

© 2012 Whamcloud, Inc.

Tutorial:
Lustre 2.x Architecture
• Johann Lombardi

CUG 2012

Stuttgart, Germany

April 2012

2

© 2012 Whamcloud, Inc.

• Add support for new backend filesystems
– e.g. ZFS, btrfs

• Introduce new File IDentifier (FID) abstraction

• Better layering separation

• Portability to other operating systems

• Foundations for new features
– Distrisbuted NamespacE (DNE), new network RAID type,

metadata writeback cache, …

Why a new stack?

3 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New FID Abstraction

• New MDS Stack

• New OSS Stack

• New Client I/O Stack

• Recovery Improvements

• Development and Process Guidelines

Agenda

4 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New FID Abstraction

• New MDS Stack

• New OSS Stack

• New Client I/O Stack

• Recovery Improvements

• Development and Process Guidelines

Agenda

5 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• All network filesystems rely on a file identifier

• Used to uniquely identify file/object in network
request

• NFS uses a 64-bit file handle

File Identifiers (FIDs)

6 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• On the MDS, files are identified by:
– 32-bit inode number allocated by underlying ldiskfs

filesystem
– 32-bit generation number also maintained by ldiskfs

• On the OSTs, objects are identified by:
– 64-bit object id allocated sequentially starting from 1
– 32-bit index which is the OST index in the LOV

[client]# lfs getstripe foo
foo
lmm_stripe_count: 2
lmm_stripe_size: 1048576
lmm_stripe_offset: 0
 obdidx objid objid group
 0 3 0x3 0
 1 3 0x3 0

FIDs in Lustre 1.8

7 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Replay Issue

8

create

reply

repack

Lustre Client

MDT
• create file

• allocate ino/gen &

return as FID

• assign transno

• release dlm locks

• other clients can

now see the file

Restarted MDT
• Recreate file with

same inum

• Problem: inum might

have been reused

already (e.g. llog)

resend create

Transno + FID (inum/gen)

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Independent of MDS backend filesystem

• Simplify recovery

– e.g. no need to regenerate inode with specific inode
number during replay

• Get rid of the infamous iopen patch

• Can be generated on the client

– requirement for metadata writeback cache

• Add support for object versioning

New FID Scheme in Lustre 2.x

9

Version # Sequence # FID #

64 bits 32 bits 32 bits

Sequence number

allocated to the

client

Object identifier

unique in its

sequence

Object version

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

[client]# touch foo
[client]# lfs path2fid foo
[0x200000400:0x1:0x0]

[client]# ln foo bar
[client]# lfs fid2path /mnt/lustre [0x200000400:0x1:0x0]
/mnt/lustre/foo
/mnt/lustre/bar

FIDs in Practice

10

Sequence Object ID Version

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Sequences are granted to clients by servers

• When a client connects, a new FID sequence is
allocated

– upon disconnect, new sequence is allocated to client
when it comes back

• Each sequence has a limited number of
objects which may be created in it

– on exhaustion, a new sequence should be started

• Sequences are cluster-wide and prevent FID
collision

Sequence

11

SEQ controller SEQ manager Client

super

sequence

meta

sequence

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

[client]# lctl get_param seq.cli-srv*.*
seq.cli-srv-xxxxx.fid=[0x200000400:0x1:0x0]
seq.cli-srv-xxxxx.server=lustre-MDT0000_UUID
seq.cli-srv-xxxxx.space=[0x200000401 - 0x200000401]:0:0
seq.cli-srv-xxxxxx.width=131072

[client]# touch foobar
[client]# lfs getstripe -v ./foobar
./foobar
lmm_magic: 0x0BD10BD0
lmm_seq: 0x200000400
lmm_object_id: 0x2
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_stripe_pattern: 1
lmm_stripe_offset: 1
 obdidx objid objid group
 1 3 0x3 0

Sequence in Practice

12

unused sequence

allocated to this client

number of FIDs that

can be generated

out of a sequence

last allocated FID

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• The underlying filesystem still operates on
inodes

• An object index is stored on disk to handle
FID/on-disk inode mapping

• For ldiskfs, the object index is an IAM lookup
table (namely oi.16)

debugfs: ls
 2(12) . 2(12) .. 11(20) lost+found
 12(16) CONFIGS 25001(16) OBJECTS 19(20) lov_objid
 22(16) oi.16 23(12) fld 24(16) seq_srv
 25(16) seq_ctl 26(20) capa_keys 25002(16) PENDING
25003(12) ROOT 27(20) last_rcvd 25004(20) REM_OBJ_DIR
 31(3852)CATALOGS

Where are FIDs stored? (1/2)

13 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• The FID is also stored:

– in an extended attribute called LMA

• stands for Lustre Metadata Attributes

• also stores SOM/HSM states

• see struct lustre_mdt_attrs for the format

– in the directory entry, along with the filename

• path->FID translation does not require accessing
LMA XATTR

• ext4 & e2fsprogs patch to support this feature

Where are FIDs stored? (2/2)

14 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New XATTR storing list of parent FIDs and
names

• Useful for:

– verifying directory hierarchy

– FID to path translation

• lfs fid2path

– updating parent directory entries when migrating
files

– POSIX lookup-by-FID path permission checks

Link Extended Attribute

15 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Filesystems upgraded from 1.8 don’t have fid
stored in EA or in directory entry

• Name/fid mapping handled by IGIF

• IGIF allows to reversibly map
inode/generation into FID

• Special sequence range reserved

– up to ~4B of inodes

Compatibility Mode: IGIF

16

0x0…0 gen

32 bits 32 bits 32 bits

inum 0x0…0

32 bits

sequence Object ID Version

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• In 2.2, OST objects are still identified with an
object id local to the OST
– Not unique across the cluster

• FIDonOST is going to change that
– Requirement for Distributed NamespacE (DNE) support

– Multiple MDTs will now pre-create objects on OSTs

– Each MDT is granted an unique sequence to allocate OST objects
from

– OST should be able to request super sequence from MDT0

• OSTs to set up a connection to MDT0

• Sequence already reserved for compatibility
– Called IDIF (IGIF for data)

What about OST objects …

17 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New FID Abstraction

• New MDS Stack

• New OSS Stack

• New Client I/O Stack

• Recovery Improvements

• Development and Process Guidelines

Agenda

18 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

1.x MDS Layering

19

MDS

VFS LVFS

ldiskfs

LOV

O

S

C

O

S

C

O

S

C

…

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

LOV LOV

2.0-2.3 MDS Layering

20

ldiskfs

OSD

MDD

MDT

LOV

OSC

LVFS

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

2.4 MDS Layering

21

OSD

LOD

MDD

MDT

ldiskfs ZFS

LOV LOV OSP

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc. 22

 lu_site

mdt_object

mdd_object lod_object osd_object

md_object

lu_object

md_object dt_object dt_object

Hash table

New Device & Object Stacking

lu_object lu_object lu_object

LRU list

lu_object_header

top_device

mdt_device

mdd_device lod_device osd_device

md_device

lu_device

md_device

lu_device

dt_device

lu_device

dt_device

lu_device

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

MetaData Target (MDT)

• In charge of all network
operations
– Request packing/unpacking

– Replies

– Resent

– Recovery

– Ptlrpc services

• Take DLM locks

• Intent & Reintegration
handling

23

OSD

LOD

MDD

MDT

ldiskfs ZFS

LOV LOV OSP

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Metadata Device Driver (MDD)

• Directory handling
– lookup, link/unlink, readdir

• Split metadata operation
into a series of OSD
operations
– E.g. mdd_create() creates the

new objects and insert it into a
parent index

• Permission checks /
ACLs

24

OSD

LOD

MDD

MDT

ldiskfs ZFS

LOV LOV OSP

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Logical Object Device (LOD)

• Replacement for LOV on
the MDS

• Take care of striping
– Maintain LOV EA on disk

• Call OSPs to manipulate
OST objects

25

OSD

LOD

MDD

MDT

ldiskfs ZFS

LOV LOV OSP

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Object Storage Proxy (OSP)

• Replacement for OSC

• Hide object pre-creation
logic

• Handle cleanup of
orphan OST objects

• Destroy OST objects on
file unlink
– No longer done by clients

– Address vulnerability to files w/o
objects on double failures

– Can be batched in the future

26

OSD

LOD

MDD

MDT

ldiskfs ZFS

LOV LOV OSP

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Object Storage Device (OSD)

• Objects identified by FID
– Each OSD has to implement its

own object index

• zfs-osd uses a dedicated ZAP

• ldiskfs-osd uses an IAM index
file, namely oi.16

• Attributes & Extended
attributes

• 2 access method types:
– Body (read/write/truncate)

– Index (key/record pair)

27

OSD

LOD

MDD

MDT

ldiskfs ZFS

LOV LOV OSP

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Increase to 2000 stripes per file
– Layout stored in extended attribute (xattr)

– Can allocate single file over all OSTs

• Add large xattr support to ldiskfs
– Allocate new xattr inode

– Store large xattr data as file body of that inode

– Original file inode points to this new xattr inode

– Not backward compatible with older ext4 code

• Require larger network buffers
– Return –EFBIG for old clients with smaller buffers

– Old clients can still unlink such files (done by MDS)

Wide-striping Support

28 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Network/RPC/thread efficiency
– Better CPU affinity (less cache/thread pinging between

CPUs)

– Service threads awoken in MRU order (newest first)

– Multiple RPC request arrival/queues from network

– Improved internal hashing functions for balance

• Parallel directory locking
– Parallel directory DLM locking was implemented in Lustre

2.0

– Testing showed ext4 directory was primary bottleneck

– Add parallel locking for directory operations, per disk block

– Allow concurrent lookup/create/unlink in one directory

– Improves most common use case for applications

Improving Metadata Server Throughput

29 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Protect tree topology
– Optimistically lock top levels of tree

– Lock bottom level(s) as needed for operation (read/write)

– Backout and retry if leaf/node split is needed

– Take tree-lock before child-lock

• Scalable for large directory
– More leaves to lock as

 directory size grows

Parallel Directory Locking

30

DX-Block
0

DX-Block
1

DX-Block
2

DX-Block
3

DX-Block
4

DX-Block
5

DE-Block
7

DE-Block
6

DE-Block
8

DE-Block
9

Thread-1: tree-lock (CR)

Thread-2: tree-lock (CW)

Thread-1: child-lock (PR)

Thread-2: child-lock (PW)

Graph-2 : htree and htree-lock

Thread-1: child-lock (PR)

Level-0

Level-1

Level-2

Level-3

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Single Shared Directory Open+Create
1M files, up to 32 mounts/client

31

0

10000

20000

30000

40000

50000

60000

70000

1 2 4 8

1
2

1
6

2
4

3
2

4
8

6
4

9
6

1
2
8

1
9
2

2
5
6

files / sec

Logical client count

Improved 2.3 performance

0

10000

20000

30000

40000

50000

60000

70000

1 2 4 8

1
2

1
6

2
4

3
2

4
8

6
4

9
6

1
2
8

1
9
2

2
5
6

files / sec

Logical client count

Original 2.1 performance

1 client 2 clients

4 clients 8 clients

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New tool to measure metadata performance
called mds-survey

• Run directly on the MDS
– Doesn’t require any lustre clients

– Similar to obdfilter-survey, but for metadata

• Rely on extensions made to the echo-client to
support metadata operations

• Support create/lookup/getattr/setxattr/destroy
operations

Metadata Performance Testing

32 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New FID Abstraction

• New MDS Stack

• New OSS Stack

• New Client I/O Stack

• Recovery Improvements

• Development and Process Guidelines

Agenda

33 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Lustre 2.2 still use same OST stack as 1.6/1.8
– Rely on LVFS layer instead of OSD API

• Port OST to new OSD API

• Object Filter Device (OFD) replaces obdfilter
– Runs on top of the OSD API

– Allow to use zfs-based OST

• All low level I/O is moved to OSD layer

New Data Stack

34 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Rely on FIDs
– IDIF now

– Will support FIDonOST soon for DNE

• Propagate changes to OSD properly

• Handle pre-creation and orphan cleanup

• Grant management is no longer ldiskfs specific
– ZFS, btrfs & ext4 (soon) support large block size (>4KB)

– Introduce changes to the client & OST to understand series
of pages from single block (i.e. extent)

Object Filter Device (OFD)

35 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New FID Abstraction

• New MDS Stack

• New OSS Stack

• New Client I/O Stack

• Recovery Improvements

• Development and Process Guidelines

Agenda

36 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Reuse infrastructure developed for new MD stack
– e.g. lu_device, lu_object, …

• llite/VVP/SLP
– OS-dependant layer used to convert file operations into

CLIO operations
– sits on top of CLIO stack, start point of clio operations

• LOV
– Manages stripe data
– Parses I/Os and distributes them to OSC

• LOVSUB
– Mostly dummy layer
– Refers back to the LOV layer

• OSC
– RPC layer & DLM locks

New Client I/O Stack

37 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

CLIO Object Stacking

38

ccc_object

cob_inode *

lov_object

lovsub_object *

lovsub_object

osc_object

cl_object

lu_object

cl_object

cl_object

cl_object

lu_object

lu_object

lu_object

cl_object_header

lu_object_header

Linux struct inode

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New FID Abstraction

• New MDS Stack

• New OSS Stack

• New Client I/O Stack

• Recovery Improvements

• Development and Process Guidelines

Agenda

39 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Server must wait for all clients to reconnect
– Recovery replays uncommitted client transactions

• Must be executed in original order – transno

– No new transactions until recovery completes

• Could invalidate recovery transactions

• Clients slow to detect server death
– Only fault detection is in-band RPC timeout

• Includes both network and service latency

• Server under heavy load hard to distinguish from dead server

– Ping not scalable

• Ping overhead O(#servers * #clients / ping_interval)

• Ping interval must increase with system size

– A client may know the server failure after ping interval + RPC timeout

What makes recovery slow?

40 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Accelerate reconnection by notifying clients of
server restarts, no longer use timeout

• MGS is used to reflect server failure event to clients
– Notify clients when a restarted target registers itself to MGS

– Clients will do reconnection

• Imperative recovery depends on MGS, it’s a best-
effort service
– Not impede normal recovery from happening

– It’s important to identify which instance of targets the clients are
connecting

• Failover server support

Introduction of Imperative Recovery

41 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Implementation - overall

42 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• A restarting target is able to finish recovery
within 66 seconds
– 125 client nodes, 600 mountpoints on each node, 75K clients in

total

– No workload in the cluster

• As a comparison, it took ~300 seconds w/o IR

Performance

43 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• New FID Abstraction

• New MDS Stack

• New OSS Stack

• New Client I/O Stack

• Recovery Improvements

• Development and Process Guidelines

Agenda

44 Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

The Tools We Use Today

45

Jira, Jenkins

Git and Gerrit

• JIRA is Whamcloud’s Issue and
Agile management tool

• JENKINS is the build tool that
continuously builds mainstream
branches and all patches submitted
by the community

• GIT is source code tool used for
managing the Lustre canonical tree

• GERRIT is code review tool that
allows the whole community to be
part of the code review process

Tools Live Today

jira.whamcloud.com

build.whamcloud.com

review.whamcloud.com

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Work Flow

46

JIRA Change
Request

Developer
Carries Out The

Work

Developer Tests
With PAT -
Results To

Maloo

Developer
Lands Using

Gerrit

Jenkins Builds
Patched Lustre

PAT Tests The
Jenkins Build

Tests Results
Go To Maloo

Peer Review
Using Gerrit

Patch landed

Lustre 2.x Architecture – CUG2012

http://wiki.whamcloud.com/display/PUB/Submitting+Changes

© 2012 Whamcloud, Inc.

Front screen of Jira

This is the front

screen of jira

that you’ll see

after you login.

It contains the

last few issues

entered on the

right and

provide some

useful links.

Top left link to

projects.

Top right the

Create-Issue

button that is

present on

every Jira

screen

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

The entries on this

page are much like

any other bug

tracker.

Take time to fill in

the information fully

and completely

This form is not a

placeholder it is the

source of

information for the

change being made.

Describe What, Why

and How. Update

regularly, provide

links to tests etc.

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Jira Workflow

Open

In Progress Reopened

Closed

Resolved

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Gerrit is a Code Review system based on JGit
 http://code.google.com/p/gerrit/

 Also serves as a git server

 adding access control and workflow

 Used by
• Whamcloud https://review.whamcloud.com/

• Android https://review.source.android.com/

• JGit, EGit http://egit.eclipse.org/r/

• Google, SAP, …

• http://wiki.whamcloud.com/display/PUB/Using+Gerrit

Gerrit Code Review

Lustre 2.x Architecture – CUG2012

http://code.google.com/p/gerrit/
http://code.google.com/p/gerrit/
https://review.source.android.com/
https://review.source.android.com/
https://review.source.android.com/
https://review.source.android.com/
https://review.source.android.com/
http://egit.eclipse.org/r/
http://egit.eclipse.org/r/

© 2012 Whamcloud, Inc.

• When one developer writes code, another
developer is asked to review that code

• A careful line-by-line critique

• Happens in a non-threatening context

• Goal is cooperation, not fault-finding

• An integral part of the Lustre coding process

Gerrit

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Small changes are much easier to review

• A change should logically do one thing
– Not many

• No change shall break build or tests

• Split big changes into series of digestible
changes
– These changes depend on each other

– Last change should switch the new feature on

• Commit message should explain why
– The What should be obvious from the code change

Code Review – Tips

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

Jenkins
• Left hand side

show historical
builds

• Every build
creates a matrix
of binaries

• Click on any orb
to go to the
output

• No direct control,
you have today is
to push reviews

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• No Gui or interface
– Autotest is a silent agent quitely testing our code

• Autotest takes builds from Jenkins and tests
on Whamcloud test hardware
– Soon the hardware will be expanded to include other community

sites

• The results of Autotest can be seen using
Maloo

Autotest

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc.

• Maloo is the authoritative test results database
– Autotest and Developer results are stored in Maloo

• Testing results from development
– Results from development provide landing collateral

– Failures are as important as passes

• Good to see the transition from failure to pass

• Landing requires passing results in Maloo
– Maloo / Jenkins / Gerrit work in unison to ensure Reviews, Build

and Test have all occurred.

Maloo

Lustre 2.x Architecture – CUG2012

© 2012 Whamcloud, Inc. 56

Maloo Screen Shots

This is a link to the test suite detail

Lustre 2.x Architecture – CUG2012

© 2010 Whamcloud, Inc. © 2010 Whamcloud, Inc.

• Johann Lombardi

57 Quota in Orion

