Comparing One-Sided Communication With MPI, UPC and SHMEM

C.M. Maynard
EPCC, School of Physics and Astronomy, University of Edithu
JCMB, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
Email: c.maynard@ed.ac.uk

Abstract—Two-sided communication, with its linked send arose from the HPCGAP projéciThe aim of this project is
and receive message construction has been the dominant to produce a parallel version of the symbolic algebra soft-
communication pattern of the MPI era. With the rise of ware system, Groups, Algebra and Programming (GAP) [1].

multi-core processors and the consequent dramatic increas . .
in the number of computing cores in a supercomputer this The GAP software system is an interpreted software for sym-

dominance may be at an end. One-sided communication is bolic algebra Computations. It is written in C, which restsi
often cited as part of the programming paradigm which the choice of PGAS models which could be deployed, ruling

would alleviate the punitive synchronisation costs of twesided out for example, Co-Array FORTRAN. The GAP software
communication for an exascale machine. This paper compares system comprises of a kernel, which runs a cycle, creates and

the performance of one-sided communication in the form of :
put and get operations for MPI, UPC and Cray SHMEM on destroys objects and manages the memory. The HPCGAP

a Cray XE6, using the Cray C compiler. This machine has Projectis implementing a parallel version of GAP for tight
support for Remote Memory Access (RMA) in hardware, and coupled HPC machines. A complimentary project, called

the Cray C compiler supports UPC, as well as environment SymGridPar2 [2], is also implementing parallel symbolic
support for SHMEM. A distributed hash table application is a5ephra calculations by linking parallel Haskell [3] with
used to test the performance of the different approaches, as N .
this requires one-sided communication. many individual instances of GAP. In contrgst to HPCGAP,
this software targets loosely coupled architectures adgyri

or clouds.

As implied by its name, Group theory calculations are

MPI has been the standard communication library use@ne of the targets for HPCGAP. A particular problem, called
in High Performance Computing (HPC) for the past fif- the orbit problem [4], is of interest to the symbolic algebra
teen or so years. Two-sided, point-to-point communicationcommunity. The problem is the calculation of the orbit of a
where the sending MPI task and receiving MPI task bothsetm acting on a group. This calculation corresponds to a
call the MPI library, is widely used in applications. More graph traversal problem, where at each vertex of the graph
recently, an alternative point-to-point communicationd®p some computation of properties of the vertex is required,
namely one-sided communication has been implementeithcluding the determination of which other vertices the
in Partitioned Global Address Space (PGAS) languagesertex is connected. Keeping track of whether a vertex has
and libraries. In one-sided communication, one procespeen visited before is done by employing a hash table.
accesses the remote memory of another process directQurrent orbit calculations are limited to certain size afuw
without interrupting the progress of the second processhy the amount of memory available in serial. A parallel
Using this programming model could reduce the punitiveimplementation of the algorithm would allow much larger
synchronisation costs of a machine wizi’ processes or orbits, corresponding to graphs with billions of vertices,
threads, compared to two-sided communication. There argy be computed. The characteristics of the distributed hash
now several PGAS languages or libraries which implementable, such as what fraction total memory does the table
one-sided communications. Indeed, since the MPI 2 standargbnsume and how often are entries accessed would depend
was released, MPI implementations also have one-sidedn both the group and the set acting upon it. Current serial
communication in the form of put and get library calls. In implementations are unable to perform such calculations.
this work the performance of one-sided MPI is comparedA parallel implementation would enable a completely new
with one-sided UPC and Cray SHMEM. MPI, UPC and class of problems to be solved, rather than improving the per
SHMEM have differences in the way the memory accessibldormance on current problems. A distributed implementatio
by RMA operations is arranged and the locking mechanismexists for a loosely coupled cluster, using multiple instm
used to prevent race conditions on particular data entriesf different programs over UNIX sockets and exploiting task
These differences have performance implications and thegather than data parallelism and is reported in [5]. However
are explored in detail. for a HPC implementation on supercomputers a different

Rather than a synthetic benchmark, an application bench-
mark is used to measure the performance. This application *see http:/iwww-circa.mcs.st-and.ac.uk/hpcgap.php

I. INTRODUCTION

approach is merited. doing the same thing, and this model was not considered for
A distributed hash table application is used to test thethis paper. Thirdly, the cost of RMAs is greater than local

performance of the different approaches. This applicationmemory accesses, so the parallel code wiltlogverthan the

requires the use of RMA, as a node determining the hash aferial one. However, the motivation is not to execute exgsti

a particular data object will know the position in the table programs faster, but allow larger hash tables to be created i

to enter object, and thus be able to determine which remotparallel than can be done in serial. Moreover, in a real orbit

node holds that entry. This would be problematic for a sendalculation a significant amount of calculation is requifed

and receive model as the sender would know the identitach element, and by performing the calculation in parallel

of the receiver, but novice versa Moreover, the receiver it would be possible to reduce the overall execution time.

would not know when it should be expecting to receive the _ One-sided MP!

data. This problem does not arise with RMA operations o] o
the put and get type. The usual send and receive communication pattern used

Comparing the performance of one-sided MPI and updn MPI codes is not_well_suited to a distr_ibuted hash table.
on a Cray XE6 was reported in [6]. This machine, calleg The hash of_ the object is used_to identify the rank of the
HECTOR, is the UK national High Performance Computing M_PI task which owns that gntry in _the hash table. However,
Service. The compute nodes have subsequently been ufjliS node has no way of identifying the rank of an MPI
graded from two AMD 12-core processors (Magny-Cours) tohode it is about to receive data from. Indeed, none, one or
two AMD 16-core processors (Interlagos). The benchmark&10ré tasks may be trying to send a message to a given
have been repeated and extended for one-sided MPI aftfde at any given time. MPI tasks could be set up to

UPC and these new results are compared to those tgpoll for incoming messages, but this would have extremely

SHMEM. poor scaling behaviour. In the MPI 2 standard one-sided
communication was introduced, which can be employed to
II. IMPLEMENTATION OF A DISTRIBUTED HASH TABLE negate this requirement. The one-sided MPI communications

A simple hash table C code was used as a demonstratcpr?rform RMA operat_lons. These RMA o_p_era'uons can_only_

.) . access memory which has been specifically set aside in

This C code creates integer typed objects from some random: ;
: . . window The memory has to be allocated first, and then the

element, computes the hash of the object using a suitable.

hash function, and inserts a pointer to the object into tlsb ha window cgntammg the memory 1s create(_j W.'th a ca]l to the

) . o . MPI function,MPl _W n_cr eat e. Shown in figure 1 is the
table. If a pointer to a different object is already resu;ientmemOr attern created. In the figure. the size of the arravs
the collision counter is incremented and the pointer irskrt yp ‘ gure, y

. . on each rank contained in the window is shown to be the
into the next unoccupied table entry. The code repeats this : ,
spme, but this doesn’t have to be the case.

process so that the populated hash table can be probed,
‘ ‘rank 0‘\

thus the performance of both creation and access of the
| | | | | [rank 1]

hash table can be measured. There are three points to not
firstly, the amount of computation is small compared to
the memory access. The code is completely memory bounc
and therefore the performance of a parallel version would
be communication bound. Secondly, to reduce the amount
of memory transactions in the serial code, fh&inter to

the object is inserted into the hash table, not the object
itself, thus reducing the amount of memory access required.
In a parallel version, some of the pointers would point to
remote objects, which would be undefined locally. Thus in
a parallel version, thebject itself must be stored in the
hash table. This has the consequence of further increasin Window 0

the communication costs. For the UPC version, a model

where asharedpointer to asharedobject can be envisioned. Figure 1. A schematic diagram of the memory pattern for ddeesMP!I.
Indeed, this could even have less remote memory access

(RMA) operations if the pointer is smaller than the object The memory contained in the window can now be
and thus be faster. However, this would consume more oRccessed byput and get functions MPI _put () and

the shared memory, as both the object and the pointer livdP! _get () . Both the rank and position of the memory
in the shared space. From the perspective of Comparin@cation can be specified so that individual words can be

UPC with MPI and SHMEM, they would no longer be accessed.
Synchronisation can be controlled by several mechanisms.

2http:/ww.hector.ac.uk/ For the implementation employed here, an MPI barrier

2\

| | | l | rank 2|

[T T T] [ranks]

/L B[

function,MPI _W n_f ence(), is used during initialisation.

Locks are deployed to control access to the RMA memory ‘thread £ ‘ ‘thread Z | ‘thread : ‘

window and prevent race conditions. The lock is set using o3 -l latt- {2]5] shared
the MPI _W n_| ock() function, specifying which RMA S——— .
window and which task's memory are locked. All the T N 5 Private
memory assigned to the window belonging to the lockec \\\

task is inaccessible to other tasks until the task is unidcke pt |

The memory can now be accessed by the MPI task holdin

the lock, and is released with théPl W n_unl ock()

function. Figure 2. A schematic diagram of the memory pattern for UPC.

B. UPC

_The UPC implementation uses shared memory for the disamount of shared space). However, this only scaled to a
tributed hash table. In this example the memory is allocatedertain size. Profiling revealed that it was the allocatiah ¢

dynamically using the collective calipc_al | _al l oc(). itself which was performing badly. A better way to allocate
In contrast to the MPI version, the shared memory is adshared memory for the locks [7] is as follows:

dressable and doesn't require any special functions tasacce

it. Moreover, memory allocated in this way is contiguous.'c or i =0;i <THREADS, ++i) {

The pointer declaration and memory allocation are shown YPC_I ock_t+ tenp=upc_al | _I ock_al I oc();
below: i f (upc_threadof (& ock[i)==MYTHREAD) {
lock[i] = tenp;

shared [B] int xhashtab; }

int nobj : }

nobj =2* N THREADS+1,;

hashtab = (shared [B] int *) \ This construction has much better scaling behaviour. Is thi
upc_al | _al | oc(THREADS, nobj *si zeof (i nt)): implementation the size was set to the number of threads,

thus an entire thread’s worth of data is locked in one go.
where N is a run time variable. The blocking factd |n principle, a much finer grained locking strategy could
however, is a literal, which has to be known at compilehave been implemented, which may result in improved
time. The environment variabl@HREADS, is evaluated at performance at the cost of consuming more of the shared
run time if the code is compiled dynamically. Setting theesiz memory allocation. To start with at least, the simplest im-
and shape of shared arrays in UPC is critical to achievinglementation was deployed. Moreover, the pointer function
good performance, so as to minimise the amount of remotapc_t hr eadof () is used to determine which thread the
memory access. A common procedure to match the compilgash table entry belongs to.
time blocking factor with the run time number of threads
is to compile different binaries for different numbers of C. SHMEM
threads. A feature of the hash table is that if the hash The SHMEM implementation uses put and get library
function is good enough, the access pattern to the table isalls to achieve RMA. Only variables that asgmmetric
essentially random. This implies thettyarray distributionis across processing elements (pes) can be accessed in this way
as good as any other, so the default round-robin distributio Symmetric variables have the same size, type and relative
with no blocking factor, is employed. Specifically, this address on all pes. Moreover, they must be non-stack vari-
means sequential memory addresses in the shared arraples and so must be either globallocal static Dynamic
have affinity with different threads. Shown in Figure 2 is amemory allocated using the SHMEM cahnal | oc() .
schematic diagram of the memory allocation and distrilbutio Shown in figure 3 is a schematic diagram of shared memory
with no blocking factor. in SHMEM.

Synchronisation of the threads is achieved in a similar Synchronisation is achieved by calling the library funiatio
way to one-sided MPI. The functionpc_barrier is shnmem barrier_all () for global synchronisation and
used after the initialisation and locks are used to proby locks to protect shared memory regions from race con-
tect against race conditions. In UPC, an array of lockdditions. Locks must be symmetric and of typeng i nt .
can be declared and in [6], the non-collective UPC func-Once again an array of locks, of size the number of pes
tion upc_gl obal | ock_al | oc() was used to allocate is declared. The array of locks is declaredeachpe. The
memory to the locks. The non-collective function was usedibrary calls which clear, set and test the locks are callect
for performance. When using the collective version, all theso that if, for example, pe 1 sets lock element A, no other pe
locks live in shared memory on thread zero. The size of thean set that lock element until pe 1 has cleared it. This a&llow
array of locks can in principle be any size (up to the totalgood performance at the cost of consuming an amount of

SAME One-sided MPI

ADDRESS

Remotely N Remotey | 1000
Accessible yi L\Accessmle

Memory Memory

160K
oo 80K

Int x o0 40K
ook

Private Private
Memory Memory

kX%

=
o
o

time (seconds)

i
o

PE 0 PE 1

Figure 3. A schematic diagram of the memory pattern for SHMEM
Reproduced from [8]

| | | | | | | | |
13 64 128 256 512 1024 2048 4096 8192 16384
number of cores

symmetric memory of size which depends on the number
pes. Figure 4. Weak scaling for MPI. Time taken versus number oégofor
different numbers of elements in the hash table. “LV” deadéeal volume

Ill. PERFORMANCE COMPARISON and refers to the number of elements local to each MPI task.

The code was compiled with the Cray Compiler Environ-
ment (CCE) version 8.0.1 on an XEG6 called HECTOR, thedramatically as the number of MPI tasks increases. As
UK national supercomputing service. CCE supports UPGointed out in the introduction, this example code does al-
and directly targets the Cray XE6's hardware support formost no computation. As the number of processing elements
Remote Direct Memory Access (RDMA) operations. Eachincreases, the amount of communication increases, which in
compute node contains two AMD 16-core processors (Interturn increases the amount of time the code takes to run. It is
lagos) and the communications network utilises Cray Geminivorth noting that figure 4 has a logarithmic scale for both
communication chips, one for every two compute nodes. Theéxes, and the curve drawn through the data to illustrate the
SHMEM library is Cray SHMEM (xt-shmem/5.4.2). trend is approximately linear, showing how bad the scaling

For each run, the size of the integer object from which thepehaviour is. The data is not completely smooth, the reason
hash table is made is set at eight bytes, the hash tabledvisitgor this could be dependent on the size and shape of the
two times (once for creation, once thereafter), with a vagyi nodes allocated by the job scheduler, which is dependent
numbers of elements in the hash table. In the first instanceqn machine usage at the time [9]. In previous work [6],
weak scaling, that is, where the number of elements pegeveral runs for each datum where performed, with very
processing element is fixed, is reported. Shown in Table little run time variation reported. However, this data was
are the times in seconds taken to execute the MPI distributegbtained from a small test and development machine which

hash table. The same data is plotted in figure 4. was not heavily used. It was thus unlikely to highlight this
, issue. Multiple runs to measure any run time variability ever
#tg"si's 10 2T(')me) ’4'6\/ (thousgé‘d) 160 not included in this study as benchmarking large jobs with
=113 10 83 573 TN long run times multiple times is computationally expensive
64 4.34 5.93 5.21 772 115 The same run parameters were used for UPC, as were
128 4.26 5.46 6.56 110 18.2 used for MPI. Shown in Table Il are the data for the UPC

256 5.34 6.87 10.3 17.9 32.6

512 7.82 850 133 247 60.4 benchmark runs. This data is also plotted in figure 5.
1024 912 129 22.8 54.1 109. In contrast to the MPI results, the UPC results show
2048 159 2316 490 104 258, much better scaling performance. Indeed, the curves in
4096 26.8 49.3 88.3 200. 408. X . .
8192 45.6 100, 236. 545. 709. figure 5 show only modest rises, up to quite large numbers
16384 85.2 178. 407. 606. 915. of threads, around 4096. This performance data is better
Table | than that reported in [6]. As mentioned above, profiling the

TIME TAKEN FOR MP| CODE IN SECONDS FOR DIFFERENT NUMBERS code with the Cray Performance Analysis tools revealed that
O et l’_\'(;’(“:"fLESSL%FMEELg':i‘TjT;B'E‘RTSE HASH allocating the shared memory for the array of locks with
ELEMENTS IN THE LOCAL HASH TABLE. the functionupc_gl obal | ock_al | oc() was taking
considerable amounts of time. In particular, as the size
of the array of locks was increased with the number of
The scaling performance of the one-sided MPI distributedhreads, the time taken increased dramatically, to thetpoin

hash table is extremely poor. The time taken increasewhere it was prohibitively expensive. Naively using the

UPC Time (s) / LV (thousand)
threads 10 20 40 80 160
32 133 13.7 141 15.7 18.9
64 13.3 13.7 151 174 22.3
128 145 140 156 19.1 25.1
256 14.1 150 16.3 199 27.0
512 14.6 155 174 218 31.7
1024 155 16.7 203 26.8 39.8
2048 15.6 176 21.5 298 45.2
4096 17.0 201 262 38.2 58.4
8192 21.0 259 371 54.1 92.5
16384 34.8 433 640 986 1674

Table 1l

TIME TAKE FOR THE UPCCODE IN SECONDSFOR NUMBERS OF
PROCESSING ELEMENTS AND NUMBER OF ELEMENTS IN THE HASH
TABLE. “LV” DENOTES LOCAL VOLUME AND REFERS TO THE NUMBER
OF ELEMENTS IN THE LOCAL HASH TABLE

SHMEM Time (s) / LV (thousand)
PEs 10 20 40 80 160
32 7.93 8.12 897 105 13.2
64 7.97 8.43 9.91 11.1 146
128 8.05 9.16 10.1 121 172
256 8.99 9.13 104 131 17.2
512 8.85 9.29 10.6 143 180
1024 9.12 9.81 11.2 16.3 20.1
2048 9.21 10.2 12.5 16.3 23.6
4096 9.86 11.9 15.1 21.1 277
8192 12.8 14.3 19.0 26.1 46.0
16384 20.7 26.7 31.3 46.0 68.6

Table 11l

TIME TAKE FOR THE SHMEM CODE IN SECONDS FOR NUMBERS OF
PROCESSING ELEMENTS AND NUMBER OF ELEMENTS IN THE HASH
TABLE. “LV” DENOTES LOCAL VOLUME AND REFERS TO THE NUMBER
OF ELEMENTS IN THE LOCAL HASH TABLE.

UPC
Shmem
\ \
T \ \
160K
oo 80K 64— 160K 7
o0 40K oo 80K
100 | |e—e40K]
0 20K
- I |e—e 10K 1
] —
s ga2
Q c
3 3
K @
) K
£)
£ 16
8
10l \ \ \ \ \ \ \ \ \
32 64 128 256 512 1024 2048 4096 8192 16384 ! \ \ \ ! \ \ | | |
number of cores 32 64 128 256 512 1024 2048 4096 8192 16384
number of cores
Figure 5. Weak scaling for UPC, time taken for different nemsbof))))
threads, for different sizes of hash table. “LV” denotesaloeolume and ~ Figure 6. Weak scaling for shmem, time taken for differentnbers of

threads, for different sizes of hash table. “LVV” denotesaloeolume and
refers to the number of elements local to each thread, the d&fiotes
thousand.

refers to the number of elements local to each thread, the dé&fiotes
thousand.

collective callupc_al |l _al l oc() would allocated the
data structure with affinity of the zeroth thread. This wouldin a strong scaling scenario, where the global system size
have better performance for allocating memory for the datgs fixed, and the number of cores can be varied. Shown
structure, but would result in poor performance for datain figure 7 are the results for a strong scaling analysis,
access. However, the affinity of the locks can be distributedhe data is the same as shown in the tables above. Here,
across all the threads using the loop construction destribeclearly the MPI performance is much worse. However, one-
above [7]. sided MPI does perform better for smaller numbers of cores,
Shown in Table Il and plotted in figure 6 are the dataparticularly for small local hash table size, than UPC and to
for the SHMEM benchmark runs with the same parametera lesser extent than SHMEM. Examining Tables Il and IlI
as used for MPI and UPC. The SHMEM results show gootbne plausible conclusion is that both UPC and SHMEM
scaling with low overall clock times. In particular the weak have a much larger set up time than one-sided MPI. If
scaling curves in figure 6 show only modest rises out tathe performance for the on-node performance is considered,
large (4096) numbers of cores. that is 32 cores, then this effect can be seeh,1.13s for
Comparing the performance of all three implementationdMPI, 13.3s for UPC andr.93s for SHMEM. It is also clear
it is immediately obvious that one-sided MPI has greatlythat both UPC and SHMEM scale better with size of local
inferior scaling behavior to that of UPC and SHMEM, and hash table. This suggests MPI performs worse than UPC
that SHMEM has the best overall scaling performance. Thand SHMEM for both number of RMA destinations and the
performance of the same implementations can be comparedimber of RMA operations per core.

100-[e—e ML .\‘\,/‘\'7

[|le—eUL 1
[|&®SL)
r|o--oMM 1
L|{E--0UM |g__]

o--oSM o

>-oMS PR o

&-oUS -o

¢SS

time (seconds)
. .
"
o ¢ o
¢ o / :
. .

IR
256 512 1024 2048 4096 8192 16384
number of cores

Figure 7. Strong scaling for MPIl, UPC and SHMEM, time in saton

versus number of cores. The lines show constant global $inash table.
The legend is made from two symbols, the first refers to théempntation:
“M” denotes MPI, “U” denotes UPC and “S” denotes SHMEM. Thea®d
symbol refers to the size of the global hash table: “L” deadtt8.84 x 10,

“M” denotes 81.92 x 10% and “S” denotest0.96 x 10°.

IV. CONCLUSIONS

In this study the performance of one-sided MPI, UPC and
SHMEM are compared using an application benchmark ugs3]
to large numbers of cores. SHMEM has the best scaling
behaviour. This is probably due the SHMEM library calls
mapping in a straightforward way to the underlying protocol

on the Gemini network of the XEB6, callatmapp The Cray

SHMEM implementation is thus fairly close to what actually
happens in hardware [9]. UPC performs well, aIthough[4]
slower than SHMEM. It has good scaling behaviour. One-
sided MPI in comparison performs poorly and in particular
has poor scaling behaviour with both the number of cores
and the size of the hash table. Whilst the reason for this
is not apparent from this work, how the memory access i4d]
performed in the implementation is critical. Comparing the
MPI Window construction to the shared memory of UPC and
the symmetric memory of SHMEM one obvious difference
stands out. The memory that can be accessed by SHMENS]
and UPC RMA operations is restricted and is special in some

sense, whereas the MPI standard specifiesahgtmnemory

can be included in a window. The MPI-3 working group
on one-sided communicatidmotes that this is difficult to
implement efficiently and proposes that an new type ofl7]
window, with some restrictions on memory is included in
the new standard for performance reasons. The performanfﬁ
of one-sided communication in MPI-2 is so poor, there are
not many applications which use this feature of MPI. Indeed,
the author isn’t aware of any. It is thus an open question as
to what practical purpose retaining the unrestricted mgmor

window in the current proposals for MPI-3 serves.

3see http://meetings.mpi-forum.org/mpi3rtha.php

V. ACKNOWLEDGEMENTS
The author would like to thank Max Hungover at St

Andrews University for the example hash table code and
the HPCGAP project. This work was funded under EPSRC
grant EP/G055742/1

REFERENCES

[1] GAP — Groups, Algorithms, and Programming, Version 4.4.12

The GAP Group, 2008. [Online]. Available: http://iwww.gap-
system.org

[2] A. Zain, K. Hammond, P. Trinder, S. Linton, H.-W. Loidl,

and M. Costanti, “Symgrid-Par: Designing a framework for
executing computational algebra systems on computational
grids,” in Computational Science ICCS 2Q03er. Lecture
Notes in Computer Science, Y. Shi, G. van Albada,
J. Dongarra, and P. Sloot, Eds. Springer Berlin / Heidelberg
2007, vol. 4488, pp. 617-624, 10.1007/978-3-540-72586-
2 90. [Online]. Available: http://dx.doi.org/10.1007/938
540-72586-290

S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and
P. W. Trinder, “Seq no more: Better strategies for parallel
Haskell,” in Haskell Symposium 2010 Baltimore, MD,
USA: ACM Press, Sep. 2010, to appear. [Online]. Avail-
able: http://www.macs.hw.ac.uk/ dsg/gph/papers/atistizew-
strategies.html

D. F. Holt, B. Eick, and E. A. O’Brien,Handbook of
computational group theory ser. Discrete Mathematics
and its Applications (Boca Raton). Chapman &
HalllCRC, Boca Raton, FL, 2005. [Online]. Available:
http://dx.doi.org/10.1201/9781420035216

F. Lubeck and M. Neunhoffer, “Enumerating large
orbits and direct condensation,”Experiment. Math.
vol. 10, no. 2, pp. 197-205, 2001. [Online]. Available:
http://projecteuclid.org/getRecord?id=euclid.em/B88632

C. M. Maynard, “Comparing UPC and one-sided MPI: A
distributed hash table for GAP,” iRGAS 2011 Galveston
Island, TX, USA: ACM Press, Oct. 2011, to appear. [Online].
Available: http://pgasll.rice.edu/papers/Maynarduiibiated-
Hash-Table-PGAS11.pdf

T. Johnson and S. Vormwald, Pers. Comm., Cray Inc., Feb
2012.

T. Curtis and S. Pophale, “OpenSHMEM specification
and usage,” in PGAS 2011 Galveston Island,
TX, USA: ACM Press, Oct. 2011, to appear.
[Online]. Available: http://pgasll.rice.edu/etc/PoleiGurtis-

OpenSHMEM-Tutorial-PGAS11.pdf

[9] T. Edwards, Pers. Comm., Cray Inc., Mar 2012.

