) WI 7’

Swift — A parallel scripting language for
petascale many-task applications

Presented by: Duncan Roweth, Cray

Swift is developed and supported by:

Computation Institute, University of Chicago
and Argonne National Laboratory

Contact: Michael Wilde, wilde@mcs.anl.gov
20%% o Revised 2012.0502

..'::.-'.. ....]- www.ci.uchicago.edu/swift Argo nne

Computation Institute NATIONAL LABORATORY




Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

— for loosely-coupled “many-task” applications —
programs and tools linked by exchanging files

— debug on a laptop, then run on a Cray system
Swift is easy to write
— a simple high-level functional language with C-like syntax

— Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— untar and run — Swift acts as a self-contained grid or cloud client
— Swift automatically runs scripts in parallel — typically without user declarations

Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

— scales readily to millions of tasks
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, earth systems science, and beyond.
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When do you need Swift?
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Challenge: Complexity of parallel computing

« Many problems call for a
“many task” approach

e ..but parallel programming
is an obstacle for scientists

e And from now on, all Open Science Grid
. | XSEDE
systems will be parallel!

o Swift harnesses diverse
parallel systems with
simple scripts that run
ordinary applications

Multicore workstations
and ad-hoc clusters
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Solution: parallel scripting for high level parallelism

‘ Data server <:>
A
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Swift
script N
— \ Open Science Grid
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Swift runs parallel scripts on clusters,
grids, clouds, and supercomputers.
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All Swift execution is parallel, driven by data flow

J = f£(1); // £() and g() are
k = g(i); // computed in parallel
r = j + k; // r is set when they are done

This parallelism is automatic and pervasive in Swift.
foreach obs,1 in observations {

inv[i] = invert(obs);

}

All members of this loop are computed in parallel.
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app() functions encapsulate application programs

= typed Swift function
parameter

= files and arguments to /
from application program

Wrapping applications as Swift functions facilitates data flow,
enabling transparent distribution, parallelization, and automatic
provenance capture
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app( ) functions specify cmd line argument passing

To run:
psim -s lubg.fas -pdb p \
-t 100.0 -d 25.0 >log

In Swift code:
app (PDB pg, File log) predict
(Protein ps, Fload t,
Float dt)

{ psim "—t" temp "-c
"-s" @ps.fasta "-d" dt

PSim application "-pdb" €pg stdout=@log;

}

Protein p <ext; exec="Pmap",
id="1lubg">;

PDB structure;

File log;

(structure, log) =
predict (p, 100., 25.);
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Large scale parallelization with simple loops

ﬁ ﬁ ﬁ -

1,000
runs of the “!! . 'v-vv. fv-v . '!i!i‘ .
“predict”
protein folding €
application &

T1af7 T1af7-50-500

foreach sim in [1:1000] {
(structure[sim],log[sim])=
predict(p, 100., 25.);

result = analyze(structure) e
LEGEND: -1050 |
The Swift function M0 ————— %%

RMSD

predict () (blue) wraps
the application program
predict (orange).
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Nested loops generate massive parallelism

A typical nested parameter sweep:

int nSim = 1000;
int maxRounds = 3;
Protein pSet[ ] <ext; exec="Protein.map">;
float startTemp[ ] = [ 100.0, 200.0 7J;
float delT[ ] = [ 1.0, 1.5, 2.0, 5.0, 10.0 7J;
foreach p in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

}

}

10 proteins x 1000 runs x 3 rounds x 2 T° x 5 AT"’s
= 300K parallel tasks
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Complex parallel workflows can be concisely expressed...

_ . (Run outr) reorientRun (Run r, string d)
An fMRI preprocessing script { foreach Volume iv, i in r.v {

expressed as function calls: outr.v[i] = reorient(iv, d);
}

(Run snr) functional ( Run r, NormAnat a, Air shrink )

{ Run yroRun = reorientRun(r , "y");
Run roRun = reorientRun(yroRun, "x");
Volume std = roRun[0];
Run rndr = random_select( roRun, 0.1 );
AirVector rndAirVec = align_linearRun(rndr,std,12,1000,1000,"81 3 3");
Run reslicedRndr = resliceRun( rndr, rndAirVec, "o", "k" );
Volume meanRand = softmean( reslicedRndr, "y", "null" );
Air mnQAAir = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3" );
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );
Run nr = reslice warp run( boldNormWarp, roRun );
Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y" );

snr = gsmoothRun( nr, boldMask, "6 6 6" );
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...and Swift automatically executes the script in parallel

Expanded (10 image volume) workflow:
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Runtime environment to execute Swift scripts

Data server <:>
/ TeraGrid”
Gjbmit host ==

(LaptOp, L|nUX Server / Open Science Grid
script | SWi \_ @
App > App Java appllcatlon 7 .
al _]32 Compute
nodes
site app |
list 1| list Workflow L
status rovenance

T L R

Swift supports clusters, grids, and supercomputers.
Download, untar, and run
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Running Swift on Cray systems

Tested on XT4/5 and XE6/XK6 systems

— Beagle, Crow, Franklin, Hopper, Raven, Hera, Kaibab

Runs out of the box

— Swift is a Java application: just untar and run
Swift is a user-level application

— No modifications to systems software

— Obtains its resources through Cray PBS scheduler

— Runs on login host, external host, or compute node

— Submits jobs to a simple agent running on each node

Users edit a few files to specify runtime configuration

— sites:job sizes and times; tc: app paths; properties
OpenMP apps runs as a normal apps packed on node by Swift
Runs MPI apps by running Swift under PBS and calling aprun
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Running Swift on Cray systems — more flexibility

e Canrun in a single scheduler job or in multiple jobs

— Swift adjusts running resources to match the dynamic
demand of the workflow

— Can define pools of resources with different attributes
(e.g., select GPU nodes or request longer running jobs)

e Can adjust per-job attributes within a pool
— Set memory, core topology, runtime, packing ratios
e Can submit a variety of job sizes in a singe run

— Can dynamically adapt to queue conditions
— Gives schedulers more opportunity to identify backfill
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Swift fault tolerance

e Swift can retry jobs
— Up to a user specified limit

— Can stop on first unrecoverable failure, or continue till no
more work can be done

— Very effective, since Swift can break workflow into many
separate scheduler jobs, hence smaller failure units

e Swift can replicate jobs

— If jobs don’t complete in a designated time window, Swift can
send copies of the job to other sites or systems

— The first copy to succeed is used, other copies are removed
e Each app() job can define “failure”
— Typically non-zero return code

— Wrapper scripts can decide to mask app() failures and pass
back data/logs about errors instead
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Many-task apps run on Cray XE6: Beagle and Hopper

AA AB BB T0623, 25 res., 8.2A to
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Swift efficiency on Cray XE6 test system “raven”
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Swift efficiency on Cray XEG6 test system “hera”
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Swift task rates on Cray XE6 test system “hera”

Task rate

350

300

N
9
o

N
o
o

Tasks/sec

=
(9
o

100

50

XE6 “Hera” 32 cores/node, 588 nodes.
8 waves of tasks per core, up to 18,816 cores and 150K tasks.
Times include PBS job queue and launch delay, in idle queue.

0

4000 6000 8000 10000 12000 14000 16000 18000
Number of Cores

20000



Performance study for DSSAT application

Active jobs
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Synthetic test of DSSAT application workload, 152,000 128 sec tasks, 18,816 cores of
Cray XK6 Hera, 32 cores/node (2x IL-16) . Average task rate 116/sec, 79% efficiency.




Performance study for DSSAT application

Active Jobs
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Synthetic test of DSSAT application workload, 48,000 200 sec tasks, 16,000 cores of
Cray XK6 Hera, 32 cores/node (2x IL-16) .




ExM: Scaling the many-task model to exascale

e Sponsored under DOE ASCR X-Stack program

o Extend Swift: tasks can be lightweight functions
— Use Swift for the high-level logic of exascale applications
— Retain functional semantics of input-process-output

e Highly distributed program evaluation

— Re-building Swift based on an intermediate representation (“TIC")
that lends itself to highly parallel evaluation

— Scales to massive computing complexes
— Distributed future store accessible in the manner of global arrays
— Highly distributed program evaluation
— Optimizations to reduce access to global future store
e Transparent distributed local storage management
— MosaStore aggregates local/RAM filesystems (POSIX interface)
— A distributed objects store holds and passes Swift in-memory data
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ExM: Scaling the many-task model to exascale

The ExM project runs Swift programs
as ultra-fast SPMD programs under
MPI and ADLB. Parallel evaluation

; Man-y—tE?Sk @ lets Swift run over 30,000 leaf app
application calls/second.

Graph executor

&

Graph executor

Task graph
executor

Compute node

Extreme-scale
computing complex

Graph executor

Global persistent
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Swift-ExM efficiency — to 128K cores
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Prototype Swift-ExM on BG/P Intrepid, 32,768 nodes, 131,072 cores.
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Conclusion: Motivation for Swift

e Enhance scientific productivity

— Location — and paradigm — independence:
Same scripts run on workstations, clusters, clouds,
grids, and petascale supercomputers

— Automation of dataflow, resource selection and
error recovery

e Enable and motivate collaboration

— Community libraries of techniques, protocols,
methods

— Designed for recording the provenance of all data
produced to facilitate scientific processes
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Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

— for loosely-coupled applications - application and utility programs linked by
exchanging files

— debug on a laptop, then run on a Cray
Swift is easy to write
— it’s a simple high-level functional language with C-like syntax

— Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— untar and run — Swift acts as a self-contained grid or cloud client
— Swift automatically runs scripts in parallel — usually with no user input

Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

— scales readily to millions of tasks
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, earth systems science, and more.
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