
Genomic Applications on Cray supercomputers: Next
Generation Sequencing Workflow

Mikhail Kandel
Department of Electrical and Computer Engineering

University of Illinois
Urbana-Champagne, IL

USA
kandel3@illinois.edu

Stephen Behling, Nathan Schumann and Bill Long
Cray Inc

Saint Paul, MN
USA

sbehling@cray.com, nds@cray.com, longb@cray.com
Carlos P. Sosa

Cray Inc and University of Minnesota Rochester
Saint Paul, MN

USA
cpsosa@cray.com

Sébastien Boisvert and Jacques Corbeil
Département de Médecine Moléculaire, Université Laval,

Québec, Canada
sebastien.boisvert.3@ulaval.ca,

jacques.corbeil@crchul.ulaval.ca
Lorenzo Pesce

Computation Institute, University of Chicago, Chicago, IL
USA

lpesce@uchicago.edu

Abstract—Recent progress in DNA sequencing technology has
yielded a new class of devices that allow for the analysis of
genetic material with unprecedented speed and efficiency. These
advances, styled under the name Next-Generation Sequencing
(NGS), increasingly shift the burden from chemistry done in a
laboratory to a string manipulation problem, well suited to High-
Performance Computing (HPC). By breaking up DNA into
millions of small strands (20 to 1000 bases) and reading them in
parallel, the rate at which genetic material can be acquired has
increased by several orders of magnitude at the expense of a new
distinction between raw and processed genetic data. The
technology that generates raw genomic data is becoming
increasingly fast and inexpensive when compared to the rate that
this data can be analyzed. In general, assembling small reads into
a useful form is done by either assembling individual reads (de
novo) or mapping these pieces against a reference (mapping). In
this paper, we present our experience with Ray, a parallel short-
read de novo assembler code. We also present a configuration for
an NGS workflow based on Sonexion storage and Cray
supercomputers.

Keywords—Next-generation sequencing; assembler; DNA;
high-performance computing; parallel; genome

I. INTRODUCTION

Today NGS produces large quantities of small fragments of
DNA, called reads. In general, assembling small reads into a
useful form is done by either assembling individual reads (de
novo) or mapping these pieces against a reference (mapping).
However, the success of the new technology to generate data
faster has come at a price. Sequencers will produce reads that
are too small (< 150 base pairs (bp)) or overlap-layout-
consensus assemblers [1]. Alternately, de Bruijn graph-based
assemblers have proven to be successful at assembling short
reads [1,2].

One of such assemblers is Ray [3,4]. There are multiple
software packages to perform de novo assembly [1]. However,
Ray is a highly parallel assembler designed to leverage high-
performance computing architectures. In addition, Ray has
been developed to assemble reads obtained from different
sequencing technologies. Boisvert et al. [3] have shown that
using a mixture of 454 and Illumina reads is possible to
assemble genomes with greater accuracy. Most importantly,
they have shown that by using this hybrid approach they were
able to reduce the number of contigs (large sequences
reconstructed from reads of DNA) and the number of errors.

Recently Bradnam et al. reported as part of the
Assemblathon 2 paper [5] that Ray was ranked among the best
assemblers in terms of correctness and gene content. As we
follow the trend for the last few years, the data deluge is not
going to stop. To keep up with the exponential growth in data
production, it is critical to have tools that can not only
accurately but efficiently make use of the data. It is important
to continue developing Ray to achieve the goal of assembling a
human genome in a few hours. Presently Ray can achieve it in
10 h and other assemblers in days. Ultimately, this kind of tool
will help toward the goal of personalized medicine. In
addition, being able to assemble multiple genomes
(metagenome) will help in the similarity analysis of genomes
against genomes.

II. NEXT GENERATION SEQUENCING WORKFLOW

The process of sequencing a genome requires several steps.
These steps are summarized in Fig.1. The first step consists in
collecting a sample to obtain DNA. This sample is fragmented
into small sequences. The small sequences are composed of a
combination of the corresponding four nucleotides denoted by
the letters {A, C, T, G} or {N} which denotes an unknown
base. This process eventually produces the so called reads that
are used by the different tools to assemble the genome [6].

Reads are in general 36 to less than 500 bases [2]. However,
recent technologies allow for larger reads [7].

Fig.1. Summary of the process of sequencing

The steps summarized in Fig. 1 do not reflect all of the
technologies required from an IT point of view to complete the
NGS process. In the next section we briefly describe what they
are and what components are required from beginning to end.

A. IT Sequencing Technologies

The IT user environment is shown in Fig. 2. This
environment illustrates the multiple paths that data follows and
the IT resources required. The tasks that are related to the
sequencer are in yellow. The tasks identified as part of the data
center are highlighted in green. Finally, desktop tasks are
highlighted in blue.

Fig. 2 illustrates that there are three main components in the
NGS environment.

• Sequencer

• Desktop

• Data Center

There are a variety of sequencers and different laboratories
have adopted different technologies. Some of the commonly
available sequencers come from companies like 454 Life
Sciences, Illumina, Life Technologies, PacBio and Ion Torrent
[8]. The flowchart in Fig.3 is based on the Illumina sequencer.
One of the initial tasks in this diagram is to convert image files
to Illumina base calling files [9].

Fig. 2. NGS workflow based on IT requirements.

Subsequent file conversions can be accomplished using the
resources provided by the data center. This is how it is
performed in the flowchart presented in Fig. 2. As part of the
tasks carried out in the data center, the diagram illustrates
assembly as one of the key tools for genome sequencing. As
previously indicated we illustrate the use of a de novo
assembler, in particular, Ray [3]. However, before we proceed
to describe Ray, we’ll illustrate the data center components
based on a system similar to the configuration used for Ray in
this study.

Fig. 3 NGS data center configuration.

The Sanger FASTQ [10] files can be stored in the Cray
Sonexion scale-out Lustre storage system for fast I/O [11]. All
the applications are installed on the Cray server. The
configuration uses InfiniBand to connect storage to the external
data movers as well as the Cray server.

In this diagram the sequencer exports data to the
workstation to filter images. Sonexion is mounted directly
using Common Internet File System (CIFS) file-sharing
protocol in Windows over Ethernet. No local disk cache is
necessary for the workstation unless required. In this case the
application is reading and writing data directly to the Sonexion
via InfiniBand. The end-user workstation mounts Sonexion
directly using CIFS over Ethernet Native with Lustre support

for Hierarchical Storage Management (HSM), a data storage
system that automatically moves data between storage media.

B. Cray XE6 Server

The Ray benchmarks shown in this study were run on a
Cray XE6 system with AMD Opteron™ Interlagos IL-16
processors with a clock frequency of the core of 2.1 GHz.
There are two sockets per node and the number of cores per
socket is 16. The cache sizes correspond to L3 cache with 8
MB shared per die, L2 cache: 2 MB per core module and L1
cache data 16 KB, Instructions: 64KB. Peak performance per
core is 16.8 GFlop/s. The interconnect is Cray Gemini, 3D
Torus with 48 switch ports per Gemini chip and, 160 GB/s
internal switching capacity per chip with latency of < 1.5 µs
[12].

The Cray XE6 system runs the Cray Linux Environment
(CLE) operating system on the login nodes and a lightweight
kernel called CNL on the compute nodes. In this work we
used CLE release 4.0 [12].

C. Data

The data used in this study to test a modified version of
Ray 2.0.0 corresponds to the Illumina-based metagenomic
sequencing, assembly and characterization of 3.3 million non-
redundant microbial genes, obtained from 576.7 Gigabases of
sequence, from fecal samples of 124 European individuals
[13]. In this study we used the sample ERS006494 with runs
ERR011117.sra through ERR0111123.sra.

III. DE NOVO ASSEMBLERS LANDSCAPE

There are many genome tools currently available. As a
result of the fast growth in raw data coming from faster
sequencing machines, there has also been an increase in the
number of tools to assemble genomes. In whole-genome
sequence assembly (WGSA) the goal is to assemble contigs.
What characterizes de novo assembly is that there is no
reference genome. As described in the literature [1],
assemblers follow the heuristic that “if two reads share a
sufficiently long subsequence then they can be assumed to
have originated from the same location in the genome” [1].
This heuristic overlooks the case of large DNA sequence
duplication in the genome and other confounding features, but
is a good starting point.

A. Greedy Algorithm-Based Assemblers

These assemblers use the Greedy algorithm to identify the
shortest common sequence[1]. This method builds a solution
by continuously expanding fragments. Two nucleotide
fragments with high overlap scores are merged into one larger
fragment. This new fragment is added to the set of fragments,
the process of merging fragments is repeated until no more
fragments can be merged. The result of this process is a
collection of contigs or larger DNA strings [1]. Advantages
and disadvantages of this approach have been documented in
the literature [1,6]. Narzisi and Mishra [1] have reported TIGR
[14], PHRAP [15], CAP3[16] uses Greedy only for the first
step, PCAP [17], and Phusion [18] as assemblers based on this
methodology.

B. Graph-Based Assemblers

In simple terms, in this approach the genome corresponds
to identifying a path in a graph [2]. The overlap-layout-
consensus (OLC) was one of the early methodologies utilized
to build graphs [6]. The graph is constructed by nodes
representing reads and edges representing overlaps [1].
Examples of assemblers based on this methodology are:
CELERA [19], CABOG [20], ARACHNE [21], Minimus [22],
and Edena [23].

The advent of the next-generation sequencing technology
introduced shorter reads. This made it difficult for assemblers
based on the OLC methodology to cope with large genomes
and insufficient overlaps [1]. This problem was overcome by
the adoption of assemblers based on the de Bruijn graph
methods [2]. This methodology considers nodes as k-mers and
the edges are placed between pair of k-mers that show in
consecutive reads [2]. For a comprehensive review of
assemblers based on de Bruijn methods see [1,2].

IV. PARALLEL RAY : DE NOVO ASSEMBLER

De novo assembly is computationally intensive, requiring
parallel execution for reasonable run times. Ray is parallelized
using the message-passing interface (MPI) [24]. It is
implemented using peer-to-peer communication. Ray is built
on top of RayPlatform a message-passing-interface
programming framework. Fig. 4 illustrates Ray’s architecture.

Fig. 4 Ray software-stack. RayPlatform is a programming
framework that provides easy access to the message-passing
protocol. Currently it is MPI.

RayPlatform is a development framework that simplifies
distributing data via a lower level message passing protocol
such as MPI. Content creation is done by creating plugins that

S.B. is recipient of a doctoral award from the Canadian Institutes of
Health Research (200910GSD-226209-172830). JC is the holder of the
Canada Research Chair in Medical Genomics.

can be added on the RayPlatform compute engine. The
message-passing protocol becomes transparent to the
developer. Ray bundles the following functionality that
developers and users can access in one single package:

• De novo genome assembly
• De novo meta-genome assembly
• De novo transcriptome assembly
• Quantification of contig abundances
• Quantification of microbiome consortia members
• Quantification of transcript expression
• Taxonomy profiling of samples
• Gene ontology profiling of samples
• Profiling with any database of choice

Recently a mini-ranks programming model has been
implemented in RayPlatform. Mini-ranks are a hybrid
programming model where MPI ranks and mini-ranks co-
exist. Mini-ranks are run on separate threads that are spawn by
the MPI ranks. This enables the usage of a hybrid paradigm
with MPI and threads.

A. Message-Passing Main Loop

The driver parallel loop is analogous as if each rank has its
own message inbox and its own message outbox where
received messages go in the inbox and sent messages go in the
outbox. This loop is illustrated in Fig. 5.

1

2

3

4

5

6

while(running){

 receiveMessages();

 processMessages();

 processData();

 sendMessages();

}

Fig. 5. Main parallel construct in Ray.

This can be considered the general architecture utilized in
Ray.

B. Distributed Storage

Distributed storage engine used by Ray is a distributed

sparse hash table that uses these features:
• Incremental resizing
• Double hashing
• Buckets are in groups
• Distributed

The run-time options include hash-table-buckets that
set the initial number of buckets which has to be a power of 2.
The default value: 262144. Hash-table-buckets-per-
group sets the number of buckets per group for sparse
storage, default value is 64 and it must be between 1 and 64.
Hash-table-load-factor-threshold sets the load
factor threshold for real-time resizing, default value is 0.6 and

must be between 0.5 and 1. Hash-table-verbosity
activates verbosity for the distributed storage engine.

C. Ray Functionality

In addition to its parallel capabilities, Ray can be utilized
as a k-mer counter. It also builds a k-mer graph (subgraph of
a full de Bruijn graph). Once the graph has been assembled,
Ray finds paths in the graph. The code is implemented in C++
and it utilizes MPI version 2.2. Various network interconnects
are supported via MPI libraries. K-mers are using distributed
sparse hash tables with double hashing via MyHashTable.
Ray also utilizes smart pointers and garbage collection using
real-time memory defragmentation & compaction via
DefragmentationGroup. To avoid storing most of the
erroneous k-mers in memory Ray uses a distributed Bloom
filter. Ray utilizes virtual communication
(VirtualCommunicator). Ray supports substitution
DNA sequencing errors (Illumina) and very short indels DNA
sequencing errors (Pacific Biosciences, 454) [8].

D. Ray Profiling

Ray generates some profiling information by default
without introducing overhead. The first is the network testing.
Before doing the biologically-work, Ray tests the network.
Each MPI rank sends a number of messages to measure the
latency of a round trip. So the point-to-point latency is
actually half this value. The result is written to
RayOutput/NetworkText.txt. The network test can also dump
detailed data with the option -write-network-test-
raw-data.

RayPlatform implements an array of communication
graphs such as complete, de Bruijn, Kautz, hypercube,
polytope, random, group [3,4]. It can be activated with -route-
messages. The model is set with -connection-type
<type>. The model complete is the default. The best is the
hypercube/regular polytope because it can do load balancing
of routed messages. This is useful on supercomputers with
network hardware that does not support too many
communication peers. The Cray XE6 does not require this
option because the Gemini Interconnect [25] is already
optimized for any-to-any communication patterns with a
hardware torus.

In Ray, all the code paths must use the format imposed by
RayPlatform. All the code is put inside functions/methods
starting with call_followed by the signal name. The Ray code
actually runs in a supervisor implemented in RayPlatform. It
deleguates the signals such as a received message, or a slave
mode or master mode that must be executed for one tick. All
scheduling information is written in RayOutput/Scheduling/*.
These reports provide, for each MPI rank, with the granularity
in nanoseconds, the number of messages sent/received per
second, the number of ticks in the supervisor, the total number
of milliseconds for any given slave mode or master mode, and
so on. Statistics on messages sent or received are written in
RayOutput/MessagePassingInterface.txt

The option -show-communication-events activates
the reporting of all communications (send and receive

operations). The option -run-profiler will run Ray in
slow mode, but the supervisor will collect a lot of profiling
information. There is also a compile time option to add
collectors in the code. The option is
PROFILER_COLLECT=y (or -D
CONFIG_PROFILER_COLLECT).

The file RayOutput/ElapsedTime.txt contains a human-
readable report of the time required by each step. In the
standard output, Ray reports its memory usage for each MPI
rank. When compiling the code, turning on link time
optimization and using the native instruction set is suggested.

V. RESULTS AND DISCUSSION

In general, multiple tools have been developed as a result of
the fast growth in raw data coming from faster sequencing
machines. In particular, there has been an increase in the
number of tools to assemble genomes. However, work is
required to assess the accuracy of these new assemblers. The
first set of results reported by the team that developed Ray
appeared in 2010 [3] and more recently in the Assemblethon 2
paper [5]. In their paper Boisvert et al. [3] have compared Ray
against some of the state-of-the-art assemblers. They
compared against ABySS [4,5], EULER-SR[6] and Velvet [7].
To assess the quality of their results they selected a set of
metrics such as the number of contigs having at least 500 base
pairs (bp), the number of bp, the mean size of contigs, the N50,
the largest contig size, the genome coverage, incorrect contigs,
mismatches and indels. The datasets they selected correspond
to S. pneumonia R6 divided into three subsets: SpSim,
SPErSim and SpPairedSim. For further details and additional
meaning of the metrics and datasets the reader should refer to
[3].

The second key Ray paper corresponds to their work on
de novo metagenome assembly [3]. In this paper they
have illustrated that Ray can accurately assemble a
three-billion-read metagenomic experiment in 15 hours
with 1,024 cores using 1.5 GB of memory per core [3].

Table 1. Ray profile (ERS006494).

MPI Tasks 128 256 512 1024
 Elapsed Time in Sec.
 Network testing 10 29 66 78
 Counting sequences to assemble 24 81 446 24
 Sequence loading 843 747 433 229
 K-mer counting 1174 563 258 110
 Coverage distribution analysis 4 2 1 1
 Graph construction 2580 1236 578 254
 Null edge purging 1217 1072 1009 986
 Selection of optimal read markers 861 420 210 119
 Detection of assembly seeds 810 405 218 134
 Est. outer distances for paired reads 84 54 33 22
 Bidirectional extension of seeds 1458 897 585 638
 Merging of redundant paths 1422 1050 515 456
 Generation of contigs 37 39 36 37
 Scaffolding of contigs 616 434 315 305
 Counting sequences to search 0 0 0 0
 Graph coloring 2 2 0 0
 Counting contig biological abundances 103 78 70 42
 Counting sequence biological
abundances 0 0 0 1
 Loading taxons 2 1 1 0

 Loading tree 2 2 0 0
 Processing gene ontologies 4 2 1 1
 Computing neighbourhoods 0 0 1 0
 Total 11254 7117 4807 3478

This work has been extended to run on Cray
supercomputers. Table 1 shows the run time profile produced
by Ray. This is the default profiling with little or no overhead.
The first line in Table 1 corresponds to each MPI rank sending
a number of messages to measure latency of a round trip.
When the number of MPI ranks increase, the elapsed time
decreases.

Table 1 also illustrates how CPU usage is distributed
among the different tasks in the code. The top tasks that
consume CPU for more than 1000 seconds correspond to k-
mer counting, graph construction, null edge purging,
bidirectional extension of seeds, and merging of redundant
paths. K-mer counting and graph construction scale linearly.
On the other hand, the scalability for null edge purging is
limited after 128 MPI tasks. This behavior was due to a bug
and it has been fixed in later versions. The Bidirectional
extension shows a parallel speed up to 512 cores.

Fig. 6 shows the total scalability of Ray for this particular
example. Ray can scale to 1024 cores. Additional
optimization in some of the timing routines could improve
scalability. In this work optimization for network routing,
memory allocation, and tasks allocations showed a 20%
improvement as illustrated in Fig. 6. Better task allocation
was carried out via Cray’s aprun options [12].

Fig. 6. Illustrates Ray scalability using the Qin et al. human
gut microbiome dataset (ERS006494).

Finally, as part of the Assemblathon 2 [3] competition
many assemblers currently utilized throughout the world were
tested. Some of the relevant questions investigated included
speed, hardware requirements, flexibility toward new read
technologies, and composition of the assembled sequence. The
objective as described in the Assemblathon 2 paper [5] was to
test state-of-the-art methods. The data used for testing
consisted of three vertebrate species: bird, fish and snake. This
careful and systematic study concluded by ranking Ray very
highly. “The Ray assembly was ranked 1st overall, and also

ranked 1st for all individual measures except multiplicity
(ranked 7th)”.

VI. CONCLUSIONS

The advances in Next Generation Sequencing machines
technology have provided critical tools for deciphering DNA
sequences of vital importance in biology. The cost of one Mb
of DNA sequence has gone down from about $5,000 in 2001
to approximately $0.78 in 2009 [26]. On the other hand, this
has come at a cost. Assembler programs have been created to
assist in the process of assembling genomic data. However, as
data coming from sequencers outpaces Moore’s law, it is
critical to develop tools and procedures that can accurately
and efficiently keep pace with the data production. Ray
provides to the sequence assembly field the next quantum leap
into the development of the next generation of assemblers by
mixing sequencing technologies. It reduces the number of
errors and the number of contigs. However, more importantly
by recognizing that key to the design of an assembler is to
leverage the architecture underneath the software. Ray
represents a major step forward in overcoming some of the
major challenges facing genome assembling today. This is
particularly true for large datasets that otherwise are
intractable.

ACKNOWLEDGMENT

We would like to thank Cray Inc for providing all the
computation resources and funding for MK internship. S.B. is
recipient of a doctoral award from the Canadian Institutes of
Health Research (200910GSD-226209-172830). JC is the
holder of the Canada Research Chair in Medical Genomics.
We also would like to thank the to thank the Compute Canada /
Calcul Canada (nne-790-ab) and the Minnesota
Supercomputing Institute for allocating resources for this
project. Finally, the Biomedical Informatics and
Computational Biology Program, University of Minnesota
Rochester is acknowledged for continued support.

.

REFERENCES
[1] G. Narzisi and B. Mishra, “Comparing De novo Assembly: The Long

and Short of It,” PLoS ONE, vol. 6, pp. 1–14, April 2011.

[2] J. Henson, G. Tischler, and Z. Ning, “Next-Generation Sequencing and
Large Genome Assemblies”, Pharmacogenomics, vol. 13, pp. 901-915,
2012..

[3] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: Simultaneous Assembly
of Reads from Mix of High-Throughput Sequencing Technologies.”,
Journal of Computational Biology, vol 17, pp. 1519-1533, 2010.

[4] S. Boisvert, F. Raymond, E. Godzaridis, F. Laviolette, J. Corbeil, “Ray
Meta: Scalable de novo Metagenome Assembly Profiling”, Genome
Biology, vol 13, pp. 1-33, 2012.

[5] K R. Bradnam, J N. Fass, A Alexandrov, P Baranay, M Bechner, Đ Birol,
S Boisvert, J A. Chapman, G Chapuis, R Chikhi, H Chitsaz, W- Chou, J
Corbeil, C Del Fabbro, T. R Docking, R Durbin, D Earl, S Emrich, P
Fedotov, N A. Fonseca, G Ganapathy, R A. Gibbs, S Gnerre, É
Godzaridis, S Goldstein, Ma Haimel, G Hall, D Haussler, J B. Hiatt, I.
Y. Ho, J Howard, M Hunt, S D. Jackman, D B. Jaffe, E Jarvis, H Jiang,
S Kazakov, P J. Kersey, J O. Kitzman, J R. Knight, S Koren, T-Wah
Lam, D Lavenier, F Laviolette, Y Li, Z Li, B Liu, Y Liu, R Luo, I
MacCallum, M D. MacManes, N Maillet, S Melnikov, B M. Vieira, D

Naquin, Z Ning, T D. Otto, B Paten, Octávio S. Paulo, Adam M.
Phillippy, Francisco Pina-Martins, Michael Place, Dariusz Przybylski,
Xiang Qin, Carson Qu, Filipe J. Ribeiro, Stephen Richards, Daniel S.
Rokhsar, J. Graham Ruby, Simone Scalabrin, Michael C. Schatz, David
C. Schwartz, Alexey Sergushichev, Ted Sharpe, Timothy I. Shaw, Jay
Shendure, Yujian Shi, Jared T. Simpson, Henry Song, Fedor Tsarev,
Francesco Vezzi, Riccardo Vicedomini, Jun Wang, Kim C. Worley,
Shuangye Yin, Siu-Ming Yiu, Jianying Yuan, Guojie Zhang, Hao
Zhang, Shiguo Zhou, Ian F. Korf1, “Assemblathon 2: evaluating de
novo methods of genome assembly in three vertebrate species.”,
arXiv:1301.5406.

[6] M. Pop, “Genome Assembly Reborn: Recent Computational
Challenges”, Briefings in Bioinformatics, vol. 6, pp. 354-366, 2009.

[7] M. Heger, “PacBio Users Report Progress in Long Reads for Plant
Genome Assembly, Tricky Regions of Human Genome”, In Sequence,
March 6, 2013.

[8] M. L Metzker,”Sequencing Technologies – The Next Generation”,
Nature Review, vol. 11, pp. 31-48, 2010.

[9] M. Kircher, U. Stenzel, and J. Kelso, “Improved Base Calling for the
Illumina Genome Analyzer Using Machine Learning Strategies”,
Genome Biology, vol. 10, R83, 2009.

[10] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, Nucleic
Acids Research, vol. 38, pp. 1767-1771, 2009.

[11] Solution Brief, “Cray Storage Solutions fro Life Sciences”,
http://www.cray.com/Assets/PDF/products/storage/SolutionBrief_Sonex
ionandLifeSciences.pdf

[12] Cray Applications Developer’s User Guide, S–2396–601, Cray Inc,
2011.

[13] J. Qin, et al., “ A Human Gut Microbial Gene Catalogue Established by
Metagenomic Sequencing”, Nature, vol. 464, pp.59-65, 2010.

[14] G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage, “TIGR
Assembler: A New Tool for Assembling Large Shotgun Sequencing
Projects.”, Genome Science and Technology, vol. 1, 9-19, 1995..

[15] P. Green, Phrap documentation. Available: Http://www.phrap.org,
1996./

[16] X. Huang, and A. Madan A, “CAP3: A DNA Sequence Assembly
Program.”, Genome Research vol. 9, pp. 868–877, 1996.

[17] X. Huang, J. Wang, S. Aluru, S.P. Yang, I. Hillier, “ PCAP: AWhole-
Genome Assembly Program.”, Genome Research vol. 13, 2164–2170,
2003.

[18] J.C. Mullikin, and Z.Ning, “The Phusion Assembler.” Genome
Research vol. 13, 81–90, 2003.

[19] E. W. Myers, G. G. Sutton, A. L., Delcher, I. M. Dew, D. P. Fasulo, “A
Whole-Genome Assembly of Drosophila”, Science, vol. 287, pp. 2196-
2204, 200.

[20] J. R. Miller, A. L. Dekker, S. Koren, E. Venter, B. P. Walenz,
Aggressive Assembly of Pyrosequencing Reads with Mates”,
Bioinformatics, vol. 24, pp. 2818-2824, 2008.

[21] S. Batzoglou, D. B. Jaffe, K. Stanley, J. Buttler, S. Gnerre,
“ARACHNE: A Whole-Genome Shorgun Assembler”, Genome
Research vol. 12, pp. 177-189, 2002.

[22] D. Summer, A. Delcher, S. Salzberg, M. Pop, “Minimus: a Fast,
Lightweight Genome Assembler, BMC Bioinformatics vol. 8, pp. 64,
2007.

[23] D. Hernandez, P. Francois, L. Farinelli, M. Sters, J. Schrenezel, “De
novo Bacterial Genome Sequencing: Millions of Very Short Reads
Assembled on a Desktop Computer”, Genome Research, vol. 18, pp.
802-809, 2008.

[24] MPI : A Message-Passing Interface Standard Version 2.2, Message
Passing Interface Forum, September 4, 2009

[25] R. Alverson, D. Roweth, L. Kaplan, “The Gemini System Interconnect”,
High Performance Interconnects (HOTI), 2010 IEEE 18th Annual
Symposium, 18-20 Aug. 2010.

[26] Human Genome Research Institute,
http://www.genome.gov/sequencingcosts/

