High-productivity Software Development for Accelerators

Thomas Bradley, NVIDIA
3 Ways to Accelerate Applications

Applications

Libraries
“Drop-in” Acceleration

OpenACC Directives
Easily Accelerate Applications

Programming Languages
Maximum Flexibility
3 Ways to Accelerate Applications

- Libraries
 - "Drop-in" Acceleration

- OpenACC Directives
 - Easily Accelerate Applications

- Programming Languages
 - Maximum Flexibility

CUDA Libraries are interoperable with OpenACC
3 Ways to Accelerate Applications

- Libraries: “Drop-in” Acceleration
- OpenACC Directives: Easily Accelerate Applications
- Programming Languages: Maximum Flexibility

CUDA Languages are interoperable with OpenACC
3 Ways to Accelerate Applications

- Libraries
 - “Drop-in” Acceleration

- OpenACC Directives
 - Easily Accelerate Applications

- Programming Languages
 - Maximum Flexibility

All of the above!
DEVELOPING WITH LIBRARIES
GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications
CUDA Math Libraries

High performance math routines for your applications:

- cuFFT Fast Fourier Transforms Library
- cuBLAS Complete BLAS Library
- cuSPARSE Sparse Matrix Library
- cuRAND Random Number Generation (RNG) Library
- NPP Performance Primitives for Image & Video Processing
- Thrust Templated C++ Parallel Algorithms & Data Structures
- math.h C99 floating-point Library

Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda

More information on CUDA libraries:

developer.nvidia.com/technologies/libraries

© NVIDIA Corporation 2012
cuFFT: Multi-dimensional FFTs

- New in CUDA 4.1
 - Flexible input & output data layouts for all transform types
 - Similar to the FFTW “Advanced Interface”
 - Eliminates extra data transposes and copies
 - API is now thread-safe & callable from multiple host threads
 - Restructured documentation to clarify data layouts

\[F(x) = \sum_{n=0}^{N-1} f(n) e^{-j2\pi(x-n) \over N} \]

\[f(n) = \frac{1}{N} \sum_{n=0}^{N-1} F(x) e^{j2\pi(x-n) \over N} \]
FFT up to 10x Faster than MKL

1D used in audio processing and as a foundation for 2D and 3D FFTs

Performance may vary based on OS version and motherboard configuration.
cuBLAS: Dense Linear Algebra on GPUs

- Complete BLAS implementation plus useful extensions
 - Supports all 152 standard routines for single, double, complex, and double complex

- New in CUDA 4.1
 - New batched GEMM API provides >4x speedup over MKL
 - Useful for batches of 100+ small matrices from 4x4 to 128x128
 - 5%-10% performance improvement to large GEMMs
cuBLAS Level 3 Performance

Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL

- 4Kx4K matrix size
- cuBLAS 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Performance may vary based on OS version and motherboard configuration
ZGEMM Performance vs Intel MKL

Performance may vary based on OS version and motherboard configuration

- cuBLAS 4.1 on Tesla M2090, ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
cuSPARSE: Sparse linear algebra routines

- Sparse matrix-vector multiplication & triangular solve
 - APIs optimized for iterative methods
- New in 4.1
 - Tri-diagonal solver with speedups up to 10x over Intel MKL
 - ELL-HYB format offers 2x faster matrix-vector multiplication

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
\end{bmatrix}
= \alpha
\begin{bmatrix}
 1.0 & \ldots & \ldots & \ldots \\
 2.0 & 3.0 & \ldots & \ldots \\
 \ldots & \ldots & 4.0 & \ldots \\
 5.0 & \ldots & 6.0 & 7.0 \\
\end{bmatrix}
\begin{bmatrix}
 1.0 \\
 2.0 \\
 3.0 \\
 4.0 \\
\end{bmatrix}
+ \beta
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
\end{bmatrix}
\]
cuSPARSE is >6x Faster than Intel MKL

Sparse Matrix x Dense Vector Performance

Speedup over Intel MKL

csrMV* hybMV*

dense2 nd24k crankseg_2 pdb1HitS f1 cant pwtk idoor qd5_4 cop20k_3 cage14 2cubes_Sphere atmosmood mac_econ_fwd500 scircuit shallow_water1 webbase-1M bcstm38

*Average speedup over single, double, single complex & double-complex

Performance may vary based on OS version and motherboard configuration

© NVIDIA Corporation 2012
Tri-diagonal solver performance vs. MKL

Speedup for Tri-Diagonal solver (gtsv)

- **single**
- **double**
- **complex**
- **double complex**

<table>
<thead>
<tr>
<th>Matrix Size (NxN)</th>
<th>Speedup over Intel MKL</th>
</tr>
</thead>
<tbody>
<tr>
<td>16384</td>
<td>2</td>
</tr>
<tr>
<td>131072</td>
<td>4</td>
</tr>
<tr>
<td>1048576</td>
<td>6</td>
</tr>
<tr>
<td>2097152</td>
<td>8</td>
</tr>
<tr>
<td>4194304</td>
<td>12</td>
</tr>
</tbody>
</table>

*Parallel GPU implementation does not include pivoting

Performance may vary based on OS version and motherboard configuration.

- cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
cuRAND: Random Number Generation

- Pseudo- and Quasi-RNGs
- Supports several output distributions
- Statistical test results reported in documentation

- New commonly used RNGs in CUDA 4.1
 - MRG32k3a RNG
 - MTGP11213 Mersenne Twister RNG
cuRAND Performance compared to Intel MKL

Double Precision Uniform Distribution

- CURAND XORWOW
- CURAND MRG32k3a
- CURAND MTGP32
- CURAND 32 Bit Sobol
- CURAND 32 Bit Scrambled Sobol
- CURAND 64 Bit Sobol
- CURAND 64 bit Scrambled Sobol
- MKL MRG32k3a
- MKL 32 Bit Sobol

Double Precision Normal Distribution

- CURAND XORWOW
- CURAND MRG32k3a
- CURAND MTGP32
- CURAND 32 Bit Sobol
- CURAND 32 Bit Scrambled Sobol
- CURAND 64 Bit Sobol
- CURAND 64 bit Scrambled Sobol
- MKL MRG32k3a
- MKL 32 Bit Sobol

Performance may vary based on OS version and motherboard configuration

© NVIDIA Corporation 2012
1000+ New Functions in NPP 4.1
Up to 40x speedups

- NVIDIA Performance Primitives (NPP) library includes over 2200 GPU-accelerated functions for image & signal processing
 Arithmetic, Logic, Conversions, Filters, Statistics, etc.

- Most are 5x-10x faster than analogous routines in Intel IPP

http://developer.nvidia.com/content/graphcuts-using-npp

* NPP 4.1, NVIDIA C2050 (Fermi)
* IPP 6.1, Dual Socket Core™ i7 920 @ 2.67GHz
USING CUDA LIBRARIES WITH OPENACC
CUDA libraries and OpenACC both operate on device arrays.

OpenACC provides mechanisms for interop with library calls:
- deviceptr data clause
- host_data construct

Note: same mechanisms provide interop with custom CUDA C/C++/Fortran code.
deviceptr Data Clause

deviceptr(list) Declares that the pointers in list refer to device pointers that need not be allocated or moved between the host and device for this pointer.

Example:

C

#pragma acc data deviceptr(d_input)

Fortran

$!acc data deviceptr(d_input)
host_data Construct

Makes the address of device data available on the host.

`host_data(list)` Tells the compiler to use the device address for any variable in `list`. Variables in the list must be present in device memory due to data regions that contain this construct.

Example

C

```c
#pragma acc host_data use_device(d_input)
```

Fortran

```
$!acc host_data use_device(d_input)
```
Example: 1D convolution using cuFFT

- Perform convolution in frequency space
 1. Use cuFFT to transform input signal and filter kernel into the frequency domain
 2. Perform point-wise complex multiply and scale on transformed signal
 3. Use cuFFT to transform result back into the time domain

- Perform step 2 using OpenACC

- Code walk-through follows, code available
// Transform signal and kernel
error = cufftExecC2C(plan, (cufftComplex *)d_signal,
 (cufftComplex *)d_signal, CUFFT_FORWARD);
error = cufftExecC2C(plan, (cufftComplex *)d_filter_kernel,
 (cufftComplex *)d_filter_kernel, CUFFT_FORWARD);

// Multiply the coefficients together and normalize the result
printf("Performing point-wise complex multiply and scale.\n");
complexPointwiseMulAndScale(new_size,
 (float *restrict)d_signal,
 (float *restrict)d_filter_kernel);

// Transform signal back
error = cufftExecC2C(plan, (cufftComplex *)d_signal,
 (cufftComplex *)d_signal, CUFFT_INVERSE);
void complexPointwiseMulAndScale(int n, float *restrict signal,
 float *restrict filter_kernel)
{
 // Multiply the coefficients together and normalize the result
 #pragma acc data deviceptr(signal, filter_kernel)
 {
 #pragma acc kernels loop independent
 for (int i = 0; i < n; i++) {
 float ax = signal[2*i];
 float ay = signal[2*i+1];
 float bx = filter_kernel[2*i];
 float by = filter_kernel[2*i+1];
 float s = 1.0f / n;
 float cx = s * (ax * bx - ay * by);
 float cy = s * (ax * by + ay * bx);
 signal[2*i] = cx;
 signal[2*i+1] = cy;
 }
 }
}

Note: The PGI C compiler does not currently support structs in
OpenACC loops, so we cast the Complex* pointers to float*
pointers and use interleaved indexing
Summary

- Use `deviceptr` data clause to pass pre-allocated device data to OpenACC regions and loops.

- Use `host_data` to get device address for pointers inside `acc data regions`.

- The same techniques shown here can be used to share device data between OpenACC loops and:
 - Your custom CUDA C/C++/Fortran/etc. device code.
 - Any other CUDA Library that uses CUDA device pointers.
Rapid Parallel C++ Development

- Resembles C++ STL
 - High-level interface
 - Enhances developer productivity
 - Enables performance portability between GPUs and multicore CPUs
- Flexible
 - CUDA, OpenMP, and TBB backends
- Extensible and customizable
 - Integrates with existing software
- Open source

// generate 32M random numbers on host
thrust::host_vector<int> h_vec(32 << 20);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// transfer data to device (GPU)
thrust::device_vector<int> d_vec = h_vec;

// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

© NVIDIA Corporation 2012
Processing Rainfall Data

| day | 0 0 1 2 5 5 6 6 7 8 ...
| site | 2 3 0 1 1 2 0 1 2 1 ...
| measure | 9 5 6 3 3 8 2 6 5 10 ...

Notes
1) Time series sorted by day
2) Measurements of zero are excluded from the time series
Storage Options

- **Array of structures**

  ```
  struct Sample {
      int day;
      int site;
      int measurement;
  };
  thrust::device_vector<Sample> data;
  ```

- **Structure of arrays (Best Practice)**

  ```
  struct Data {
      thrust::device_vector<int> day;
      thrust::device_vector<int> site;
      thrust::device_vector<int> measurement;
  };
  Data data;
  ```
Processing Rainfall Data

- Total rainfall at a given site
- Total rainfall at each site
- Total rainfall between given days
- Number of days with any rainfall
- Number of days where rainfall exceeded 5
- Day where total rainfall reached 32

- Additional problem: Sort unsorted input
Total Rainfall at a Given Site

```cpp
struct one_site_measurement {
    int site;
    one_site_measurement(int site) : site(site) {}

    __host__ __device__ int operator()(thrust::tuple<int, int> t) {
        if (thrust::get<0>(t) == site)
            return thrust::get<1>(t);
        else
            return 0;
    }
};

int compute_total_rainfall_at_one_site(int i, const Data &data) {
    // Fused transform-reduce (best practice).
    return thrust::transform_reduce(
        thrust::make_zip_iterator(thrust::make_tuple(data.site.begin(), data.measurement.begin())),
        thrust::make_zip_iterator(thrust::make_tuple(data.site.end(), data.measurement.end())),
        one_site_measurement(i),
        0,
        thrust::plus<int>())
};
```
template <typename Vector>
void compute_total_rainfall_per_site(const Data &data, Vector &site, Vector &measurement) {
 // Copy data to keep the original data as it is.
 Vector tmp_site(data.site);
 Vector tmp_measurement(data.measurement);

 // Sort the "pairs" (site, measurement) by increasing value of site.
 thrust::sort_by_key(tmp_site.begin(), tmp_site.end(), tmp_measurement.begin());

 // Reduce measurements by site (Assumption: site/measurement are big enough).
 thrust::reduce_by_key(tmp_site.begin(), tmp_site.end(), tmp_measurement.begin(),
 site.begin(),
 measurement.begin());
}

tmp_site [0 1 1 1 2 2 2 3 ...]
tmp_measurement [6 + 2 3 + 3 + 6 + 10 9 + 8 + 5 5 ...]

site [0 1 2 3 ...]
measurement [8 22 22 5 ...]
Total Rainfall Between Given Days

```c++
int compute_total_rainfall_between_days(int first_day, int last_day, const Data &data) {
    // Search first_day/last_day using binary searches.
    int first = thrust::lower_bound(data.day.begin(), data.day.end(), first_day) - data.day.begin();
    int last  = thrust::upper_bound(data.day.begin(), data.day.end(), last_day) - data.day.begin();

    // Reduce the measurements between the two bounds.
    return thrust::reduce(data.measurement.begin() + first, data.measurement.begin() + last);
}
```

ds
```c++
lower_bound( .... , 2)    upper_bound( .... , 6)
day            [0 0 1 2 5 5 6 6 7 8 ... ]
measurement    [9 5 6 3 3 8 2 6 5 10 ... ]
```
Number of Days with Any Rainfall

```cpp
int compute_number_of_days_with_rainfall(const Data &data) {
    return thrust::inner_product(data.day.begin(), data.day.end() - 1,
                                 data.day.begin() + 1,
                                 1,
                                 thrust::plus<int>(),
                                 thrust::not_equal_to<int>()) + 1;
}
```

<table>
<thead>
<tr>
<th>day</th>
<th>[0 0 1 2 5 5 6 6 7 8 ...]</th>
</tr>
</thead>
<tbody>
<tr>
<td>= ≠ ≠ ≠ = ≠ ≠ ≠ = ≠ ≠ ≠</td>
<td></td>
</tr>
<tr>
<td>day shifted</td>
<td>[0 0 1 2 5 5 6 6 7 8 ...]</td>
</tr>
<tr>
<td>[0 + 1 + 1 + 1 + 0 + 1 + 0 + 1 + 1 ...] + 1</td>
<td></td>
</tr>
</tbody>
</table>

© NVIDIA Corporation 2012
using namespace thrust::placeholders;

int count_days_where_rainfall_exceeded_5(const Data &data) {
 size_t N = compute_number_of_days_with_rainfall(data);

 thrust::device_vector<int> day(N);
 thrust::device_vector<int> measurement(N);

 thrust::reduce_by_key(
 data.day.begin(), data.day.end(),
 data.measurement.begin(),
 day.begin(),
 measurement.begin());

 return thrust::count_if(measurement.begin(), measurement.end(), _1 > 5);
}
Scalability

Architectural Advancement ➔ Performance Improvement
Calling Thrust from CUDA Fortran

C wrapper for Thrust: csort.cu

```c
#include <thrust/device_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

extern "C" {
    //Sort for integer arrays
    void sort_int_wrapper(int *data, int N) {
        // Wrap raw pointer with a device_ptr
        thrust::device_ptr<int> dev_ptr(data);
        // Use device_ptr in Thrust sort algorithm
        thrust::sort(dev_ptr, dev_ptr+N);
    }

    //Sort for single precision arrays
    void sort_float_wrapper(float *data, int N) {
        thrust::device_ptr<float> dev_ptr(data);
        thrust::sort(dev_ptr, dev_ptr+N);
    }

    //Sort for double precision arrays
    void sort_double_wrapper(double *data, int N) {
        thrust::device_ptr<double> dev_ptr(data);
        thrust::sort(dev_ptr, dev_ptr+N);
    }
}
```

© NVIDIA Corporation 2012
Calling Thrust from CUDA Fortran

Fortran interface to C wrapper using ISO C Bindings

module thrust

interface thrustsort

subroutine sort_int(input,N) bind(C,name="sort_int_wrapper")
use iso_c_binding
integer(c_int),device:: input(*)
integer(c_int),value:: N
end subroutine

subroutine sort_double(input,N) bind(C,name="sort_double_wrapper")
use iso_c_binding
real(c_double),device:: input(*)
integer(c_int),value:: N
end subroutine

end interface
end module

© NVIDIA Corporation 2012
CUDA Fortran sorting with Thrust

program testsort
use thrust
real, allocatable :: cpuData(:)
real, allocatable, device :: gpuData(:)
integer:: N=10
!Allocate CPU and GPU arrays
allocate(cpuData(N),gpuData(N))
!Fill the host array with random data
do i=1,N
 cpuData(i)=random(i)
end do
! Print unsorted data
print *, cpuData
! Send data to GPU
gpuData = cpuData
! Sort the data
call thrustsort(gpuData,N)
! Copy the result back
cpuData = gpuData
! Print sorted data
print *, cpuData
! Deallocate arrays
deallocate(cpuData,gpuData)
end program testsort

nvcc -c -arch sm_20 csort.cu
pgf90 -rc=rc4.0 -Mcuda=cc20 -O3 -o testsort thrust_module.cuf testsort.cuf csort.o

$./tests ort
Before sorting 4.1630346E-02 0.9124327 0.7832350 0.6540373 100.0000 0.3956419 0.2664442 0.13724658.0488138E-03 0.8788511
After sorting 8.0488138E-03 4.1630346E-02 0.1372465 0.26644420.3956419 0.6540373 0.7832350 0.87885110.9124327 100.0000
SIX WAYS TO SAXPY
Single precision **Alpha X Plus Y (SAXPY)**

Part of Basic Linear Algebra Subroutines (BLAS) Library

$$z = \alpha x + y$$

x, y, z: vector
α: scalar

GPU SAXPY in multiple languages and libraries

A menagerie* of possibilities, not a tutorial

*technically, a *program chrestomathy*; http://en.wikipedia.org/wiki/Chrestomathy

© NVIDIA Corporation 2012
```c
int N = 1<<20;
...
// Use your choice of blas library
// Perform SAXPY on 1M elements
blas_saxpy(N, 2.0, x, 1, y, 1);
```

```c
int N = 1<<20;
cublasInit();
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);
// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);
cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);
cublasShutdown();
```

You can also call cuBLAS from Fortran, C++, Python, and other languages
http://developer.nvidia.com/cublas
subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n,
 $!
 acc
 kernels
 do i = 1,n
 y(i) = a*x(i)+y(i)
 enddo
 $!acc end kernels
end subroutine

... Perform SAXPY on 1M elements
... call saxpy(2**20, 2.0, x, y);

// Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...

void saxpy(int n,
 float a,
 float *x,
 float *y)
{
 #pragma acc kernels
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

... // Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...

... $ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x, y);

...
int N = 1<<20;
std::vector<float> x(N), y(N);

... // Perform SAXPY on 1M elements
std::transform(x.begin(), x.end(),
 y.begin(), y.end(),
 2.0f * _1 + _2);

int N = 1<<20;
thrust::host_vector<float> h_x(N), h_y(N);

... // Perform SAXPY on 1M elements
thrust::transform(h_x.begin(), h_x.end(),
 h_y.begin(), h_y.end(),
 2.0f * _1 + _2);

http://developer.nvidia.com/thrust

www.boost.org/libs/lambda
void saxpy(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

int N = 1<<20;

// Perform SAXPY on 1M elements
saxpy(N, 2.0, x, y);

__global__
void saxpy(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

int N = 1<<20;

cudaMemcpy(x, h_x, N, cudaMemcpyHostToDevice);
cudaMemcpy(y, h_y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<<4096,256>>>(N, 2.0, x, y);
cudaMemcpy(h_y, y, N, cudaMemcpyDeviceToHost);
CUDA Fortran

Standard Fortran

```fortran
module mymodule contains
    subroutine saxpy(n, a, x, y)
        real :: x(:), y(:), a
        integer :: n, i
        do i=1,n
            y(i) = a*x(i)+y(i)
        enddo
    end subroutine saxpy

program main
    use mymodule
    real :: x(2**20), y(2**20)
    x = 1.0, y = 2.0

    $ Perform SAXPY on 1M elements
    call saxpy(2**20, 2.0, x, y)

end program main
```

Parallel Fortran

```fortran
module mymodule contains
    subroutine saxpy(n, a, x, y)
        attributes(global) real :: x(:), y(:), a
        attributes(value) integer :: n, i
        integer :: threadIdx%, blockIdx%, blockDim%
        do i=1,n
            y(i) = a*x(i)+y(i)
        enddo
    end subroutine saxpy

program main
    use cudafor; use mymodule
    real, device :: x(2**20), y(2**20)
    x = 1.0, y = 2.0

    $ Perform SAXPY on 1M elements
    call saxpy<<<4096,256>>>(2**20, 2.0, x, y)

end program main
```

Thank you
GPU Technology Conference 2012
May 14-17 | San Jose, California

Developer Education: Parallel Programming Languages and Compilers, Tools, Optimization, Libraries, Directives Based Programming

Research Areas: Bioinformatics, Computational Physics, Supercomputing, Energy Exploration, Climate & Weather, Finance, CFD, Machine Learning & AI, Quantum Chemistry, and much more!

Register today and learn from the experts!
Academics are entitled to a 40% discount, so please use code GA40CF when you register.

Learn more at www.gputechconf.com