
Dr Chris Maynard
Application Consultant, EPCC

c.maynard@ed.ac.uk
+44 131 650 5077

Comparing One-Sided
Communication with

MPI, UPC and
SHMEM

EPCC

University of Edinburgh

The Future ain’t what it used to be

1 May 2012 CUG 2012 Stuttgart, Germany 2

Past performance is not a guide to
future performance. The value of
the investment and the income
deriving from it can go down as well
as up and can't be guaranteed. You
may get back less than you
invested.

Parallel
computing is
changing

Parallel Programming just got harder!

1 May 2012 CUG 2012 Stuttgart, Germany 3

Mooreʼs Law: More not faster

Some cores are more equal
than others. NUMA

AMD Interlagos

Heterogeneous Architectures:
Accelerators

NVidia Fermi

Data parallel: cores  MPI task

scale 230 heterogeneous cores?

Partition Global Address Space (PGAS)
•  Distributed memory is globally addressable - GAS

–  Partitioned into shared and local – P
–  Direct read/write access to remote memory

•  Asynchronous put/get
–  remote node is not interrupted whilst memory access occurs
–  no explicit buffering

•  May map directly onto hardware / Direct compiler support
–  Cray XE6 hdw and Cray compiler

•  Language extensions
–  Unified Parallel C (UPC)
–  Co-Array Fortran (CAF)

•  Libraries
–  SHMEM (Cray SHMEM)
–  One-sided MPI

1 May 2012 CUG 2012 Stuttgart, Germany 4

How Super
is PGAS?

memory

cpu

memory

cpu

memory

cpu

process

Distributed memory machine

MPI

•  Mature, widely used and very portable

•  Implemented as calls to an external library
–  Linked send and receive messages (both known to the other)
–  Collective calls, Broadcasts, gather/scatter, reductions,

synchronisation

•  One sided MPI calls in MPI 2 standard
–  Remote memory access (RMA)
–  puts, gets and synchronisation
–  Not widely used

1 May 2012 CUG 2012 Stuttgart, Germany 6

memory

cpu

process 0

memory

cpu

process 1

MPI_Recv(a,...,0,…)

MPI

MPI_Send(a,...,1,…)

UPC

•  Parallel extension to ISO C 99
–  multiple threads with shared and private memory

•  Direct addressing of shared memory

•  Synchronisation blocking and non-blocking

•  work sharing

•  private and shared pointers to private and shared objects

•  Data distribution of shared arrays
•  Cray compiler on XE6 supports UPC

•  Portable Berkely UPC compiler
–  built with GCC

1 May 2012 CUG 2012 Stuttgart, Germany 8

upc_barrier;

upc_forall(exp;exp;exp;affinity);

memory

cpu

thread

memory

cpu

memory

cpu

thread thread

UPC

SHMEM

1 May 2012 CUG 2012 Stuttgart, Germany 10

•  Symmetric variables for RMA

•  Same size, type and relative address on all PEs

•  Non-stack variables, global or local static

•  Dynamic allocation with shmalloc()

•  shmem_put() and shmem_get routines for RMA

•  Cray SHMEM

•  OpenSHMEM

•  Synchronisation

•  shmem_barrier_all();

The hash table code

•  Simple C hash table code
–  supplied by Max Neunhoffer, St Andrews

•  creates integer like objects

•  computes the hash of the object

•  populates the hash table, with a pointer to the object

•  if entry already exists, inserts pointer at next free place

•  revisits the hash table

1 May 2012 CUG 2012 Stuttgart, Germany 11

Distributed hash table

•  The almost no computation in the test code
–  code is memory bound

•  In parallel cannot use a local pointer to a remote object
–  distributed table has hold a copy of the object itself
–  Increases memory access cost compared to sequential code
–  UPC version shared pointer to shared object possible

–  consumes more shared memory, not considered

•  RMA access cost much greater than direct memory access

1 May 2012 CUG 2012 Stuttgart, Germany 12

Parallel code is slower than sequential code
More nodes  more communications

MPI hash table

•  Declare memory structures on each MPI task

•  link them together with MPI_Win_create()

1 May 2012 CUG 2012 Stuttgart, Germany 13

MPI_Win win;

numb *hashtab;

numb nobj;

hashtab = (numb *)calloc(nobj,sizeof(numb));

MPI_Win_create(hashtab,nobj*sizeof(int),sizeof(numb),MPI_INFO_

NULL,comm,&win);

MPI data structure

1 May 2012 CUG 2012 Stuttgart, Germany 14

rank 0

rank 1

rank 2

rank 3

Window 0

MPI_Put, MPI_Get

•  MPI ranks cannot see data on other ranks

•  Data is accessed by MPI RMA calls to the data structure in
the window

•  Similarly for MPI_Put

1 May 2012 CUG 2012 Stuttgart, Germany 15

MPI_Get(&localHash,1,MPI_INT,destRank,destPos,1,MPI_INT,win);

 origin_addr, count and type, where, count and type, Win

Synchronisation

•  Several mechanisms
–  MPI_Win_fence - barrier

•  MPI_Win_lock, MPI_Win_unlock
–  ensure no other MPI_task can access data element
–  avoid race condition

•  Locks all the memory of specified MPI task in the specified
window

•  MPI_Win_unlock to release the lock

1 May 2012 CUG 2012 Stuttgart, Germany 16

1 May 2012 CUG 2012 Stuttgart, Germany 17

UPC: Shared arrays

•  If shared variable is array, space allocated across shared
memory space in cyclic fashion by default

 int x;

 shared int y[16];

thread 0 thread 1 thread 2 thread 3

Private Memory Space

Shared Memory Space

x
 x
 x
 x

y[2]

y[6]

y[10]

y[14]

y[1]

y[5]

y[9]

y[13]

y[0]

y[4]

y[8]

y[12]

y[3]

y[7]

y[11]

y[15]

1 May 2012 CUG 2012 Stuttgart, Germany 18

UPC: Data Distribution

•  Possible to “block” shared arrays by defining
shared[blocksize] type array[n]

 int x;

 shared[2] int y[16];

thread 0 thread 1 thread 2 thread 3

Private Memory Space

Shared Memory Space

x
 x
 x
 x

y[4]

y[5]

y[12]

y[13]

y[2]

y[3]

y[10]

y[11]

y[0]

y[1]

y[8]

y[9]

y[6]

y[7]

y[14]

y[15]

1 May 2012 CUG 2012 Stuttgart, Germany 19

Collective dynamic allocation

•  The shared memory allocated is contiguous. Similar to an
array

 shared [B] int *ptr;

 ptr = (shared [B] int *)upc_all_alloc(THREADS,

 N*sizeof(int));

Private Memory Space

p1

N

p1

Shared Memory Space

p1

N
 N

Memory allocation and affinity

1 May 2012 CUG 2012 Stuttgart, Germany 20

Private

p1

0 3

p1

shared

p1

1 4 2 5

N = 2

thread 0 thread 1 thread 2

shared int *p1;
p1 = (shared int *)
upc_all_alloc(THREADS,N*sizeof(int));

UPC hash table

•  Use upc pointer and collective memory allocation

•  No blocking factor
–  cyclic distribution is as good as any other
–  if hash function is good enough

•  Shared memory  all threads can see all data elements

•  Use upc functions to determine which thread “own” data
element

1 May 2012 CUG 2012 Stuttgart, Germany 21

shared numb *hashtab;
hashtab = (shared numb *)
upc_all_alloc(THREADS,nobj*sizeof(numb));

vthread = upc_threadof(&hashtab[v]);

UPC: Synchronisation
•  As with MPI, use locks to control access to data

–  UPC declare array of locks

•  Allocate memory – collective call
–  all locks would have affinity of thread 0
–  use follow trick to ensure distributed affinity

•  Array of locks can be any size
–  one, NTHREADS, NDATA, NDATA/NTHREADS
–  In this example NTHREADS Lock entire threads local data

1 May 2012 CUG 2012 Stuttgart, Germany 22

SHMEM: Memory
•  Declare symmetric pointers with file scope

•  Allocate memory symmetrically
–  variables have the same address on different pes

1 May 2012 CUG 2012 Stuttgart, Germany 23

numb *hashtab;

hashtab = shmalloc(nobj*sizeof(numb));

Private memory
p1

nobj

p1

shared memory

accessible via
function calls

p1

nobj

PE 0 PE 1 PE 2

nobj

SHMEM: RMA and synchronisation

•  RMA is achieved by calls to SHMEM library

•  Global synchonisation

•  Control access to data elements with locks

•  create array of locks of type long, size number pes
–  Locks must be symmetric
–  initialise (unlock) locks with
–  set lock with

1 May 2012 CUG 2012 Stuttgart, Germany 24

shmem_get(&localHash,&(hashtab[destpos]),1,destpe);
 target source array position remote pe

shmem_barrier_all();

shmem_clear_lock(&lock[destpe])

shmem_set_lock(&lock[destpe])

Hardware and Environment

•  HECToR – UK National supercomputer
service. Cray XE6

•  All codes compiled with Cray C
compiler (and Cray SHMEM)

1 May 2012 CUG 2012 Stuttgart, Germany 25

•  benchmarks run on XE6 Gemini interconnect
–  Phase 3 AMD 32 core interlagos
–  Phase 2 AMD 24 core Magny-cours

•  Integer object of 8 bytes with two passes of the hash table

•  Weak scaling results show
–  wall clock time versus number of cores
–  fixed size of local hash table
–  different sizes are shown as different curves on the plots

MPI

1 May 2012 CUG 2012 Stuttgart, Germany 26

UPC

1 May 2012 CUG 2012 Stuttgart, Germany 27

SHMEM

1 May 2012 CUG 2012 Stuttgart, Germany 28

Strong scaling

1 May 2012 CUG 2012 Stuttgart, Germany 29

Profile MPI with Cray-PAT

1 May 2012 CUG 2012 Stuttgart, Germany 30

MPI profile

•  MPI_Win_unlock() taking significant amounts of time

•  When does RMA occur?

•  Not defined in standard

•  MPI_Win_unlock() is the synchronisation point
–  all MPI RMA and synchronisation effectively occurring at that point
–  Hence function taking most time

•  Profiling cannot resolve this further

•  Nothing obviously wrong here
–  code
–  MPI implementation

1 May 2012 CUG 2012 Stuttgart, Germany 31

One-sided MPI performance

•  Why is it so bad?

•  Other PGAS RMA models have memory restrictions
–  SHMEM “symmetric” variables
–  UPC static or global variables
–  CAF non-stack memory

•  One-sided MPI widow can be constructed from any memory
–  This is hard to implement efficiently (apparently in MPICH2)
–  Likely cause poor performance

1 May 2012 CUG 2012 Stuttgart, Germany 32

MPI 3

•  Working group on RMA recognise this

•  In MPI3 (July 2011) proposal new memory management call

•  “Rationale. By allocating (potentially aligned) memory instead of allowing the user to
pass in an arbitrary buffer, this call can improve the performance for systems with remote
direct memory access significantly. This also permits the collective allocation of memory
and supports what is sometimes called the “symmetric allocation” model that can be more
scalable (for example, the implementation can arrange to return an address for the
allocated memory that is the same on all processes).”

•  This is very welcome and should allow for better
implementations

1 May 2012 CUG 2012 Stuttgart, Germany 33

MPI_WIN_ALLOCATE(size,disp_unit,info,comm,baseptr,win)

MPI 3

•  However, the RMA working group lists 8 design goals …
•  1. In order to support RMA to arbitrary locations, no constraints on

memory, such as symmetric allocation or collective window creation, can
be required.

•  What is the rationale for this?

•  This is the case in MPI-2
–  Difficult to implement this
–  poor performance
–  prevents take up by users
–  Failure

1 May 2012 CUG 2012 Stuttgart, Germany 34

Harsh criticism
Speaker is unaware
of any applications
using one-sided MPI

SHMEM and UPC performance

•  Both scale reasonably well with
–  size of hash table
–  number of cores

•  Benchmark is effectively testing point-to-point, anywhere-to-
anywhere communication

•  SHMEM is faster than UPC
–  SHMEM maps directly to underlying dmapp protocol
–  UPC has more complicated mapping to underlying protocol and

hardware

1 May 2012 CUG 2012 Stuttgart, Germany 35

Conclusions

1 May 2012 CUG 2012 Stuttgart, Germany 36

•  Dominance of MPI send-receive communication pattern may
be coming to an end

•  PGAS languages/libraries are an alternative
–  can be simpler to program than MPI
–  How to code for Heterogeneous architecture?

•  Compared one-sided MPI, UPC and SHMEM
–  One-sided MPI performs poorly
–  UPC and SHMEM perform well (on vender specific hdw and sfw)

•  Many instances of PGAS
–  community uptake? Portability?

•  Can Future MPI standard successfully adopt PGAS
features?

