

Debugging HPC Applications

David Lecomber

CTO, Allinea Software

david@allinea.com

Agenda

● Bugs and Debugging
● Debugging parallel applications
● Debugging OpenACC and other hybrid codes
● Debugging for Petascale (and beyond)

About Allinea

● HPC development tools company
● Flagship product Allinea DDT

– Now the leading debugger in parallel computing
– The scalable debugger

● Record holder for debugging software on largest machines
● Production use at extreme scale – and desktop

– Wide customer base
● Blue-chip engineering, government and academic research
● Strong collaborative relationships with customers and partners

Bugs in Practice

Some types of bug

● Some Terminology
● Bohr bug

– Steady, dependable bug

● Heisenbug
– Vanishes when you try to debug (observe)

● Mandelbug
– Complexity and obscurity of the cause is so great that it appears

chaotic

● Schroedinbug
– First occurs after someone reads the source file and deduces

that it never worked, after which the program ceases to work

Debugging

● Transforming a broken program to a working one

● How?
● Track the problem

● Reproduce

● Automate - (and simplify) the test case

● Find origins – where could the “infection” be from?

● Focus – examine the origins

● Isolate – narrow down the origins

● Correct – fix and verify the testcase is successful

● TRAFFIC

● Suggested Reading:
● Zeller A., “Why Programs Fail”, 2nd Edition, 2009

How to focus and isolate

● A scientific process?
● Hypothesis, trial and observation, ...

● Requires the ability to understand what a program is doing
● Printf
● Command line debuggers
● Graphical debuggers

● Other options
● Static analysis
● Race detection
● Valgrind
● Manual source code review

What are debuggers?

● Tools to inspect the insides of an application whilst it is
running
● Ability to inspect process state

– Inspect process registers, and memory

– Inspect variables and stacktraces (nesting of function calls)

– Step line by line, function by function through an execution

– Stop at a line or function (breakpoint)

– Stop if a memory location changes

● Ideal to watch how a program is executed
– Less intrusive on the code than printf

– See exact line of crash – unlike printf

– Test more hypotheses at a time

Debugging Parallel Applications

Debugging Parallel Applications

● Scalar bugs can be challenging: parallel even
more so!

● The same need: observation, control
● Complex environment – with complex problems

– More processes, more data
– More Heisenbugs – MPI communication library

introduces potential non-determinism
● Fewer options

– Printf or command line debuggers are not quick enough

First example

● Typical problem scenario: application ends
abruptly
● Example potential causes

– Segmentation fault
– Early termination due to invalid parameters

● Where do we start?

Print statement debugging

● The first debugger: print statements
● Each process prints a message or

value at defined locations

● Diagnose the problem from evidence
and intuition

● A long slow process
● Analogous to bisection root finding

Thanks to Rebecca Hartman-Baker of ORNL for
the analogy and animation

● Broken at modest scale
● Too much output – too many log files

x

f(x)

Line
Number

Segfault
Line

Print
Statements

● Graphical source level
debugger for
● Parallel, multi-threaded, scalar

or hybrid code

● C, C++, F90, Co-Array Fortran,
UPC

● Strong feature set
● Memory debugging

● Data analysis

● Managing concurrency
● Emphasizing differences

● Collective control

Allinea DDT in a nutshell

Fixing the everyday crash

● The typical application crash or early exit:

● Run your program in the debugger

 ddt {application} {parameters}

● Application crashes or starts to exit

● Where did it happen?

● Allinea DDT merges stacks from processes
and threads into a tree

● Leaps to source automatically

● Why did it happen?

● Some faults evident instantly from
location(s)

● But for others we need to look further – at
variables

● Need to understand the data
● Too many variables to trawl manually

● Allinea DDT compares data
automatically

● Smart highlighting
● Subtle hints for differences and

changes

● With sparklines!

● More detailed analysis
● Full cross process comparison

● Historical values via tracepoints

Simplifying data divergence

Memory debugging

● Random errors are the worst kind

● You can't fix a bug that doesn't repeat -
memory debugging can force the bug

● Better to crash every time, than only during
product demos

● Allinea DDT helps eliminate random
memory bugs

● Enable memory debugging by ticking an
option

● Monitors usage: detects memory leaks

● Automatically protects ends of arrays

● Trigger instant stop on touching invalid
memory

● Also with CUDA support

Interlude: Fixing a simple MPI bug

Second example

● More subtle issue
● Not an immediately obvious crash

– Crash occurs in self-evidently correct code
– Something went wrong – somewhere else!

● How can a debugger help here?
● Observation: we can watch things go bad

Controlling execution

● Observe application behaviour
by controlling execution
● Step, play or run to line based on

groups

● Change interleaving order by
stepping/playing selectively

● Set breakpoints

● Set data watchpoints

● Examine data and progress at
each point

● Group creation is easy
● Integrated throughout Allinea DDT

- eg. stack and data views

Exploring large arrays

● Browse arrays
● 1, 2, 3, … dimensions
● Table view

● Filtering
● Look for an outlier

● Export
● Save to a spreadsheet

● View and search arrays from
multiple processes
● Search terabytes for rogue

data – in parallel

Static analysis

● Analyzes source code
● Detects some

common errors (eg.)
– Memory leaks
– Buffer overflow
– Unused variables

● Not exhaustive – but a
useful hint for
debugging

Tracepoints

● A scalable print alternative
● Merged print – with a sparkline graph showing

distribution
● Change at runtime – no recompilation required

Offline debugging

● Machine access can be a
problem
● New offline mode

– Set breakpoints, tracepoints
from command line

– Memory debugging

– Record variables, stacks –
crashes and breakpoints

● Submit and forget
– Post-mortem analysis

– HTML/plain text

● Debug while you sleep

Interlude: Fixing a more unusual bug

Hands on: A first exercise with Allinea DDT

Debugging OpenACC and other hybrid codes

HPC's current challenge

● GPUs – a rival to traditional processors

● AMD and NVIDIA

● OpenCL, CUDA

● New languages, compilers, standards

● Great bang-for-bucks ratios

● A big challenge for HPC developers

● Data transfer

● Several memory levels

● Grid/block layout and thread scheduling

● Synchronization

● Bugs are inevitable

How do we fix GPU bugs?

● Print statements
● Too intrusive

● Command line debugger?
● A good start:

– Variables, source code

– Large thread counts
overwhelming

● Too complex

● A graphical debugger...

GPU Debugging

● Almost like debugging a CPU – we
can still:
● Run through to a crash

● Step through and observe

● CPU-like debugging features
● Double click to set breakpoints

● Hover the mouse for more information

● Step a warp, block or kernel

● Follow threads through the kernel

● Simultaneously debugs CPU code

● CUDA Memcheck feature detects
read/write errors

Examining GPU data

● Debugger reads host
and device memory
● Shows all memory

classes: shared,
constant, local, global,
register..

● Able to examine
variables

● … or plot larger arrays
directly from device
memory

New overviews of GPUs

● Device overview shows
system properties
● Helps optimize grid sizes
● Handy for bug fixing – and

detecting hardware failure!

● Kernel progress view
● Shows progress through

kernels
● Click to select a thread

Debugging for Directives

● Supporting the
environments that
you use for hybrid
development

OpenACC debugging

● OpenACC for C and F90
● Straightforward CUDA compute power

● Getting code onto the GPU quickly

– Optimization may still be required

● On device debugging with Allinea
DDT
● Variables – arrays, pointers, full F90

and C support

● Set breakpoints and step warps and
blocks

● Requires Cray compiler for on
device debugging
● Other compilers to follow

Interlude: CUDA Debugging

Debugging for Petascale

Extreme machine sizes

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011

0
100000
200000
300000
400000
500000
600000

Growth in HPC core counts

Average Cores

Largest

Smallest

Year

C
o

re
 c

o
u

n
t

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

5000

10000

15000

20000

HPC core counts

Average Cores Smallest

C
o

re
 c

o
u

n
t

 Progress requires ever
more CPU hours
– Machine sizes are exploding

– Skewed by largest machines

– … but a common trend
everywhere else

– Software is changing to
exploit the machines

Bug fixing as scale increases

● Can we reproduce at a smaller scale?
● Attempt to make problem happen on fewer nodes

– Often requires reduced data set – the large one may not fit
● Smaller data set may not trigger the problem

– Does the bug even exist on smaller problems?
● Didn't you already try the code at small scale?

– Is it a system issue – eg. an MPI problem?

● Is probability stacking up against you?
– Unlikely to spot on smaller runs – without many many runs
– But near guaranteed to see it on a many-thousand core run

● Debugging at extreme scale is a necessity

A simple parallel debugger

● A basic parallel debugger
● Aggregate scalar debuggers and

control asynchronously

● Implement support for many
platforms and MPI implementations

● Develop user interface: simplify
control and state display

● Initial architecture
● Scalar debuggers connect to user

interface

● Eventual scalability bottlenecks

– Operating system limitations: file
handles, threads, processes

– I/O limitations, memory and
computation limitations

● Machines still getting bigger...

User Interface

Controller

Debugger

Process

Controller

Debugger

Process

How to make a Petascale debugger

● A control tree is the solution
● Ability to send bulk commands and

merge responses

– 100,000 processes in a depth 3 tree

● Compact data type to represent sets of
processes

– eg. For message envelopes

– An ordered tree of intervals?

– Or a bitmap?

● Develop aggregations

– Merge operations are key

– Not everything can merge losslessly

– Maintain the essence of the information
● eg. min, max, distribution

0 50,000 100,000 150,000 200,000
0

0.02

0.04

0.06

0.08

0.1

0.12

DDT 3.0 Performance Figures

All Step

All Breakpoint

MPI Processes

T
im

e
 (

S
e

co
n

d
s)

For Petascale and beyond

● Scale doesn't have to be hard

● 100,000 cores should be as easy as 100
cores

● The user interface is vital to success

● Scale doesn't have to be slow
● High performance debugging - even at

200,000 cores

● Step all and display stacks: 0.1 seconds

● Logarithmic performance

● Stable and in production use

● Routinely used by end users at over
100,000 cores

Key features at scale

● Top 5 features at scale
● Parallel stack view

– Ideal for divergence or deadlock

● Automated data comparison:
sparklines

– Rogue data is easily seen

● Parallel array searching

– Data is too large to examine
manually

● Process control with step, play,
and breakpoints

– Still essential

● Offline debugging

– Access to machine may be hard –
try offline debugging instead

Interlude: Petascale demonstration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

