same thing, and this model was not considered for
this paper. Thirdly, the cost of RMAs is greater than local
memory accesses, so the parallel code will beslowerthan the
serial one. However, the motivation is not to execute existing
programs faster, but allow larger hash tables to be created in
parallel than can be done in serial. Moreover, in a real orbit
calculation a significant amount of calculation is requiredfor
each element, and by performing the calculation in parallel
it would be possible to reduce the overall execution time.

A. One-sided MPI

The usual send and receive communication pattern used
in MPI codes is not well suited to a distributed hash table.
The hash of the object is used to identify the rank of the
MPI task which owns that entry in the hash table. However,
this node has no way of identifying the rank of an MPI
node it is about to receive data from. Indeed, none, one or
more tasks may be trying to send a message to a given
node at any given time. MPI tasks could be set up to
poll for incoming messages, but this would have extremely
poor scaling behaviour. In the MPI 2 standard one-sided
communication was introduced, which can be employed to
negate this requirement. The one-sided MPI communications
perform RMA operations. These RMA operations can only
access memory which has been specifically set aside in
window. The memory has to be allocated first, and then the
window containing the memory is created with a call to the
MPI function,MPI_Win_create. Shown in figure 1 is the
memory pattern created. In the figure, the size of the arrays
on each rank contained in the window is shown to be the
same, but this doesn’t have to be the case.

Figure 1. A schematic diagram of the memory pattern for one-sided MPI.

The memory contained in the window can now be
accessed byput and get functions MPI_put() and
MPI_get(). Both the rank and position of the memory
location can be specified so that individual words can be
accessed.

Synchronisation can be controlled by several mechanisms.
For the implementation employed here, an MPI barrier



function,MPI_Win_fence(), is used during initialisation.
Locks are deployed to control access to the RMA memory
window and prevent race conditions. The lock is set using
the MPI_Win_lock() function, specifying which RMA
window and which task’s memory are locked. All the
memory assigned to the window belonging to the locked
task is inaccessible to other tasks until the task is unlocked.
The memory can now be accessed by the MPI task holding
the lock, and is released with theMPI_Win_unlock()
function.

B. UPC

The UPC implementation uses shared memory for the dis-
tributed hash table. In this example the memory is allocated
dynamically using the collective callupc_all_alloc().
In contrast to the MPI version, the shared memory is ad-
dressable and doesn’t require any special functions to access
it. Moreover, memory allocated in this way is contiguous.
The pointer declaration and memory allocation are shown
below:

shared [B] int *hashtab;
int nobj;
nobj=2*N/THREADS+1;
hashtab = (shared [B] int *) \
upc_all_alloc(THREADS,nobj*sizeof(int));

where N is a run time variable. The blocking factorB
however, is a literal, which has to be known at compile
time. The environment variableTHREADS, is evaluated at
run time if the code is compiled dynamically. Setting the size
and shape of shared arrays in UPC is critical to achieving
good performance, so as to minimise the amount of remote
memory access. A common procedure to match the compile
time blocking factor with the run time number of threads
is to compile different binaries for different numbers of
threads. A feature of the hash table is that if the hash
function is good enough, the access pattern to the table is
essentially random. This implies thatanyarray distribution is
as good as any other, so the default round-robin distribution,
with no blocking factor, is employed. Specifically, this
means sequential memory addresses in the shared array
have affinity with different threads. Shown in Figure 2 is a
schematic diagram of the memory allocation and distribution
with no blocking factor.

Synchronisation of the threads is achieved in a similar
way to one-sided MPI. The functionupc_barrier is
used after the initialisation and locks are used to pro-
tect against race conditions. In UPC, an array of locks
can be declared and in [6], the non-collective UPC func-
tion upc_global_lock_alloc() was used to allocate
memory to the locks. The non-collective function was used
for performance. When using the collective version, all the
locks live in shared memory on thread zero. The size of the
array of locks can in principle be any size (up to the total

Figure 2. A schematic diagram of the memory pattern for UPC.

amount of shared space). However, this only scaled to a
certain size. Profiling revealed that it was the allocation call
itself which was performing badly. A better way to allocate
shared memory for the locks [7] is as follows:

for i=0;i<THREADS;++i){
upc_lock_t* temp=upc_all_lock_alloc();
if(upc_threadof(&lock[i )==MYTHREAD){
lock[i] = temp;

}
}

This construction has much better scaling behaviour. In this
implementation the size was set to the number of threads,
thus an entire thread’s worth of data is locked in one go.
In principle, a much finer grained locking strategy could
have been implemented, which may result in improved
performance at the cost of consuming more of the shared
memory allocation. To start with at least, the simplest im-
plementation was deployed. Moreover, the pointer function
upc_threadof() is used to determine which thread the
hash table entry belongs to.

C. SHMEM

The SHMEM implementation uses put and get library
calls to achieve RMA. Only variables that aresymmetric
across processing elements (pes) can be accessed in this way.
Symmetric variables have the same size, type and relative
address on all pes. Moreover, they must be non-stack vari-
ables and so must be either global orlocal static. Dynamic
memory allocated using the SHMEM callshmalloc().
Shown in figure 3 is a schematic diagram of shared memory
in SHMEM.

Synchronisation is achieved by calling the library function
shmem_barrier_all() for global synchronisation and
by locks to protect shared memory regions from race con-
ditions. Locks must be symmetric and of typelong int.
Once again an array of locks, of size the number of pes
is declared. The array of locks is declared oneachpe. The
library calls which clear, set and test the locks are collective,
so that if, for example, pe 1 sets lock element A, no other pe
can set that lock element until pe 1 has cleared it. This allows
good performance at the cost of consuming an amount of



Figure 3. A schematic diagram of the memory pattern for SHMEM.
Reproduced from [8]

symmetric memory of size which depends on the number of
pes.

III. PERFORMANCECOMPARISON

The code was compiled with the Cray Compiler Environ-
ment (CCE) version 8.0.1 on an XE6 called HECToR, the
UK national supercomputing service. CCE supports UPC
and directly targets the Cray XE6’s hardware support for
Remote Direct Memory Access (RDMA) operations. Each
compute node contains two AMD 16-core processors (Inter-
lagos) and the communications network utilises Cray Gemini
communication chips, one for every two compute nodes. The
SHMEM library is Cray SHMEM (xt-shmem/5.4.2).

For each run, the size of the integer object from which the
hash table is made is set at eight bytes, the hash table visited
two times (once for creation, once thereafter), with a varying
numbers of elements in the hash table. In the first instance,
weak scaling, that is, where the number of elements per
processing element is fixed, is reported. Shown in Table I
are the times in seconds taken to execute the MPI distributed
hash table. The same data is plotted in figure 4.

# MPI Time (s) / LV (thousand)
tasks 10 20 40 80 160

32 1.12 1.19 1.83 2.73 4.56
64 4.34 5.93 5.21 7.72 11.5

128 4.26 5.46 6.56 11.0 18.2
256 5.34 6.87 10.3 17.9 32.6
512 7.32 8.50 13.3 24.7 60.4

1024 9.12 12.9 22.8 54.1 109.
2048 15.9 23.16 49.0 104. 258.
4096 26.8 49.3 88.3 200. 408.
8192 45.6 100. 236. 545. 709.

16384 85.2 178. 407. 606. 915.

Table I
T IME TAKEN FOR MPI CODE IN SECONDS, FOR DIFFERENT NUMBERS

OF PROCESSORS, FOR DIFFERENT NUMBERS OF ELEMENTS IN THE HASH

TABLE . “LV” DENOTES THE LOCAL VOLUME, OR NUMBER OF

ELEMENTS IN THE LOCAL HASH TABLE.

The scaling performance of the one-sided MPI distributed
hash table is extremely poor. The time taken increases
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Figure 4. Weak scaling for MPI. Time taken versus number of cores, for
different numbers of elements in the hash table. “LV” denotes local volume
and refers to the number of elements local to each MPI task.

dramatically as the number of MPI tasks increases. As
pointed out in the introduction, this example code does al-
most no computation. As the number of processing elements
increases, the amount of communication increases, which in
turn increases the amount of time the code takes to run. It is
worth noting that figure 4 has a logarithmic scale for both
axes, and the curve drawn through the data to illustrate the
trend is approximately linear, showing how bad the scaling
behaviour is. The data is not completely smooth, the reason
for this could be dependent on the size and shape of the
nodes allocated by the job scheduler, which is dependent
on machine usage at the time [9]. In previous work [6],
several runs for each datum where performed, with very
little run time variation reported. However, this data was
obtained from a small test and development machine which
was not heavily used. It was thus unlikely to highlight this
issue. Multiple runs to measure any run time variability were
not included in this study as benchmarking large jobs with
long run times multiple times is computationally expensive.

The same run parameters were used for UPC, as were
used for MPI. Shown in Table II are the data for the UPC
benchmark runs. This data is also plotted in figure 5.

In contrast to the MPI results, the UPC results show
much better scaling performance. Indeed, the curves in
figure 5 show only modest rises, up to quite large numbers
of threads, around 4096. This performance data is better
than that reported in [6]. As mentioned above, profiling the
code with the Cray Performance Analysis tools revealed that
allocating the shared memory for the array of locks with
the functionupc_global_lock_alloc() was taking
considerable amounts of time. In particular, as the size
of the array of locks was increased with the number of
threads, the time taken increased dramatically, to the point
where it was prohibitively expensive. Naively using the



# UPC Time (s) / LV (thousand)
threads 10 20 40 80 160

32 13.3 13.7 14.1 15.7 18.9
64 13.3 13.7 15.1 17.4 22.3

128 14.5 14.0 15.6 19.1 25.1
256 14.1 15.0 16.3 19.9 27.0
512 14.6 15.5 17.4 21.8 31.7

1024 15.5 16.7 20.3 26.8 39.8
2048 15.6 17.6 21.5 29.8 45.2
4096 17.0 20.1 26.2 38.2 58.4
8192 21.0 25.9 37.1 54.1 92.5

16384 34.8 43.3 64.0 98.6 167.4

Table II
T IME TAKE FOR THE UPCCODE IN SECONDS, FOR NUMBERS OF

PROCESSING ELEMENTS AND NUMBER OF ELEMENTS IN THE HASH

TABLE . “LV” DENOTES LOCAL VOLUME AND REFERS TO THE NUMBER

OF ELEMENTS IN THE LOCAL HASH TABLE.
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Figure 5. Weak scaling for UPC, time taken for different numbers of
threads, for different sizes of hash table. “LV” denotes local volume and
refers to the number of elements local to each thread, the “K”denotes
thousand.

collective call upc_all_alloc() would allocated the
data structure with affinity of the zeroth thread. This would
have better performance for allocating memory for the data
structure, but would result in poor performance for data
access. However, the affinity of the locks can be distributed
across all the threads using the loop construction described
above [7].

Shown in Table III and plotted in figure 6 are the data
for the SHMEM benchmark runs with the same parameters
as used for MPI and UPC. The SHMEM results show good
scaling with low overall clock times. In particular the weak
scaling curves in figure 6 show only modest rises out to
large (4096) numbers of cores.

Comparing the performance of all three implementations
it is immediately obvious that one-sided MPI has greatly
inferior scaling behavior to that of UPC and SHMEM, and
that SHMEM has the best overall scaling performance. The
performance of the same implementations can be compared

# SHMEM Time (s) / LV (thousand)
PEs 10 20 40 80 160

32 7.93 8.12 8.97 10.5 13.2
64 7.97 8.43 9.91 11.1 14.6

128 8.05 9.16 10.1 12.1 17.2
256 8.99 9.13 10.4 13.1 17.2
512 8.85 9.29 10.6 14.3 18.0

1024 9.12 9.81 11.2 16.3 20.1
2048 9.21 10.2 12.5 16.3 23.6
4096 9.86 11.9 15.1 21.1 27.7
8192 12.8 14.3 19.0 26.1 46.0

16384 20.7 26.7 31.3 46.0 68.6

Table III
T IME TAKE FOR THE SHMEM CODE IN SECONDS, FOR NUMBERS OF

PROCESSING ELEMENTS AND NUMBER OF ELEMENTS IN THE HASH

TABLE . “LV” DENOTES LOCAL VOLUME AND REFERS TO THE NUMBER

OF ELEMENTS IN THE LOCAL HASH TABLE.
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Figure 6. Weak scaling for shmem, time taken for different numbers of
threads, for different sizes of hash table. “LV” denotes local volume and
refers to the number of elements local to each thread, the “K”denotes
thousand.

in a strong scaling scenario, where the global system size
is fixed, and the number of cores can be varied. Shown
in figure 7 are the results for a strong scaling analysis,
the data is the same as shown in the tables above. Here,
clearly the MPI performance is much worse. However, one-
sided MPI does perform better for smaller numbers of cores,
particularly for small local hash table size, than UPC and to
a lesser extent than SHMEM. Examining Tables II and III
one plausible conclusion is that both UPC and SHMEM
have a much larger set up time than one-sided MPI. If
the performance for the on-node performance is considered,
that is 32 cores, then this effect can be seen,c.f. 1.13s for
MPI, 13.3s for UPC and7.93s for SHMEM. It is also clear
that both UPC and SHMEM scale better with size of local
hash table. This suggests MPI performs worse than UPC
and SHMEM for both number of RMA destinations and the
number of RMA operations per core.
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Figure 7. Strong scaling for MPI, UPC and SHMEM, time in seconds
versus number of cores. The lines show constant global size of hash table.
The legend is made from two symbols, the first refers to the implementation:
“M” denotes MPI, “U” denotes UPC and “S” denotes SHMEM. The second
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IV. CONCLUSIONS

In this study the performance of one-sided MPI, UPC and
SHMEM are compared using an application benchmark up
to large numbers of cores. SHMEM has the best scaling
behaviour. This is probably due the SHMEM library calls
mapping in a straightforward way to the underlying protocol
on the Gemini network of the XE6, calleddmapp. The Cray
SHMEM implementation is thus fairly close to what actually
happens in hardware [9]. UPC performs well, although
slower than SHMEM. It has good scaling behaviour. One-
sided MPI in comparison performs poorly and in particular
has poor scaling behaviour with both the number of cores
and the size of the hash table. Whilst the reason for this
is not apparent from this work, how the memory access is
performed in the implementation is critical. Comparing the
MPI Window construction to the shared memory of UPC and
the symmetric memory of SHMEM one obvious difference
stands out. The memory that can be accessed by SHMEM
and UPC RMA operations is restricted and is special in some
sense, whereas the MPI standard specifies thatanymemory
can be included in a window. The MPI-3 working group
on one-sided communication3 notes that this is difficult to
implement efficiently and proposes that an new type of
window, with some restrictions on memory is included in
the new standard for performance reasons. The performance
of one-sided communication in MPI-2 is so poor, there are
not many applications which use this feature of MPI. Indeed,
the author isn’t aware of any. It is thus an open question as
to what practical purpose retaining the unrestricted memory
window in the current proposals for MPI-3 serves.

3see http://meetings.mpi-forum.org/mpi3.0rma.php
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