
Resource Utilization Reporting
Gathering and evaluating HPC system usage

Andrew Barry

Cray Inc.

Saint Paul, MN, USA

abarry@cray.com

Abstract— Many Cray customers want to evaluate how their

systems are being used, across a variety of metrics. Neither

previous Cray accounting tools, nor commercial server

management software allow the collection of all the desirable

statistics with minimal performance impact. Resource

Utilization Reporting (RUR) is being developed by Cray, to

collect statistics on how systems are used. RUR provides a

reliable, high-performance framework into which plugins

may be inserted, which will collect data about the usage of a

particular resource. RUR is configurable, extensible, and

lightweight. Cray will supply plugins to support several sets

of collected data, which will be useful to a wide array of

Cray customers; customers can implement plugins to collect

data uniquely interesting to that system. Plugins also

support multiple methods to output collected data. Cray is

expecting to release RUR in the second half of 2013.

I. INTRODUCTION

Since the earliest days of time-sharing computers,
administrators have wanted to track what users are doing
with system resources. For almost thirty years, Cray
systems software has provided administrators with tools
for tracking what users are doing. Some of these legacy
tools are still available on Cray systems, but are poorly
suited to current system circumstances and lacking many
desirable features. Over the last year, Cray has collected
requirements for, and begun implementing a new feature,
tentatively called Resource Utilization Reporting (RUR).
This feature will be available to customers in the second
half of 2013. RUR will be resilient to failures of nodes
within the Cray system, scalable to the largest system sizes,
will not contribute meaningful operating system noise to
compute nodes during application run-time, and will
collect an easily expanded set of utilization data about
each user's applications.

II. A LOOK AT PREVIOUS CRAY
ACCOUNTING SOFTWARE

Over the decades, Cray Research and Cray Inc. have
supported several accounting tools. Each has served its
purpose at the time it was released, and several are still
available on XE and XC systems. Given the types of
systems Cray is now selling, and the diversity of data

required by administrators, these tools are no longer
sufficient to address the needs of Cray customers.

• COS accounting – Anecdotes from former XMP
programmers suggest that the COS batch scheduler
allowed for the collection of program statistics. Details
about this functionality are not readily available.

• BSD accounting – 4.2BSD unix introduced
process accounting in 1983. Most unix varients since that
time have included this feature, such as Unicos, Irix, and
Linux, the last of which forms the basis for Cray's CLE
operating system. BSD-style process accounting generates
a file containing records about the cpu usage, memory
consumption, and the number of network and filesystem
transactions of each process. This accounting is tracked
per operating system instance, meaning that a modern
Cray system will have hundreds to tens of thousands of
such files. The Linux implementation of BSD-style
process accounting is incomplete, with some fields
accurately tracked, and others always reporting zero.

• Comprehensive System Accounting (originally
Cray System Accounting) – Unicos 7 introduced CSA,
which tracked a wider range of process characteristics than
BSD accounting, grouped together processes based on the
batch job, where applicable, and allowed automated billing
based on user or group system usage. CSA was supported
for many years on the single-system operating system of
Cray vector computers. It was ported to support
microkernel-base MPP systems, and CC-Numa systems,
which ran pseudo Single System Image operating systems.
With the release of the Cray X2 vector supercomputer,
CSA was ported to Linux, and to the multi-node
architecture that is similar to Cray's current CLE operating
system. The CLE variant of CSA depends on the Lustre
filesystem to aggregate data from all of the nodes in the
system. While this was plausible on X2 systems, the scale
of current Cray systems presents an order of magnitude
more compute nodes. While Lustre allows for this number
of nodes to do the metadata transactions, and small file-I/O
required for this procedure, it does not perform this well,
or easily. It is unreasonable to size, purchase, and tune the

Lustre filesystem based on the needs of the accounting
software.

• Mazama Application Completion Reporting –
Mazama supports a limited set of application statistics and
error codes in the ACR database. This functionality puts a
severe strain on the boot raid, which hosts the Mazama
database, and which is not generally tuned for database
performance. The data collected is also quite limited.

• Application Resource Utilization – ARU is a
limited release feature of ALPS, which collects application
accounting data in apinit, and aggregates the data up the
ALPS fan-out tree. The complexity and overhead of ARU
is very low, but it lacks the flexibility to easily expand the
data it collects, and the means it uses to report these types
of data. ARU is meant to be a stopgap solution, while a
more robust and extensible tool can be developed.

III. A LOOK AT POTENTIAL REPLACEMENT
UTILIZATION TRACKING SOFTWARE

Many server management tools are available as open
source or commercially sold software. These tools are
primary targeted at managing scale-out server
environments. These collections of servers often have a
scale similar to large supercomputers, but are designed to
service millions of independent transactions, twenty-four
hours a day. While these tools track resource usage over
time, they do not track usage per a user's batch job. Time-
based accounting at high frequency, can be correlated with
a batch reservation record to produce a close
approximation of application-level resource tracking.
However, high-frequency use of a time-based tool can
introduce operating system noise to compute nodes at the
least opportune time. Since these server management tools
are written for network servers, much of the monitored
values are related to TCP networking, which is a small part
of what Cray systems typically do.

• Nagios/Shinken/Icinga – This family of related
Server management software packages offer a wide array
of system management statistics, focused on TCP
networks, but offering information relevant to HPC
systems. Scaling to Cray-sized systems requires a
hierarchy of dedicated management nodes.

• Ganglia – Ganglia is a monitoring tool written
for HPC systems. It can be made to scale to Cray system
sizes, but not with the sample frequency required to
simulate application-based accounting.

• Pandora FMS, OpenNMS, NetXMS – These
tools are written primarily to monitor network
performance, with some secondary features for system
management.

 Many Cray customers are interested in time-
based system monitoring, and some are using tools of this

sort. These tools provide a range of statistics, but do not
provide tracking of all system statistics desired by
administrators. Moreover, they do not scale to handle the
large number of nodes, and large number of samples per-
node required to simulate application-based utilization
tracking, and introduce noise to running applications. It is
clear how a tool which knows the start and end time of an
application, can sample intelligently – providing accurate
statistics without constantly perturbing the running
application, and with minimal overhead in running the
monitoring software. Application-based tracking software
provides capability uniquely useful to HPC systems. This
functionality doesn't map well to the ways most scale-out
server environments function; thus it is not surprising that
most server management tools are not written to serve this
need.

 Several varieties of batch scheduling software
support the collection of statistics from batch jobs; this is
supported on SLURM, PBS Pro, LSF, and Moab/Torque.
However, providing this set of data requires running
daemons on compute nodes, which is not done on Cray
systems. While some Cray customers are planning to run
batch scheduler daemons on compute nodes, in the future,
this will not be the case for all Cray systems. For Cray
systems running in the traditional fashion, with batch
scheduler daemons on Cray service nodes, and ALPS
sitting between these daemons and compute nodes, the
batch scheduler daemon will not be able to collect the raw
data needed to keep proper accounting. Furthermore, it is
desirable that Cray customers all have access to the same
configurable, extensible set of utilization data, independent
of which batch scheduling software package they run.

IV. A FRESH START WITH RESOURCE
UTILIZATION REPORTING

 In 2012, Cray investigated the possibility of
extending an existing accounting tool, adopting and
extending a third party tool, or writing a new tool. Third
party tools, both open source and commercial, are largely
written to solve a different problem from those required
for application-scale accounting. Cray's most robust
existing tool, CSA, requires a new data aggregation
method, uses a binary data format with no built-in
extensibility, and requires a patched operating system to be
run on tracked nodes. Updating CSA would not save
significant effort, nor conserve much existing usability or
testing infrastructure. Thus a new tool proved the most
prudent choice.

 In order to meet the requirements of Cray
customers, a new tool has been designed: Resource
Utilization Reporting. After an application has finished
running, RUR collects data elements off of each compute
node used by the application, and pulls that data back to
the login node from which the application was launched.
The login node then reduces the data to a condensed
format, and stores this condensed data to a log file or other

backing store. RUR differs from prior resource tracking
tools by collecting a diverse and expandable mix of data
elements, and presenting usage statistics in a highly
configurable way. Because RUR runs before and after an
application, it introduces virtually no performance noise
into the running application.

V. THE RUR PLUGIN ARCHITECTURE

 Resource Utilization Reporting is design to allow
plugins for collecting arbitrary elements of resource usage
data. Past accounting software has not well anticipated the
needs of today; there is no reason to believe that one can
any better anticipate the needs of tomorrow. RUR is
design to allow future requirements for data collection to
be quickly implemented, and easily integrated with
existing collected data. This is not only intended to allow
Cray to more quickly add functionality to the feature, but
also to allow Cray customers to generate their own plugins,
and integrate those plugins within the RUR framework.

Resource Utilization Reporting comprises four stages
of operation, three of which support plugins. Figure 2
shows the components needed for RUR operation.

1. Data Staging – This stage of RUR prepares data
on compute nodes, and may include two sub-stages. The
pre-application sub-stage collects compute node state
information prior to running an application. The post-
application sub-stage collects compute node state after an
application is run, compares it with pre-application state,
where relevant, and writes the data to a staging file on the
compute node. The staging file is written to a directory
specified in the RUR configuration file. Each RUR plugin
must have a data staging plugin; some plugins will not
require a pre-application sub-stage, depending on the data
collected.

2. Data Collection – RUR uses a scalable, resilient
fan-out tree to collect the staged data files from all
compute nodes running an application. The collected data
is stored on a login or MOM node, in a temporary working
file. The fan-out tree is derived from the tree used by the
Cray Node Health Checker. This tree is resilient to node
failures, and scales to the largest of Cray systems.

3. Post Processing – The RUR post-processing stage
may, depending on the RUR configuration file, condense
the data gathered from compute nodes. The most common
use-case will reduce the data from all compute nodes into
a small set of numbers, to be reported to the administrator.
Common operations include a mathematical sum, mean,
maximum, or minimum for all values reported by all
compute nodes. RUR post processing plugins may be very
simple, or arbitrarily complex. Future releases of RUR will
include libraries to make the creation of simple post-
processing plugins easy. A simple case, though one that is
likely to be used infrequently, is for the post-processor

stage to do nothing, and to simply enumerate data from all
compute nodes.

4. Output – The output stage of RUR provides the
reporting mechanism and backing storage for all RUR data.
Post-processed data is sent to one or more output plugins
based on the RUR configuration file. The basic output
plugin is a Lightweight Log Manager log stream. This
places RUR data in a human readable log file on the
System Management Workstation. Other plugins might
write data to a database to drive a report generator, or
system visualization tool. Output plugins may also be used
to connect RUR data to the accounting functions within
the workload manager used to schedule the Cray. Output
plugins are optional, and many administrators will opt to
simply use the default LLM log stream.

VI. RUR AND PROCESS ACCOUNTING
STATISTICS

 The most basic use case for Resource Utilization
Reporting is to replace legacy accounting tools. While
these tools vary slightly in the statistics they collect, they
all generally collect: CPU time, memory use, and the
amount of filesystem traffic an application generates. RUR
uses the Linux taskstats interface to collect statistics about
processes running on the compute node. The pre-
application staging plugin phase for process accounting
starts a daemon which listens on the taskstats socket.
When a process exits, which is in the process container for
the ALPS apid of the running application, the kernel sends
relevant process information across the taskstats socket.
The blocking wait on the socket ensures that the listening
daemon creates very little operating system noise. What
little noise that is generated, occurs when processes exit,
which is typically not associated with the most sensitive
regions of an application's runtime. The post-application
phase of the plugin stops the taskstats listener, and
aggregates the data for all processes on the compute node.

.

Apid: 2000, Jobid: 26400, uid: 3417, stime: 120,

utime: 4811, highwater_rss: 52000, highwater_vm:

56512, read_char: 4096, write_char: 8192

Figure 1. Process Accounting Data

Figure 2. Diagram of RUR Operation

 Once the process accounting data is staged on the
compute nodes, the RUR data gathering stage collects
these staged files from compute nodes, combining them
into a single working file on the login node. This file is
then provided to the process accounting post-processing
plugin. This plugin, at the option of the RUR
configuration file, reduces the N records from N compute
nodes, to a single record, including the sum of the
processor times, the maximum of the high-water levels,
and the maximum of the bytes read and written. This
single, combined record is passed to the RUR output stage,
which, by default, records it as a human-readable record in
the LLM log stream for RUR. This record can be
inspected on the SMW by the administrator

VII. RUR AND GPU ACCOUNTING

Customers running Cray systems with GPU accelerator
nodes may wish to identify which users make use of the
GPU, or simply use the CPU on the compute nodes. It may
also be interesting to see to what extent users tax the GPU.

To this end, RUR will support a plugin to gather GPU
statistics. The pre-application phase of this plugin calls the
CLE GPU-Accounting utility to clear its buffer of GPU
statistics. Once the application has finished, the post-
application phase of the GPU plugin again calls the CLE
GPU-Accounting utility, which queries the GPU driver for
accounting data. This data is then written to the compute
node staging file. This requires no run-time daemon to
track accounting data, as that functionality is provided by
the GPU driver.

 Once the GPU accounting data is staged on the
compute nodes, the RUR data gathering stage collects
these staged files from compute nodes, combining them
into a single working file on the login node. The GPU

Apid: 2010, Jobid: 26410, uid: 3417, GPU-time:

3100 GPU-utilization: 5100, highwater-memory:

58

Figure 3. GPU Accounting Data

post-processing plugin sums the processing time, and
computes the maximum of the memory high-water
measures. In the default configuration, this combined
record is then written to the LLM log stream for RUR. If
the RUR configuration file is configured to track both
process accounting and GPU accounting, for example, the
GPU accounting data would appear on separate lines,
though both will contain the same apid and jobid entries.

VIII. RUR AND POWER ACCOUNTING

 System total power usage is increasingly
becoming a limit on HPC system purchases, and power
usage is a major cost for Cray customers. Tracking who is
using that power, and how it is being used, is becoming
increasingly interesting. RUR supports a plugin to gather
power usage statistics for applications. Similar to the GPU
plugin, the pre-application plugin phase for power
accounting resets a counter in a CLE utility for tracking
power usage. The post-application phase of the plugin
again calls the CLE utility, and writes the node's power-
usage metric to the staging file.

 Once the data is staged, the RUR data gathering
stage collects the staged files from the compute nodes. The
power accounting post-processing plugin sums the used
power for all compute nodes used by the application, and
the combined record is then written to the default LLM log
stream for RUR, or other output plugin, according to the
RUR configuration file. This data may be used to study the
power efficiency of various users, applications, compilers
of libraries. It may even be used to influence billing.

IX. POSSIBLE FUTURE RUR PLUGINS

 Many CLE components are capable of providing
performance data or availability statistics. Some of these
metrics might be a simple flag indicating normal operation,
or a problem state. While severe errors are generally
reported by way of the console log, and may provoke
Node Health Checker actions, minor errors and general
performance data are often not reported in the console log.
The data which is reported, has a timestamp, but is not
automatically indexed by the application running on the
node. Such indexing, and greater volume of performance
data can be provided by RUR plugins.

 Lustre filesystem components, running on the
compute nodes, may collect metrics on delays in
processing metadata transactions, or in sending data to
storage targets. DVS components may report delays. CLE
modifications may make it possible to report filesystem

statistics for each mount point. All of these proposals
would provide a greater volume and granularity of
statistics about file system behavior. Most filesystem
issues are likely to be system-wide, rather than isolated to
the nodes running an application; Thus these statistics are
generally more suited to console error logs, or time-scale
server management tools. However, some users or
applications may uniquely make extensive use of a
filesystem, which may be best tracked with a RUR plugin.

 The Cray Aries interconnect chip contains
hundreds of performance counters relevant to network
behavior. A future RUR plugin may be implemented to
track relevant network performance counters for each
application. The shear volume of available counters, and
the complex meaning contained within each, may make
interpreting the collected values a complex task.

 Future RUR plugins may also be created to
service the needs of future coprocessors, as they become
available in Cray systems. The initial RUR release will
support the Nvidia Graphics Processors sold in the XK7
system. Cray has announced that it will support accelerator
products from Nvidia and Intel in XC supercomputers, and
other accelerators may be supported. If useful statistics can
be gotten from these devices, a RUR plugin could be
implemented to compile the data for each application.

 An output plugin may be developed to report
application utilization statistics to the user running the
application. This would provide users immediate feedback
on how the application behaved. Other output plugins
might be developed to insert utilization data into a
database, and to report trends in utilization to the system
administrator, or directly to users. An interface plugin may
also be made, which would translate RUR output into a
format understood by workload-manager software.

X. SITE CUSTOM RUR PLUGINS

 Cray customers may wish to implement site-
custom plugins. Several factors may motivate this decision.
RUR plugins may be needed to investigate a bug, or
performance optimizations that are transient, and may
have a very brief lifetime. Plugins may also be desired to
measure a hardware, filesystem, or software feature that is
unique to a particular site. Customers may wish to
interface RUR with an existing database, or system
visualization tool.

 Given the desirability of allowing Cray customers
to write their own RUR plugins, RUR is structured to
make this simple. Simple data collection plugins will have
to support a compute node staging component, and a post-
processing component. Most RUR plugins will not support
custom logging or data storage components, though this is
possible. RUR will include python libraries for easily
doing the most common form of post-processing
operations, such as sums, min, max, mean and simple

Apid: 2019, Jobid: 26416, uid: 3417, Joules

used: 34028, Power Cap: 310, Changed: no,

Consistent: yes

Figure 4. Power Accounting Data

histograms of data elements. RUR plugins do not need to
be written in python.

 As an example, one can imagine a Cray customer
who makes the “widget” software package available to all
compute nodes on a DVS filesystem. The admin of this
system wants to track the total number of widgets invoked,
and the maximum time a compute node spends running the
widget software. A wrapper script causes the widget
software to write debug information to a file on the
compute node. When the application is finished, the RUR
post-application plugins are run. The widget plugin reads
up the debug file, written by the widget software, and
writes the number of widgets invoked, and time the
compute node spent running widget software, to the
widget staging file, and deletes the debug file. The RUR
data gather stage collects the widget staging file. The RUR
post-processing stage invokes the widget post-processor.
The widget post processor uses the include sum function to
find the sum of the all widgets invoked, across all compute
nodes, and the include max function to find the maximum
time, across all compute nodes, spent running widget
software. This is then written to the RUR log stream by the
default RUR output module.

XI. SUMMARY

 Resource Utilization Reporting is an attempt to
address the shortcomings of previous resource tracking

tools for Cray systems. A survey of third party solutions
shows that server management software packages and
work load managers provide a limited set of statistics, and
do so under operating assumptions in conflict with
maximum performance of the Cray system. For real-time
system monitoring, existing server management tools
provide a great deal of functionality, but they do not
address the needs for a scalable, configurable, extensible,
and lightweight utilization tracking tool.

The RUR design is a major improvement on past tools,
due in large part to the plugin architecture; this design
allows the collection of a diverse and evolving set of
statistics, using a single configuration and data collection
engine, derived from mature technologies. RUR is highly
configurable, with the ability to change the data collected,
the sort of post-processing done, and the output format and
location. RUR has very little performance impact on the
running application, and scales to the largest of Cray
systems. RUR will be available to Cray customers in the
second half of 2013.

ACKNOWLEDGMENT

Dave Henseler, Tara Fly, John Hesterberg and Dean
Roe have contributed greatly to the technical design of the
RUR feature. I thank them for their efforts.

