May 1, 2012

I/O: Toward The Exascale Era

Cray User Group

Keith Miller

Technical Director WW HPC and LS , DDN

DDN is the world leader in massively scalable storage and processing technology for unstructured & big data applications.

Established: 1998 Revenue: \$250M+ Per Year, Profitable & Growing Headquarters: Chatsworth, California USA Employees: 500+ Worldwide Worldwide Presence: 4 Continents, 15 Countries Installed Base: 1,000+ Customers; 50 Countries Go to Market: Global Partners, VARs, Resellers World-Renowned & Award Winning:

©2012 DataDirect Networks. All Rights Reserved.

DDN | 2012 Update

INFRASTRUCTURE

Organizational L1/2/3, ProServe

Systems Oracle

PEOPLE

Organizational

- 140: Data Intensive Computing Team
 - World's Largest Lustre Front-Line

Storage Fusion

- 1M+ of State-Machine Code
- 100s of Engineers

The World's Largest Independent Storage Company –
Heavily Invested In Lustre and The Lustre Ecosystem –
Driven By HPC –

Current Leadership

Real-Time, HPC State Machine

- 1M Lines of Zero-Interrupt Storage Engine Code
- Highly-Parallel Storage Processing Architecture
- Adaptive RAM Cache for Mixed Workloads, Journals
- Embedded Virtualization For ExaScaler[™] Appliances

Quality Of Service

- Critical For Strided Writes & Reads
 - SFA Technology Maximizes Cluster Productivity
 - Performance Degredation Less Than 10%
- Real-Time Latency Management

Autonomous, Self-Healing Technology

- Automatic Drive Power Cycling
- Predicts and Prevents Drive Failures
- Minimizes Failure Instances by 80%

2/7/12 ddn.com

DDN & WC | Partners in HPC

DataDirect NETWORKS

A Look Toward Exascale

gravitational force = centripedal force: $G\frac{Mm}{F^2} = \frac{mv^2}{F}$ but $v^2 = \left(\frac{d}{t}\right)^2 = \left(\frac{2\pi t}{t}\right)^2 = \frac{4\pi t^2 r^2}{t^2}$ So $G_{r^2}^M = \frac{4\pi i r^2}{r^{2}}$ or $M = \frac{r^2}{G} \left(\frac{4\pi^2 r^2}{r^{42}} \right)$ $M = \left(\frac{4\pi^2}{G}\right) \frac{r^3}{t^2}$

©2012 DataDirect Networks. All Rights Reserved.

Exascale Systems will be big...

System attributes	2010	"2018"	
System peak	2 Peta	1 Exaflop/sec	
Power	6 MW	20 MW	
System memory	0.3 PB	32-64 PB	
Node performance	125 GF	1 TF	10 TF
Node memory BW	25 GB/s	0.4 TB/sec	4 TB/sec
Node concurrency	12	O(1,000)	O(10,000)
System size (nodes)	18,700	1,000,000	100,000
Total Node Interconnect BW	1.5 GB/s	200 GB/sec	
MTTI	days	O(1 day)	

Billion-Way Parallelism Will Be A Reality

New Configurations Are Outfitting 1000s of Cores Per Data Center Rack

The impact on Storage:

- B-Way Parallelism will challenge Exascale file system locking and data integrity mechanisms
- New memory-class storage will require new approaches for tiering and data locality
- Exascale consortiums are seeking new methods to reduce cluster and network workload

Hyper-Concurrency is a Result of Exascale CPU Evolution

...Big Data is already in HPC!

"It took 100 months for us to create our first Petabyte of data. It took us only one month to create our 18th Petabyte."

Jeffrey Nichols, Associate Lab Director October, 2011

Big Data Challenges @ Exascale: Moving PB Objects, Datasets Managing Diverse Data Models

Mainframe Era 1980s Client:Server Era 1990s Mobility/Web Era 2000s

Big Data Era 2010s

Source: IDC 2011: The Expanding Digital Universe.

©2012 DataDirect Networks. All Rights Reserved.

ddn.com

Zettabytes

ഹ

Convergence @ HyperScale

©2012 DataDirect Networks. All Rights Reserved.

Today's IO Models: Too Much Clutter

- Collapse 5 separate data structures into one
- Each layer has its own "Database"
- Whether its named POSIX or SQL
- Each layer has failover and redundancy
- Each layer has complex recovery
- Each layer has garbage collecting and maintenance

Data Transparency will address these issues

Object Storage Is Enabling A Re-Think On Data Layouts

Science – NetCDF, HDF5, SciDB, etc.

- Self-describing data
- Metadata built into the file itself

Web – NoSQL stores

- Flexible data structures (schemas)
- Easy
- Speed, scale
- **Objects (Cloud)**
- Flat, global, arbitrary naming
- Integral sector management
- User-defined metadata

The Evolution of Object Storage

"Hundreds of millions of people use object storage every day – and don't even know it."

13 ©2012 DataDirect Networks. All Rights Reserved.

A Hyperscale Case Study

The Cloud Scales: Amazon S3 Growth

Total Number of Objects Stored in Amazon S3

Source: Amazon S3 Blog

©2012 DataDirect Networks. All Rights Reserved.

Storage: Sources of Latency

Hardware Chain

- Disk drive servo operation
- Multiple SCSI layers
- Multiple bus transitions
- Memory bandwidth limitations
- Network service latencies

Software Chain

- Memory copies
- Kernel operations
- Layers of consecutive operations including the service of V-nodes, I-nodes and FAT
- Serial data transport processes

WOS is designed to reduce latency in all phases of data capture and retrieval

DDN | Hyperscale Initiative

Understand the data usage model in a collaborative environment where immutable data is shared and studied

A simplified data access system

Eliminates the concept of FAT, extent lists to maximize efficiency

Reduce the instruction set to only PUT, GET, & DELETE

Add the concept of locality based on latency to data and load balance

Abandons storage convention entirely

WOS | Overview

GeoDistributed, Scale-out Object Storage System Hyper-Scalable Cloud Storage Foundation **TRUE End: End Object Storage** Maximum Performance From Every Media Easy to Manage at Hyperscale Single namespace, Single Global Cluster Interface Autonomous, Self-Healing Big Data Infrastructure Intelligent, Fail-In-Place Architecture Flexible Cloud Storage Service Platform

Multimodal Access Featuring Billing & Multi-Tenancy

WOS is an end to end object placement file system.

- ► WOS has no concept of fragmentation
- Objects 1MB or less are stored in contiguous space minimizing actuator usage in rotating media and simplifying internal maps in solid state media

WOS is efficient

- Objects are immutable so there is no concept of "File open for xWRITE"
- Locking is completely eliminated
- Like size objects are always stored together in Object Resource Groups (ORG) so that there is no concept of "garbage collection" on a block level basis
- Operations of PUT and GET are accomplished in one concise internal transaction layer

WOS Exascale Advantages (con't)

WOS addresses data corruption in multiple dimensions

- ► All objects are written with a checksum
- ► The checksum is evaluated for every GET and every bus transition
- All objects can be written with erasure codes distributed on multiple storage devices
- Nodes automatically recover data in the case of silent data corruption with a rapid, object aware, rebuild operation
- Nodes automatically recover data in the case of media failure

WOS was designed for large scale data operations

► Test limits are 256 billion objects utilizing 256 nodes

WOS is a peer to peer data distribution system which could be utilized to enable collaboration

The Power of Object Storage

Amazon: http://aws.typepad.com/aws

EMC: http://reg.cx/1P1E

HPCS: http://www.spscicomp.org/ScicomP13/Presentations/IBM/GPFSGunda.pdf

Megastore: http://highscalability.com/blog/2011/1/11/google-megastore-3-billion-writes-and-20-billion-read-transa.html

©2012 DataDirect Networks. All Rights Reserved.

Intelligent Object Storage Lays Foundation For Exascale Efficiency

Object Stores

- Versatile data model that works with distributed block management, security and data reliability/recovery
- Tiered, Scalable to B's of reads/writes per second

Converged Storage & Processing

Pre and post processing functions and achieving integrated ILM services while making applications more data aware

Integrated Analytics

Integrated Map-Reduce and Analytics services designed to turn PBs of data into knowledge

DDN | Directions

www.ddn.com

DataDirect NETWORKS

Thank You

©2012 DataDirect Networks. All Rights Reserved.