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The Future ain’t what it used to be 
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Past performance is not a guide to 
future performance. The value of 
the investment and the income 
deriving from it can go down as well 
as up and can't be guaranteed. You 
may get back less than you 
invested.


Parallel 
computing is 
changing




Parallel Programming just got harder! 
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Mooreʼs Law: More not faster

Some cores are more equal 
than others. NUMA


AMD Interlagos


Heterogeneous Architectures: 
Accelerators


NVidia Fermi


Data parallel:  cores  MPI task


scale 230 heterogeneous cores?




Partition Global Address Space (PGAS) 
•  Distributed memory is globally addressable - GAS 

–  Partitioned into shared and local – P 
–  Direct read/write access to remote memory 

•  Asynchronous put/get 
–  remote node is not interrupted whilst memory access occurs 
–  no explicit buffering 

•  May map directly onto hardware / Direct compiler support 
–  Cray XE6 hdw and Cray compiler 

•  Language extensions 
–  Unified Parallel C (UPC) 
–  Co-Array Fortran (CAF) 

•  Libraries 
–  SHMEM (Cray SHMEM) 
–  One-sided MPI 
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How Super 
is PGAS? 
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MPI   

•  Mature, widely used and very portable 

•  Implemented as calls to an external library 
–  Linked send and receive messages (both known to the other) 
–  Collective calls, Broadcasts, gather/scatter, reductions, 

synchronisation 

•  One sided MPI calls in MPI 2 standard 
–  Remote memory access (RMA) 
–  puts, gets and synchronisation 
–  Not widely used 
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UPC 

•  Parallel extension to ISO C 99  
–  multiple threads with shared and private memory   

•  Direct addressing of shared memory 

•  Synchronisation blocking and non-blocking  

•  work sharing   

•  private and shared pointers to private and shared objects 

•  Data distribution of shared arrays   
•  Cray compiler on XE6 supports UPC 

•  Portable Berkely UPC compiler 
–  built with GCC 
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upc_barrier; 

upc_forall(exp;exp;exp;affinity); 
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SHMEM 
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•  Symmetric variables for RMA 

•  Same size, type and relative address on all PEs 

•  Non-stack variables, global or local static  

•  Dynamic allocation with shmalloc() 

•  shmem_put() and shmem_get routines for RMA 

•  Cray SHMEM 

•  OpenSHMEM 

•  Synchronisation 

•  shmem_barrier_all(); 



The hash table code 

•  Simple C hash table code 
–  supplied by Max Neunhoffer, St Andrews 

•  creates integer like objects 

•  computes the hash of the object 

•  populates the hash table, with a pointer to the object 

•  if entry already exists, inserts pointer at next free place 

•  revisits the hash table 
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Distributed hash table 

•  The almost no computation in the test code  
–  code is memory bound 

•  In parallel cannot use a local pointer to a remote object 
–  distributed table has hold a copy of the object itself 
–  Increases memory access cost compared to sequential code 
–  UPC version shared pointer to shared object possible 

–  consumes more shared memory, not considered 

•  RMA access cost much greater than direct memory access 
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Parallel code is slower than sequential code 
More nodes  more communications 



MPI hash table 

•  Declare memory structures on each MPI task 

•  link them together with MPI_Win_create()
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MPI_Win win; 

numb *hashtab; 

numb nobj; 

hashtab = (numb *)calloc(nobj,sizeof(numb)); 

MPI_Win_create(hashtab,nobj*sizeof(int),sizeof(numb),MPI_INFO_

NULL,comm,&win); 



MPI data structure 
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rank 0


rank 1


rank 2


rank 3


Window 0




MPI_Put, MPI_Get 

•  MPI ranks cannot see data on other ranks 

•  Data is accessed by MPI RMA calls to the data structure in 
the window 

•  Similarly for MPI_Put 
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MPI_Get(&localHash,1,MPI_INT,destRank,destPos,1,MPI_INT,win); 

   origin_addr,  count and type, where, count and type, Win




Synchronisation 

•  Several mechanisms 
–  MPI_Win_fence - barrier 

•  MPI_Win_lock, MPI_Win_unlock 
–  ensure no other MPI_task can access data element 
–  avoid race condition 

•  Locks all the memory of specified MPI task in the specified 
window 

•  MPI_Win_unlock to release the lock 
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UPC: Shared arrays 

•  If shared variable is array, space allocated across shared 
memory space in cyclic fashion by default 

  int x; 

  shared int y[16]; 

thread 0 thread 1 thread 2 thread 3 

Private Memory Space
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UPC: Data Distribution 

•  Possible to “block” shared arrays by defining 
shared[blocksize] type array[n] 

  int x; 

  shared[2] int y[16]; 

thread 0 thread 1 thread 2 thread 3 
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Shared Memory Space
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Collective dynamic allocation 

•  The shared memory allocated is contiguous. Similar to an 
array 

   shared [B] int *ptr; 

   ptr = (shared [B] int *)upc_all_alloc(THREADS,  

                                         N*sizeof(int)); 

Private Memory Space

p1
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Shared Memory Space
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N
 N




Memory allocation and affinity 
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N = 2 

thread 0 thread 1 thread 2 

shared int *p1; 
p1 = (shared int *  ) 
upc_all_alloc(THREADS,N*sizeof(int));  



UPC hash table 

•  Use upc pointer and collective memory allocation 

•  No blocking factor 
–  cyclic distribution is as good as any other 
–  if hash function is good enough 

•  Shared memory  all threads can see all data elements 

•  Use upc functions to determine which thread “own” data 
element 
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shared numb *hashtab; 
hashtab = (shared  numb *) 
upc_all_alloc(THREADS,nobj*sizeof(numb)); 

vthread = upc_threadof(&hashtab[v]); 



UPC: Synchronisation 
•  As with MPI, use locks to control access to data 

–  UPC declare array of locks  

•  Allocate memory – collective call 
–  all locks would have affinity of thread 0 
–  use follow trick to ensure distributed affinity 

•  Array of locks can be any size 
–  one, NTHREADS, NDATA, NDATA/NTHREADS 
–  In this example NTHREADS Lock entire threads local data 
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SHMEM: Memory 
•  Declare symmetric pointers with file scope  

•  Allocate memory symmetrically 
–  variables have the same address on different pes 
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numb *hashtab; 

hashtab = shmalloc(nobj*sizeof(numb)); 

Private memory
p1


nobj 

p1


shared memory

accessible via 
function calls


p1


nobj 

PE 0 PE 1 PE 2 

nobj 



SHMEM: RMA and synchronisation 

•  RMA is achieved by calls to SHMEM library 

•  Global synchonisation  

•  Control access to data elements with locks 

•  create array of locks of type long, size number pes 
–  Locks must be symmetric 
–  initialise (unlock) locks with 
–  set lock with 

1 May 2012 CUG 2012 Stuttgart, Germany 24 

shmem_get(&localHash,&(hashtab[destpos]),1,destpe); 
                        target                source       array position    remote pe


shmem_barrier_all(); 

shmem_clear_lock(&lock[destpe]) 

shmem_set_lock(&lock[destpe]) 



Hardware and Environment 

•  HECToR – UK National supercomputer 
service. Cray XE6 

•  All codes compiled with Cray C 
compiler (and Cray SHMEM) 
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•  benchmarks run on XE6 Gemini interconnect 
–   Phase 3 AMD 32 core interlagos 
–   Phase 2 AMD 24 core  Magny-cours 

•  Integer object of 8 bytes with two passes of the hash table 

•  Weak scaling results show 
–  wall clock time versus number of cores 
–  fixed size of local hash table 
–  different sizes are shown as different curves on the plots  



MPI 
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UPC 
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SHMEM 
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Strong scaling 
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Profile MPI with Cray-PAT 

1 May 2012 CUG 2012 Stuttgart, Germany 30 



MPI profile 

•  MPI_Win_unlock() taking significant amounts of time 

•  When does RMA occur? 

•  Not defined in standard 

•  MPI_Win_unlock() is the synchronisation point 
–  all MPI RMA and synchronisation effectively occurring at that point 
–  Hence function taking most time 

•  Profiling cannot resolve this further 

•  Nothing obviously wrong here 
–  code 
–  MPI implementation 
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One-sided MPI performance 

•  Why is it so bad? 

•  Other PGAS RMA models have memory restrictions 
–  SHMEM “symmetric” variables 
–  UPC static or global variables 
–  CAF non-stack memory 

•  One-sided MPI widow can be constructed from any memory 
–  This is hard to implement efficiently (apparently in MPICH2) 
–  Likely cause poor performance 
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MPI 3 

•  Working group on RMA recognise this 

•  In MPI3 (July 2011) proposal new memory management call 

•  “Rationale. By allocating (potentially aligned) memory instead of allowing the user to 
pass in an arbitrary buffer, this call can improve the performance for systems with remote 
direct memory access significantly. This also permits the collective allocation of memory 
and supports what is sometimes called the “symmetric allocation” model that can be more 
scalable (for example, the implementation can arrange to return an address for the 
allocated memory that is the same on all processes).” 

•  This is very welcome and should allow for better 
implementations 
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MPI_WIN_ALLOCATE(size,disp_unit,info,comm,baseptr,win)  



MPI 3 

•  However, the RMA working group lists 8 design goals … 
•  1. In order to support RMA to arbitrary locations, no constraints on 

memory, such as symmetric allocation or collective window creation, can 
be required. 

•  What is the rationale for this? 

•  This is the case in MPI-2 
–  Difficult to implement this 
–  poor performance 
–  prevents take up by users 
–  Failure 
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Harsh criticism 
Speaker is unaware 
of any applications 
using one-sided MPI 



SHMEM and UPC performance 

•  Both scale reasonably well with 
–  size of hash table 
–  number of cores 

•  Benchmark is effectively testing point-to-point, anywhere-to-
anywhere communication 

•  SHMEM is faster than UPC 
–  SHMEM maps directly to underlying dmapp protocol 
–  UPC has more complicated mapping to underlying protocol and 

hardware 
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Conclusions 
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•  Dominance of MPI send-receive communication pattern may 
be coming to an end 

•  PGAS languages/libraries are an alternative 
–  can be simpler to program than MPI 
–  How to code for Heterogeneous architecture? 

•  Compared one-sided MPI, UPC and SHMEM 
–  One-sided MPI performs poorly 
–  UPC and SHMEM perform well (on vender specific hdw and sfw)  

•  Many instances of PGAS 
–  community uptake?  Portability? 

•  Can Future MPI standard successfully adopt PGAS 
features? 


