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Agenda

● Bugs and Debugging
● Debugging parallel applications
● Debugging OpenACC and other hybrid codes
● Debugging for Petascale (and beyond)



About Allinea

● HPC development tools company
● Flagship product Allinea DDT

– Now the leading debugger in parallel computing
– The scalable debugger

● Record holder for debugging software on largest machines
● Production use at extreme scale – and desktop

– Wide customer base
● Blue-chip engineering, government and academic research
● Strong collaborative relationships with customers and partners



  

Bugs in Practice



  

Some types of bug

● Some Terminology
● Bohr bug

– Steady, dependable bug

● Heisenbug
– Vanishes when you try to debug (observe)

● Mandelbug
– Complexity and obscurity of the cause is so great that it appears 

chaotic

● Schroedinbug
– First occurs after someone reads the source file and deduces 

that it never worked, after which the program ceases to work 



  

Debugging

● Transforming a broken program to a working one

● How?
● Track the problem

● Reproduce

● Automate - (and simplify) the test case

● Find origins – where could the “infection” be from?

● Focus – examine the origins

● Isolate – narrow down the origins

● Correct – fix and verify the testcase is successful

● TRAFFIC

● Suggested Reading:
● Zeller A., “Why Programs Fail”, 2nd Edition, 2009 



  

How to focus and isolate 

● A scientific process?
● Hypothesis, trial and observation, ...

● Requires the ability to understand what a program is doing
● Printf
● Command line debuggers
● Graphical debuggers

● Other options
● Static analysis
● Race detection 
● Valgrind
● Manual source code review



  

What are debuggers?

● Tools to inspect the insides of an application whilst it is 
running
● Ability to inspect process state

– Inspect process registers, and memory

– Inspect variables and stacktraces (nesting of function calls)

– Step line by line, function by function through an execution

– Stop at a line or function (breakpoint)

– Stop if a memory location changes

● Ideal to watch how a program is executed
– Less intrusive on the code than printf

– See exact line of crash – unlike printf

– Test more hypotheses at a time



  

Debugging Parallel Applications



  

Debugging Parallel Applications

● Scalar bugs can be challenging: parallel even 
more so!

● The same need: observation, control
● Complex environment – with complex problems

– More processes, more data
– More Heisenbugs – MPI communication library 

introduces potential non-determinism
● Fewer options

– Printf or command line debuggers are not quick enough



  

First example

● Typical problem scenario: application ends 
abruptly
● Example potential causes

– Segmentation fault
– Early termination due to invalid parameters

● Where do we start?



  

Print statement debugging

● The first debugger: print statements
● Each process prints a message or 

value at defined locations

● Diagnose the problem from evidence 
and intuition

● A long slow process
● Analogous to bisection root finding

Thanks to Rebecca Hartman-Baker of ORNL for 
the analogy and animation

● Broken at modest scale
● Too much output – too many log files
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● Graphical source level 
debugger for 
● Parallel, multi-threaded, scalar 

or hybrid code

● C, C++, F90, Co-Array Fortran, 
UPC

● Strong feature set
● Memory debugging

● Data analysis

● Managing concurrency
● Emphasizing differences

● Collective control

Allinea DDT in a nutshell



Fixing the everyday crash

● The typical application crash or early exit:

● Run your program in the debugger

 ddt {application} {parameters}

● Application crashes or starts to exit

● Where did it happen?

● Allinea DDT merges stacks from processes 
and threads into a tree

● Leaps to source automatically

● Why did it happen?

● Some faults evident instantly from 
location(s)

● But for others we need to look further – at 
variables



  

● Need to understand the data
● Too many variables to trawl manually

● Allinea DDT compares data 
automatically

● Smart highlighting
● Subtle hints for differences and 

changes

● With sparklines!

● More detailed analysis
● Full cross process comparison

● Historical values via tracepoints

Simplifying data divergence



Memory debugging

● Random errors are the worst kind

● You can't fix a bug that doesn't repeat  - 
memory debugging can force the bug

● Better to crash every time, than only during 
product demos

● Allinea DDT helps eliminate random 
memory bugs

● Enable memory debugging by ticking an 
option

● Monitors usage: detects memory leaks

● Automatically protects ends of arrays

● Trigger instant stop on touching invalid 
memory

● Also with CUDA support



  

Interlude: Fixing a simple MPI bug 



  

Second example

● More subtle issue
● Not an immediately obvious crash

– Crash occurs in self-evidently correct code
– Something went wrong – somewhere else!

● How can a debugger help here?
● Observation: we can watch things go bad



Controlling execution

● Observe application behaviour 
by controlling execution
● Step, play or run to line based on 

groups

● Change interleaving order by 
stepping/playing selectively

● Set breakpoints

● Set data watchpoints

● Examine data and progress at 
each point 

● Group creation is easy
● Integrated throughout Allinea DDT 

- eg. stack and data views



Exploring large arrays

● Browse arrays 
● 1, 2, 3, … dimensions
● Table view

● Filtering
● Look for an outlier

● Export
● Save to a spreadsheet

● View and search arrays from 
multiple processes
● Search terabytes for rogue 

data – in parallel



Static analysis

● Analyzes source code
● Detects some 

common errors (eg.)
– Memory leaks
– Buffer overflow
– Unused variables

● Not exhaustive – but a 
useful hint for 
debugging



  

Tracepoints

● A scalable print alternative
● Merged print – with a sparkline graph showing 

distribution
● Change at runtime – no recompilation required



  

Offline debugging

● Machine access can be a 
problem
● New offline mode 

– Set breakpoints, tracepoints 
from command line

– Memory debugging

– Record variables, stacks – 
crashes and breakpoints

● Submit and forget 
– Post-mortem analysis

– HTML/plain text

● Debug while you sleep



  

Interlude: Fixing a more unusual bug

Hands on: A first exercise with Allinea DDT



  

Debugging OpenACC and other hybrid codes



  

HPC's current challenge

● GPUs – a rival to traditional processors

● AMD and NVIDIA

● OpenCL, CUDA

● New languages, compilers, standards

● Great bang-for-bucks ratios 

● A big challenge for HPC developers

● Data transfer

● Several memory levels

● Grid/block layout and thread scheduling

● Synchronization

● Bugs are inevitable



  

How do we fix GPU bugs?

● Print statements
● Too intrusive

● Command line debugger?
● A good start:

– Variables, source code

– Large thread counts 
overwhelming

● Too complex

● A graphical debugger...



  

GPU Debugging

● Almost like debugging a CPU – we 
can still:
● Run through to a crash

● Step through and observe

● CPU-like debugging features
● Double click to set breakpoints

● Hover the mouse for more information

● Step a warp, block or kernel

● Follow threads through the kernel

● Simultaneously debugs CPU code

● CUDA Memcheck feature detects 
read/write errors



  

Examining GPU data

● Debugger reads host 
and device memory
● Shows all memory 

classes: shared, 
constant, local, global, 
register..

● Able to examine 
variables

● … or plot larger arrays 
directly from device 
memory



  

New overviews of GPUs

● Device overview shows 
system properties
● Helps optimize grid sizes
● Handy for bug fixing – and 

detecting hardware failure!

● Kernel progress view
● Shows progress through 

kernels
● Click to select a thread



Debugging for Directives

● Supporting the 
environments that 
you use for hybrid 
development



OpenACC debugging

● OpenACC for C and F90
● Straightforward CUDA compute power

● Getting code onto the GPU quickly

– Optimization may still be required

● On device debugging with Allinea 
DDT
● Variables – arrays, pointers, full F90 

and C support

● Set breakpoints and step warps and 
blocks

● Requires Cray compiler for on 
device debugging
● Other compilers to follow



Interlude: CUDA Debugging



Debugging for Petascale



  

Extreme machine sizes
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 Progress requires ever 
more CPU hours
– Machine sizes are exploding

– Skewed by largest machines 

– … but a common trend 
everywhere else

– Software is changing to 
exploit the machines



  

Bug fixing as scale increases

● Can we reproduce at a smaller scale?
● Attempt to make problem happen on fewer nodes

– Often requires reduced data set – the large one may not fit
● Smaller data set may not trigger the problem

– Does the bug even exist on smaller problems?
● Didn't you already try the code at small scale?

– Is it a system issue – eg. an MPI problem?

● Is probability stacking up against you?
– Unlikely to spot on smaller runs – without many many runs
– But near guaranteed to see it on a many-thousand core run

● Debugging at extreme scale is a necessity



  

A simple parallel debugger

● A basic parallel debugger
● Aggregate scalar debuggers and 

control asynchronously

● Implement support for many 
platforms and MPI implementations

● Develop user interface: simplify 
control and state display

● Initial architecture
● Scalar debuggers connect to user 

interface

● Eventual scalability bottlenecks

– Operating system limitations: file 
handles, threads, processes

– I/O limitations, memory and 
computation limitations

● Machines still getting bigger...

User Interface

Controller

Debugger

Process

Controller

Debugger

Process



  

How to make a Petascale debugger

● A control tree is the solution
● Ability to send bulk commands and 

merge responses

– 100,000 processes in a depth 3 tree

● Compact data type to represent sets of 
processes

– eg. For message envelopes

– An ordered tree of intervals?

– Or a bitmap?

● Develop aggregations

– Merge operations are key

– Not everything can merge losslessly

– Maintain the essence of the information
● eg. min, max, distribution
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For Petascale and beyond

● Scale doesn't have to be hard

● 100,000 cores should be as easy as 100 
cores

● The user interface is vital to success

● Scale doesn't have to be slow
● High performance debugging - even at 

200,000 cores

● Step all and display stacks: 0.1 seconds

● Logarithmic performance

● Stable and in production use

● Routinely used by end users at over 
100,000 cores



  

Key features at scale

● Top 5 features at scale
● Parallel stack view

– Ideal for divergence or deadlock

● Automated data comparison: 
sparklines

– Rogue data is easily seen

● Parallel array searching

– Data is too large to examine 
manually

● Process control with step, play, 
and breakpoints

– Still essential

● Offline debugging

– Access to machine may be hard – 
try offline debugging instead



  

Interlude: Petascale demonstration
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