) WI 7’

Swift — A parallel scripting language for
petascale many-task applications

Presented by: Duncan Roweth, Cray

Swift is developed and supported by:

Computation Institute, University of Chicago
and Argonne National Laboratory

Contact: Michael Wilde, wilde@mcs.anl.gov
20%% o Revised 2012.0502

..'::.-'..]- www.ci.uchicago.edu/swift Argo nne

Computation Institute NATIONAL LABORATORY

Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

— for loosely-coupled “many-task” applications —
programs and tools linked by exchanging files

— debug on a laptop, then run on a Cray system
Swift is easy to write
— a simple high-level functional language with C-like syntax

— Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— untar and run — Swift acts as a self-contained grid or cloud client
— Swift automatically runs scripts in parallel — typically without user declarations

Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

— scales readily to millions of tasks
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, earth systems science, and beyond.

www.ci.uchicago.edu/swift , Argon neo

NATIONAL LABORATORY

When do you need Swift?

Hvﬁ/cm
- _ \ A O(10)' O(100K)< ke
R S X - proteins Drug —| N
"N v I\ 1 ; 1 [o 1Y)
Tl S \W§? WY | implicated candidates| | Jz
R A ‘ in a disease (ligands)
Typical application: protein-ligand &
docking for drug screening
IS a many-task process 1M
compute
=N 1
JHebameplpy e ons
oc o O HOE ZOH N§rN
-
[Na’]4 S\/?LF

Tens of fruitful candidates for wetlab __
and X-Ray crystallography validation

www.ci.uchicago.edu/swift

AAAAAAAAAAAAAAAAAA

Challenge: Complexity of parallel computing

« Many problems call for a
“many task” approach

e ..but parallel programming
is an obstacle for scientists

e And from now on, all Open Science Grid
. | XSEDE
systems will be parallel!

o Swift harnesses diverse
parallel systems with
simple scripts that run
ordinary applications

Multicore workstations
and ad-hoc clusters

www.ci.uchicago.edu/swift , Argon ne°

AAAAAAAAAAAAAAAAAA

Solution: parallel scripting for high level parallelism

‘ Data server <:>
A

/

Swift
script N
— \ Open Science Grid

C —
@bmit host (login node, laptop, Linux servery \ /

Swift runs parallel scripts on clusters,
grids, clouds, and supercomputers.

www.ci.uchicago.edu/swift . Argon ne°

AAAAAAAAAAAAAAAAAA

All Swift execution is parallel, driven by data flow

J = f£(1); // £() and g() are
k = g(i); // computed in parallel
r = j + k; // r is set when they are done

This parallelism is automatic and pervasive in Swift.
foreach obs,1 in observations {

inv[i] = invert(obs);

}

All members of this loop are computed in parallel.

www.ci.uchicago.edu/swift . Argon nea

AAAAAAAAAAAAAAAAAA

app() functions encapsulate application programs

= typed Swift function
parameter

= files and arguments to /
from application program

Wrapping applications as Swift functions facilitates data flow,
enabling transparent distribution, parallelization, and automatic
provenance capture

www.ci.uchicago.edu/swift _ Argon ne°

AAAAAAAAAAAAAAAAAA

app() functions specify cmd line argument passing

To run:
psim -s lubg.fas -pdb p \
-t 100.0 -d 25.0 >log

In Swift code:
app (PDB pg, File log) predict
(Protein ps, Fload t,
Float dt)

{ psim "—t" temp "-c
"-s" @ps.fasta "-d" dt

PSim application "-pdb" €pg stdout=@log;

}

Protein p <ext; exec="Pmap",
id="1lubg">;

PDB structure;

File log;

(structure, log) =
predict (p, 100., 25.);

AAAAAAAAAAAAAAAAAA

Large scale parallelization with simple loops

ﬁ ﬁ ﬁ -

1,000
runs of the “!! . 'v-vv. fv-v . '!i!i‘ .
“predict”
protein folding €
application &

T1af7 T1af7-50-500

foreach sim in [1:1000] {
(structure[sim],log[sim])=
predict(p, 100., 25.);

result = analyze(structure) e
LEGEND: -1050 |
The Swift function M0 ————— %%

RMSD

predict () (blue) wraps
the application program
predict (orange).

www.ci.uchicago.edu/swift , Argon ne°

AAAAAAAAAAAAAAAAAA

Nested loops generate massive parallelism

A typical nested parameter sweep:

int nSim = 1000;
int maxRounds = 3;
Protein pSet[] <ext; exec="Protein.map">;
float startTemp[] = [100.0, 200.0 7J;
float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0 7J;
foreach p in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

}

}

10 proteins x 1000 runs x 3 rounds x 2 T° x 5 AT"’s
= 300K parallel tasks

www.ci.uchicago.edu/swift JArgon ne°

AAAAAAAAAAAAAAAAAA

Complex parallel workflows can be concisely expressed...

_ . (Run outr) reorientRun (Run r, string d)
An fMRI preprocessing script { foreach Volume iv, i in r.v {

expressed as function calls: outr.v[i] = reorient(iv, d);
}

(Run snr) functional (Run r, NormAnat a, Air shrink)

{ Run yroRun = reorientRun(r , "y");
Run roRun = reorientRun(yroRun, "x");
Volume std = roRun[0];
Run rndr = random_select(roRun, 0.1);
AirVector rndAirVec = align_linearRun(rndr,std,12,1000,1000,"81 3 3");
Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");
Volume meanRand = softmean(reslicedRndr, "y", "null");
Air mnQAAir = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);
Run nr = reslice warp run(boldNormWarp, roRun);
Volume meanAll = strictmean(nr, "y", "null")

Volume boldMask = binarize(meanAll, "y");

snr = gsmoothRun(nr, boldMask, "6 6 6");

www.ci.uchicago.edu/swift » Argon neo

NATIONAL LABORATORY

...and Swift automatically executes the script in parallel

Expanded (10 image volume) workflow:

e) W« TALLT
run in paraliel. f \ \ /
7]

random_select

/ \ alignlinear

alignlinearRun

\ reslice
resliceRun \ /
l softmean
softmean
l alignlinear
alignlinear
l / combine_warp\
combine@A /\
Each loop level resiice_warpRin reslicewarp \ /
can process :
hundpreds or Stcinea sreimean ‘
thousands of e binarize
image files (10 A /\
shown here). gsmoothRun gsmooth

sestsel
<0%%’ @
ce
S
e

www.ci.uchicago.edu/swift LArgon ne°

AAAAAAAAAAAAAAAAAA

Runtime environment to execute Swift scripts

Data server <:>
/ TeraGrid”
Gjbmit host ==

(LaptOp, L|nUX Server / Open Science Grid
script | SWi _ @
App > App Java appllcatlon 7 .
al _]32 Compute
nodes
site app |
list 1| list Workflow L
status rovenance

T L R

Swift supports clusters, grids, and supercomputers.
Download, untar, and run

www.ci.uchicago.edu/swift

Running Swift on Cray systems

Tested on XT4/5 and XE6/XK6 systems

— Beagle, Crow, Franklin, Hopper, Raven, Hera, Kaibab

Runs out of the box

— Swift is a Java application: just untar and run
Swift is a user-level application

— No modifications to systems software

— Obtains its resources through Cray PBS scheduler

— Runs on login host, external host, or compute node

— Submits jobs to a simple agent running on each node

Users edit a few files to specify runtime configuration

— sites:job sizes and times; tc: app paths; properties
OpenMP apps runs as a normal apps packed on node by Swift
Runs MPI apps by running Swift under PBS and calling aprun

www.ci.uchicago.edu/swift JArgon ne°

AAAAAAAAAAAAAAAAAA

Running Swift on Cray systems — more flexibility

e Canrun in a single scheduler job or in multiple jobs

— Swift adjusts running resources to match the dynamic
demand of the workflow

— Can define pools of resources with different attributes
(e.g., select GPU nodes or request longer running jobs)

e Can adjust per-job attributes within a pool
— Set memory, core topology, runtime, packing ratios
e Can submit a variety of job sizes in a singe run

— Can dynamically adapt to queue conditions
— Gives schedulers more opportunity to identify backfill

www.ci.uchicago.edu/swift LJArgon ne°

AAAAAAAAAAAAAAAAAA

Swift fault tolerance

e Swift can retry jobs
— Up to a user specified limit

— Can stop on first unrecoverable failure, or continue till no
more work can be done

— Very effective, since Swift can break workflow into many
separate scheduler jobs, hence smaller failure units

e Swift can replicate jobs

— If jobs don’t complete in a designated time window, Swift can
send copies of the job to other sites or systems

— The first copy to succeed is used, other copies are removed
e Each app() job can define “failure”
— Typically non-zero return code

— Wrapper scripts can decide to mask app() failures and pass
back data/logs about errors instead

www.ci.uchicago.edu/swift JArgon ne°

AAAAAAAAAAAAAAAAAA

Many-task apps run on Cray XE6: Beagle and Hopper

AA AB BB T0623, 25 res., 8.2A to
L L B AL s IR e 6.3A (excluding tail)

() Simulation of super-
cooled glass materials

4
3 — KALJ

Protein folding using
homology-free approaches

(o) Decision making in climate N L0
and energy pOIICy 'a’i? [Prec?ilcted
. . . ot I Native
D) Simulation of RNA-protein -,
interaction

(> Multiscale subsurface
modeling on Hopper

F) Modeling framework for
statistical analysis of
neuron activation

www.ci.uchicago.edu/swift

Swift efficiency on Cray XE6 test system “raven”

100 second tasks —&— 400 seconds =——t—
200 second tasks

100 | | |
Y G e
—_—
—h
98 —
) 96 —
- —u
2
L
£ ol i
97 | XE6 “Raven” 24 cores/node, 20 nodes. B
3 waves of tasks per core, up to 384 cores.
Times include PBS job queue and launch delay, in idle queue.
90 I I I I I I I
0 50 100 150 200 250 300 350 400

Number of Processors

Swift efficiency on Cray XEG6 test system “hera”

100 second tasks —&— 400 seconds =t
200 second tasks

100 I
y -—
—t
90 . -
) 80 .
-
v
O
5 70+ |
XE6 “Hera” 588 IL-16 nodes, 32 cores/node.
60 | 3 waves of tasks per core, measured to 16,000 cores (500nodes). |
Times include PBS job queue and launch delay, in idle queue.
50 I I I I I I I

2000 4000 6000 8000 10000 12000 14000 16000
Number of Processors

Swift task rates on Cray XE6 test system “hera”

Task rate

350

300

N
9
o

N
o
o

Tasks/sec

=
(9
o

100

50

XE6 “Hera” 32 cores/node, 588 nodes.
8 waves of tasks per core, up to 18,816 cores and 150K tasks.
Times include PBS job queue and launch delay, in idle queue.

0

4000 6000 8000 10000 12000 14000 16000 18000
Number of Cores

20000

Performance study for DSSAT application

Active jobs

20000 | ! | |
Lost 2K cores due to Swift system error.
18000 | — ; .
T /2NN A I
16000 -
m 14000 I Cumulative jobs —
Q 160000
O 12000 140000 | |
-
@ 10000 g 120000 | .
> % 100000 |
.-I: 8000 - § 80000 | N
@) 5
< 6000 | % 60000 t]
4000) 20000 | N
2000 |- ° 0 zéo 460 660 860 1060 1260 1400]
O | | | Time in seclonds | |
0 200 400 600 800 1000 1200 1400

Time in Seconds

Synthetic test of DSSAT application workload, 152,000 128 sec tasks, 18,816 cores of
Cray XK6 Hera, 32 cores/node (2x IL-16) . Average task rate 116/sec, 79% efficiency.

Performance study for DSSAT application

Active Jobs

Active jobs

16000 |
ﬁl/

14000 -

12000 -

10000 -
8000 r
6000 -
4000 -

2000 -

ol l l l l l l

0 100 200 300 400 500 600 700
Time in Seconds

800

Synthetic test of DSSAT application workload, 48,000 200 sec tasks, 16,000 cores of
Cray XK6 Hera, 32 cores/node (2x IL-16) .

ExM: Scaling the many-task model to exascale

e Sponsored under DOE ASCR X-Stack program

o Extend Swift: tasks can be lightweight functions
— Use Swift for the high-level logic of exascale applications
— Retain functional semantics of input-process-output

e Highly distributed program evaluation

— Re-building Swift based on an intermediate representation (“TIC")
that lends itself to highly parallel evaluation

— Scales to massive computing complexes
— Distributed future store accessible in the manner of global arrays
— Highly distributed program evaluation
— Optimizations to reduce access to global future store
e Transparent distributed local storage management
— MosaStore aggregates local/RAM filesystems (POSIX interface)
— A distributed objects store holds and passes Swift in-memory data

www.ci.uchicago.edu/swift ,Argon neé

AAAAAAAAAAAAAAAAAA

ExM: Scaling the many-task model to exascale

The ExM project runs Swift programs
as ultra-fast SPMD programs under
MPI and ADLB. Parallel evaluation

; Man-y—tE?Sk @ lets Swift run over 30,000 leaf app
application calls/second.

Graph executor

&

Graph executor

Task graph
executor

Compute node

Extreme-scale
computing complex

Graph executor

Global persistent

AAAAAAAAAAAAAAAAAA

Swift-ExM efficiency — to 128K cores

100;\-\-|\-'|

Efficiency

90

80

70

60

50

0

20000 40000 60000 80000 100000 120000
Number of Processors

14000C

Prototype Swift-ExM on BG/P Intrepid, 32,768 nodes, 131,072 cores.
100 second tasks (processes = #cores)

Conclusion: Motivation for Swift

e Enhance scientific productivity

— Location — and paradigm — independence:
Same scripts run on workstations, clusters, clouds,
grids, and petascale supercomputers

— Automation of dataflow, resource selection and
error recovery

e Enable and motivate collaboration

— Community libraries of techniques, protocols,
methods

— Designed for recording the provenance of all data
produced to facilitate scientific processes

www.ci.uchicago.edu/swift 26Argon ﬂe6

AAAAAAAAAAAAAAAAAA

Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

— for loosely-coupled applications - application and utility programs linked by
exchanging files

— debug on a laptop, then run on a Cray
Swift is easy to write
— it’s a simple high-level functional language with C-like syntax

— Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— untar and run — Swift acts as a self-contained grid or cloud client
— Swift automatically runs scripts in parallel — usually with no user input

Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

— scales readily to millions of tasks
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, earth systems science, and more.

www.ci.uchicago.edu/swift 27Argon neo

NATIONAL LABORATORY

Parallel Computing 37 (2011) 633-652

Contents lists available at ScienceDirect

PAR ALLEL
COMPUTING

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Swift: A language for distributed parallel scripting

Michael Wilde #>*, Mihael Hategan ?, Justin M. Wozniak®, Ben Clifford ¢, Daniel S. Katz?,
lan Foster #P¢

4 Computation Institute, University of Chicago and Argonne National Laboratory, United States
b Mathematics and Computer Science Division, Argonne National Laboratory, United States

¢ Department of Computer Science, University of Chicago, United States

4 Department of Astronomy and Astrophysics, University of Chicago, United States

ARTICLE INFO ABSTRACT

Article history: Scientists, engineers, and statisticians must execute domain-specific application programs

Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-

Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but

Swift their use further increases programming complexity. The Swift parallel scripting language

Parallel programming
Scripting
Dataflow

reduces these complexities by making file system structures accessible via language con-
structs and by allowing ordinary application programs to be composed into powerful par-
allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift’s implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-

uted parallel execution. Para”el Compu‘t”’]g, Sep 2011

COVER FEATURE TTT7] 1] i

PARALLEL
SGRIPTING FOR
S\ THE PETASCALE
J&N AND BEYOND

Michael Wilde, Ian Foster, Kamil Iskra, and Pete Beckman,
University of Chicago and Argonne National Laboratory

Zhao Zhang, Allan Espinosa, Mihael Hategan, and Ben Clifford, University of Chicago

Ioan Raicu, Northwestern University

IEEE COMPUTER, Nov 2009

Acknowledgments

e Swift is supported in part by NSF grants OCI-1148443, OCI-721939, OCI-0944332,
and PHY-636265, NIH DC08638, DOE and UChicago LDRD and SCI programs

e ExM is supported by the DOE Office of Science, ASCR Division
e Structure prediction supported in part by NIH

e The Swift team:

— Mihael Hategan, Justin Wozniak, David Kelly, Jon Monette, Ketan Maheshwari,
lan Foster, Dan Katz, Mike Wilde, Tim Armstrong, Ben Clifford, Zhao Zhang

e GPSI Science portal:
— Mark Hereld, Tom Uram, Wenjun Wu, Mike Papka
e Java CoG Kit used by Swift developed by:
— Mihael Hategan, Gregor Von Laszewski, and many collaborators
e ZeptoOS
— Kamil Iskra, Kazutomo Yoshii, and Pete Beckman
o Scientific application collaborators whose work is described in this talk:

— Karl Freed, Tobin Sosnick, Glen Hocky, Joe Debartolo, Aashish Adhikari, Marc Parisien,
Joshua Elliott, Meredith Franklin, Todd Muson, Rob Jacob, Sheri Mickelson (Argonne);
John Dennis, Matthew Woitaszek, Karen Schuchartd, Kushbu Agarwal, Jinbo Xu

e Deepest thanks to Dave Strenski and Duncan Roweth of Cray, for providing
benchmarking facilities, incredible assistance, and for presenting this talk. 6
www.ci.uchicago.edu/swift LArgonne

AAAAAAAAAAAAAAAAAA

