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Abstract—Recent progress in DNA sequencing technology has
yielded a new class of devices that allow for thenalysis of
genetic material with unprecedented speed and effency. These
advances, styled under the name Next-Generation Sgncing
(NGS), increasingly shift the burden from chemistrydone in a
laboratory to a string manipulation problem, well auited to High-
Performance Computing (HPC). By breaking up DNA inb
millions of small strands (20 to 1000 bases) andading them in
parallel, the rate at which genetic material can beacquired has
increased by several orders of magnitude at the egpse of a new
distinction between raw and processed genetic dataThe
technology that generates raw genomic data is becamg
increasingly fast and inexpensive when compared the rate that
this data can be analyzed. In general, assemblingall reads into
a useful form is done by either assembling individal reads @e
novo) or mapping these pieces against a reference (mapg). In
this paper, we present our experience with Ray, agpallel short-
read de novoassembler code. We also present a configuratioarf
an NGS workflow based on Sonexion storage and Cray
supercomputers.
assembler;
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l. INTRODUCTION

Today NGS produces large quantities of small fragmef
DNA, called reads. In general, assembling smaltiseinto a
useful form is done by either assembling individredds de
novo) or mapping these pieces against a reference (n@pp
However, the success of the new technology to gémetata
faster has come at a price. Sequencers will pedeads that
are too small (< 150 base pairs (bp)) or overlgpti&
consensus assemblers [1]. Alternately, de Bruigplybased
assemblers have proven to be successful at assgndfiprt
reads [1,2].
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One of such assemblers is Ray [3,4]. There ardiptaul
software packages to perfodanovo assembly [1]. However,
Ray is a highly parallel assembler designed torbye high-
performance computing architectures. In additiBay has
been developed to assemble reads obtained froreretitf
sequencing technologies. Boisvert et al. [3] hslvewn that
using a mixture of 454 and lllumina reads is pdssito
assemble genomes with greater accuracy. Most tanpity,
they have shown that by using this hybrid appraaely were
able to reduce the number aontigs (large sequences
reconstructed from reads of DNA) and the numberadrs.

Recently Bradnam et al. reported as part of the
Assemblathon 2 paper [5] that Ray was ranked anttmadpest
assemblers in terms of correctness and gene confemtwe
follow the trend for the last few years, the datdude is not
going to stop. To keep up with the exponentialghoin data
production, it is critical to have tools that camt nonly
accurately but efficiently make use of the dathis important
to continue developing Ray to achieve the goaksémbling a
human genome in a few hours. Presently Ray careelit in
10 h and other assemblers in days. Ultimately, kimd of tool
will help toward the goal of personalized medicineln
addition, being able to assemble multiple genomes
(metagenome) will help in the similarity analysisgenomes
against genomes.

Il.  NEXT GENERATION SEQUENCINGWORKFLOW

The process of sequencing a genome requires setepsl
These steps are summarized in Fig.1. The firpt@@sists in
collecting a sample to obtain DNA. This sampl&agmented
into small sequences. The small sequences arecsauf a
combination of the corresponding four nucleotidesated by
the letters {A, C, T, G} or {N} which denotes an kmown
base. This process eventually produces the sedcadhds that
are used by the different tools to assemble theomen[6].



Reads are in general 36 to less than 500 baseH@ever,
recent technologies allow for larger reads [7].
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Fig.1. Summary of the process of sequencing

The steps summarized in Fig. 1 do not reflect &lthe
technologies required from an IT point of view tomplete the
NGS process. In the next section we briefly déscwhat they
are and what components are required from begirtoiegd.

A. IT Sequencing Technologies

The IT user environment is shown in Fig. 2. This
environment illustrates the multiple paths thabdatlows and
the IT resources required. The tasks that ardecklto the
sequencer are in yellow. The tasks identifiedaas @f the data
center are highlighted in green. Finally, desktapks are
highlighted in blue.

Fig. 2 illustrates that there are three main coreptsin the
NGS environment.

* Sequencer
e Desktop
o Data Center

There are a variety of sequencers and differentrédbries
have adopted different technologies. Some of timanconly
available sequencers come from companies like 464 L
Sciences, lllumina, Life Technologies, PacBio aod Torrent
[8]. The flowchart in Fig.3 is based on the lllumaisequencer.
One of the initial tasks in this diagram is to ceriimage files
to lllumina base calling files [9].
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Fig. 2. NGS workflow based on IT requirements.
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Subsequent file conversions can be accomplished) tise
resources provided by the data center. This is ftovs
performed in the flowchart presented in Fig. 2. past of the
tasks carried out in the data center, the diagrtumstriates
assembly as one of the key tools for genome sequen®@s
previously indicated we illustrate the use ofda novo
assembler, in particular, Ray [3]. However, befeeeproceed
to describe Ray, we'll illustrate the data centemponents
based on a system similar to the configuration deedRay in
this study.
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Fig. 3 NGS data center configuration.

The Sanger FASTQ [10] files can be stored in thayCr
Sonexion scale-out Lustre storage system for fa@sfl1]. All
the applications are installed on the Cray servene
configuration uses InfiniBand to connect storagthexternal
data movers as well as the Cray server.

In this diagram the sequencer exports data to the

workstation to filter images. Sonexion is mountdicectly

using Common Internet File System (CIFS) file-shgri
protocol in Windows over Ethernet. No local diskche is
necessary for the workstation unless requiredthisicase the
application is reading and writing data directlythe Sonexion
via InfiniBand. The end-user workstation mountsné&aon

directly using CIFS over Ethernet Native with Lessupport



for Hierarchical Storage Management (HSM), a dabaage
system that automatically moves data between stareglia.

B. Cray XE6 Server

The Ray benchmarks shown in this study were rum on
Cray XE6 system with AMD Opteron™ Interlagos IL-16
processors with a clock frequency of the core df GHz.
There are two sockets per node and the numberref quer
socket is 16. The cache sizes correspond to LBecadth 8
MB shared per die, L2 cache: 2 MB per core moduig lal
cache data 16 KB, Instructions: 64KB. Peak peréoroe per
core is 16.8 GFlop/s. The interconnect is Cray {Ben3D
Torus with 48 switch ports per Gemini chip and, 18B/s
internal switching capacity per chip with latendy<01.5 ps
[12].

The Cray XE6 system runs the Cray Linux Environment
(CLE) operating system on the login nodes andlawgight
kernel called CNL on the compute nodes. In thaskmve
used CLE release 4.0 [12].

C. Data

The data used in this study to test a modified ivarsf
Ray 2.0.0 corresponds to the Illumina-based metagen
sequencing, assembly and characterization of 3lRBmnon-
redundant microbial genes, obtained from 576.7 kiigas of
sequence, from fecal samples of 124 European thatiNg
[13]. In this study we used the sample ERS006494 wins
ERR011117.sra through ERR0111123.sra.

There are many genome tools currently availables aA
result of the fast growth in raw data coming froastér
sequencing machines, there has also been an iaciedke
number of tools to assemble genomes. In wholeigeno
sequence assembly (WGSA) the goal is to assenainkegs.
What characterizegle novo assembly is that there is no
reference genome. As described in the literatutg [
assemblers follow the heuristic that “if two reaslsare a
sufficiently long subsequence then they can be nasduto
have originated from the same location in the gesioff].
This heuristic overlooks the case of large DNA ssme
duplication in the genome and other confoundingufiess, but
is a good starting point.

A. Greedy Algorithm-Based Assemblers

These assemblers use the Greedy algorithm to fgehé
shortest common sequence[l]. This method buildslation
by continuously expanding fragments.
fragments with high overlap scores are merged éoni larger
fragment. This new fragment is added to the sdétagfments,
the process of merging fragments is repeated untiimore
fragments can be merged. The result of this pdigsa
collection of contigs or larger DNA strings [1]. Advantages
and disadvantages of this approach have been dotedhe
the literature [1,6]. Narzisi and Mishra [1] haeported TIGR
[14], PHRAP [15], CAP3[16] uses Greedy only for tfiest
step, PCAP [17], and Phusion [18] as assemblersdbais this
methodology.

DE NOVO ASSEMBLERS LANDSCAPE

S.B. is recipient of a doctoral award from the Gham Institutes of
Health Research (200910GSD-226209-172830). J&ikdlder of the
Canada Research Chair in Medical Genomics.
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B. Graph-Based Assemblers

In simple terms, in this approach the genome cpomds
to identifying a path in a graph [2]. The overlageut-
consensus (OLC) was one of the early methodolagfiézed
to build graphs [6]. The graph is constructed hydes
representing reads and edges representing ovellips
Examples of assemblers based on this methodology ar
CELERA [19], CABOG [20], ARACHNE [21], Minimus [22]
and Edena [23].

The advent of the next-generation sequencing tdogno
introduced shorter reads. This made it difficolt &ssemblers
based on the OLC methodology to cope with largeoges
and insufficient overlaps [1]. This problem wasmome by
the adoption of assemblers based on the de Brugphg
methods [2]. This methodology considers nodesmagits and
the edges are placed between pair of k-mers thatv sh
consecutive reads [2]. For a comprehensive revidw
assemblers based on de Bruijn methods see [1,2].

IV. PARALLEL RAY: DE NOVO ASSEMBLER

De novo assembly is computationally intensive, requiring
parallel execution for reasonable run times. Rayaisllelized
using the message-passing interface (MPI) [24]. islt
implemented using peer-to-peer communication. Rayuilt
on top of RayPlatform a message-passing-interface
programming framework. Fig. 4 illustrates Ray’shatecture.

Application
Plugin Plugin Plugin
Adapter | Adapter | Adapter

RayPlatform

Message Passing Protocol

Fig. 4 Ray software-stack. RayPlatform is a paogning
framework that provides easy access to the megsagging
protocol. Currently it is MPI.

RayPlatform is a development framework that singsif
distributing data via a lower level message pasgmotpcol
such as MPI. Content creation is done by creatingins that



can be added on the RayPlatform compute engine. Th
message-passing protocol becomes transparent to the
developer. Ray bundles the following functionattmat
developers and users can access in one singlegeacka

» Denovo genome assembly

» Denovo meta-genome assembly

» Denovo transcriptome assembly

* Quantification ofcontig abundances

*  Quantification of microbiome consortia members

e Quantification of transcript expression

e Taxonomy profiling of samples

e Gene ontology profiling of samples

» Profiling with any database of choice
Recently a mini-ranks programming model has been
implemented in RayPlatform. Mini-ranks are a hybrid
programming model where MPI ranks and mini-ranks co
exist. Mini-ranks are run on separate threadsatrespawn by
the MPI ranks. This enables the usage of a hyaiddigm
with MPI and threads.

A. Message-Passing Main Loop

The driver parallel loop is analogous as if eactkitaas its
own message inbox and its own message outbox where
received messages go in the inbox and sent mesgageshe
outbox. This loop is illustrated in Fig. 5.

whi | e(runni ng) {
recei veMessages();
processMessages();
processDat a() ;

sendMessages() ;

}

Fig. 5. Main parallel construct in Ray.

This can be considered the general architectulizadiin
Ray.

B. Distributed Sorage

Distributed storage engine used by Ray is a digteith
sparse hash table that uses these features:

* Incremental resizing

* Double hashing

e Buckets are in groups

+ Distributed
The run-time options includeash- t abl e- bucket s that
set the initial number of buckets which has to lp@waer of 2.
The default value: 262144ash- t abl e- bucket s- per -
gr oup sets the number of buckets per group for sparse
storage, default value is 64 and it must be betvieand 64.
Hash-t abl e-1 oad-factor-threshol d sets the load
factor threshold for real-time resizing, defaultueais 0.6 and

must be between 0.5 and Hash-t abl e- verbosity
activates verbosity for the distributed storageimsg

C. Ray Functionality

In addition to its parallel capabilities, Ray cam Wtilized
as a k-mer counter. It also builds a k-mer graptbgraph of
a full de Bruijn graph). Once the graph has bessembled,
Ray finds paths in the graph. The code is impldetkin C++
and it utilizes MPI version 2.2. Various netwonitérconnects
are supported via MPI libraries. K-mers are usiigributed
sparse hash tables with double hashingMidéashTabl e.
Ray also utilizes smart pointers and garbage ciidie using
real-time memory defragmentation & compaction via
Def ragment ati onG oup. To avoid storing most of the
erroneous k-mers in memory Ray uses a distributiedrB
filter. Ray utilizes virtual communication
(Vi rtual Communi cator). Ray supports substitution
DNA sequencing errors (lllumina) and very shortalsdDNA
sequencing errors (Pacific Biosciences, 454) [8].

D. Ray Profiling

Ray generates some profiling information by default
without introducing overhead. The first is thewetk testing.
Before doing the biologically-work, Ray tests thetwork.
Each MPI rank sends a number of messages to medstre
latency of a round trip. So the point-to-point fatg is
actually half this value. The result is written to
RayOutput/NetworkText.txt. The network test caspoatlump
detailed data with the optionwr-it e- net wor k-t est -

r aw dat a.

RayPlatform implements an array of communication
graphs such as complete, de Bruijn, Kautz, hypercub
polytope, random, group [3,4]. It can be activateth -route-
messages. The model is set witboAnecti on-type
<t ype>. The model complete is the default. The best és th
hypercube/regular polytope because it can do |addnbing
of routed messages. This is useful on supercomputéh
network hardware that does not support too many
communication peers. The Cray XE6 does not reqthiire
option because the Gemini Interconnect [25] is aalye
optimized for any-to-any communication patterns hwia
hardware torus.

In Ray, all the code paths must use the format sagdy
RayPlatform. All the code is put inside functionsthods
starting with call_followed by the signal name. eTRRay code
actually runs in a supervisor implemented in Ratfeie. It
deleguates the signals such as a received messageslave
mode or master mode that must be executed forioke All
scheduling information is written in RayOutput/Sdhkng/*.
These reports provide, for each MPI rank, withghenularity
in nanoseconds, the number of messages sent/rdcpiae
second, the number of ticks in the supervisor toted number
of milliseconds for any given slave mode or mastede, and
S0 on Statistics on messages sent or received areewvriitt
RayOutput/MessagePassinglnterface.txt

The option show- communi cat i on- event s activates
the reporting of all communications (send and nexei



operations). The optioar un-profil er wil run Ray in
slow mode, but the supervisor will collect a lot mbfiling
information. There is also a compile time option add

Loading tree 2 2 0 0
Processing gene ontologies 4 2 1 1
Computing neighbourhoods 0 0 1 0
Total 11254 7117 4807 3478

collectors in the code. The option is
PROFI LER_COLLECT=y (or -D
CONFI G_PROFI LER_COLLECT).

This work has been extended to run on Cray
supercomputers. Table 1 shows the run time prpfibeluced

The file RayOutput/ElapsedTime.txt contains a humanpy Ray. This is the default profiling with littter no overhead.

readable report of the time required by each stép.the
standard output, Ray reports its memory usage doh é/PI

The first line in Table 1 corresponds to each Mdrikrsending
a number of messages to measure latency of a roynd

rank. When compiling the code, turning on link timewhen the number of MPI ranks increase, the elayisee

optimization and using the native instruction sefuggested.

V. RESULTS AND DISCUSSION

In general, multiple tools have been developedrasualt of
the fast growth in raw data coming from faster seming
machines. In particular, there has been an incréastne
number of tools to assemble genomes. However, vi®rk
required to assess the accuracy of these new aEsemf@he
first set of results reported by the team that tperl Ray
appeared in 2010 [3] and more recently in the Afdetinon 2
paper [5]. In their paper Boisvert et al. [3] hawempared Ray
against some of the state-of-the-art assemblershey T
compared against ABySS [4,5], EULER-SR[6] and Ve[vé
To assess the quality of their results they seleeteset of
metrics such as the numberaohtigs having at least 500 base
pairs (bp), the number of bp, the mean sizeoaofigs, the N50,
the largestontig size, the genome coverage, incori@xttigs,
mismatches and indels. The datasets they seleotegspond
to S. pneumonia R6 divided into three subsets: 18pSi
SPErSim and SpPairedSim. For further details alditianal
meaning of the metrics and datasets the readeidshefer to

[3].

The second key Ray paper corresponds to their aork
de novo metagenome assembly [3]. In this paper they
have illustrated that Ray can accurately assemble a
three-billion-read metagenomic experiment in 15rbou
with 1,024 cores using 1.5 GB of memory per coie [3

Table 1. Ray profile (ERS006494).

MPI Tasks 128 256 512 1024
Elapsed Time in Sec.
Network testing 10 29 66 78
Counting sequences to assemble 24 81 446 24
Sequence loading 843 747 433 229
K-mer counting 1174 563 258 110
Coverage distribution analysis 4 2 1 1
Graph construction 2580 1236 578 254
Null edge purging 1217 1072 1009 986
Selection of optimal read markers 861 420 210119
Detection of assembly seeds 810 405 218 134
Est. outer distances for paired reads 84 54 33 22
Bidirectional extension of seeds 1458 897 585 638
Merging of redundant paths 1422 1050 515 456
Generation ofontigs 37 39 36 37
Scaffolding ofcontigs 616 434 315 305
Counting sequences to search 0 0 0 0
Graph coloring 2 2 0 0
Countingcontig biological abundances 103 78 70 42
Counting sequence biological
abundances 0 0 0 1
Loading taxons 2 1 1 0

decreases.

Table 1 also illustrates how CPU usage is distebut
among the different tasks in the code. The tojstabat
consume CPU for more than 1000 seconds corresmpondi-t
mer counting, graph construction, null edge purging
bidirectional extension of seeds, and merging afunelant
paths. K-mer counting and graph constructionestagarly.
On the other hand, the scalability for null edgegmg is
limited after 128 MPI tasks. This behavior was doe bug
and it has been fixed in later versions. The Bictional
extension shows a parallel speed up to 512 cores.

Fig. 6 shows the total scalability of Ray for tiiarticular
example. Ray can scale to 1024 cores. Additional
optimization in some of the timing routines couldpirove
scalability. In this work optimization for netwontouting,
memory allocation, and tasks allocations showed O&6 2
improvement as illustrated in Fig. 6.  Betterktadlocation
was carried out via Cray’s aprun options [12].

18000

16000 -

14000

12000

10000 -

5000

Total Elapsed Timein Sec.

128 256 512 1m@a

Number of Cores

Fig. 6. lllustrates Ray scalability using the @nal. human
gut microbiome dataset (ERS006494).

Finally, as part of the Assemblathon 2 [3] comjpmtit
many assemblers currently utilized throughout tleeldvwere
tested. Some of the relevant questions investigateluded
speed, hardware requirements, flexibility towardwvneead
technologies, and composition of the assembledesegu The
objective as described in the Assemblathon 2 pgjevas to
test state-of-the-art methods. The data used dsting
consisted of three vertebrate species: bird, fishsmake. This
careful and systematic study concluded by rankiag Rery
highly. “The Ray assembly was ranked 1st ovegall] also



ranked 1st for all individual measures except mlittity
(ranked 7th)".

VI. CONCLUSIONS

The advances in Next Generation Sequencing machines

technology have provided critical tools for deciphg DNA
sequences of vital importance in biology. The afsine Mb
of DNA sequence has gone down from about $5,002001
to approximately $0.78 in 2009 [26]. On the othand, this
has come at a cost. Assembler programs have lbeated to
assist in the process of assembling genomic ddtavever, as
data coming from sequencers outpaces Moore's lavis i
critical to develop tools and procedures that cacuetely
and efficiently keep pace with the data productiofRay
provides to the sequence assembly field the neatgun leap
into the development of the next generation of m&ders by
mixing sequencing technologies. It reduces the barnof
errors and the number obntigs. However, more importantly
by recognizing that key to the design of an assemis to
leverage the architecture underneath the softwaray
represents a major step forward in overcoming sofmthe
major challenges facing genome assembling todakis &
particularly true for large datasets that otherwiaee
intractable.
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