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Abstract—Recent progress in DNA sequencing technology has 
yielded a new class of devices that allow for the analysis of 
genetic material with unprecedented speed and efficiency. These 
advances, styled under the name Next-Generation Sequencing 
(NGS), increasingly shift the burden from chemistry done in a 
laboratory to a string manipulation problem, well suited to High-
Performance Computing (HPC). By breaking up DNA into 
millions of small strands (20 to 1000 bases) and reading them in 
parallel, the rate at which genetic material can be acquired has 
increased by several orders of magnitude at the expense of a new 
distinction between raw and processed genetic data. The 
technology that generates raw genomic data is becoming 
increasingly fast and inexpensive when compared to the rate that 
this data can be analyzed. In general, assembling small reads into 
a useful form is done by either assembling individual reads (de 
novo) or mapping these pieces against a reference (mapping). In 
this paper, we present our experience with Ray, a parallel short-
read de novo assembler code.  We also present a configuration for 
an NGS workflow based on Sonexion storage and Cray 
supercomputers. 
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I. INTRODUCTION 

Today NGS produces large quantities of small fragments of 
DNA, called reads.  In general, assembling small reads into a 
useful form is done by either assembling individual reads (de 
novo) or mapping these pieces against a reference (mapping).  
However, the success of the new technology to generate data 
faster has come at a price.  Sequencers will produce reads that 
are too small (< 150 base pairs (bp)) or overlap-layout-
consensus assemblers [1].  Alternately, de Bruijn graph-based 
assemblers have proven to be successful at assembling short 
reads [1,2]. 

 

One of such assemblers is Ray [3,4].  There are multiple 
software packages to perform de novo assembly [1].  However, 
Ray is a highly parallel assembler designed to leverage high-
performance computing architectures.  In addition, Ray has 
been developed to assemble reads obtained from different 
sequencing technologies.  Boisvert et al. [3] have shown that 
using a mixture of 454 and Illumina reads is possible to 
assemble genomes with greater accuracy.  Most importantly, 
they have shown that by using this hybrid approach they were 
able to reduce the number of contigs (large sequences 
reconstructed from reads of DNA) and the number of errors. 

 

Recently Bradnam et al. reported as part of the 
Assemblathon 2 paper [5] that Ray was ranked among the best 
assemblers in terms of correctness and gene content.  As we 
follow the trend for the last few years, the data deluge is not 
going to stop.  To keep up with the exponential growth in data 
production, it is critical to have tools that can not only 
accurately but efficiently make use of the data.  It is important 
to continue developing Ray to achieve the goal of assembling a 
human genome in a few hours. Presently Ray can achieve it in 
10 h and other assemblers in days. Ultimately, this kind of tool 
will help toward the goal of personalized medicine.  In 
addition, being able to assemble multiple genomes 
(metagenome) will help in the similarity analysis of genomes 
against genomes. 

II. NEXT GENERATION SEQUENCING WORKFLOW 

The process of sequencing a genome requires several steps. 
These steps are summarized in Fig.1.  The first step consists in 
collecting a sample to obtain DNA.  This sample is fragmented 
into small sequences.  The small sequences are composed of a 
combination of the corresponding four nucleotides denoted by 
the letters {A, C, T, G} or {N} which denotes an unknown 
base.  This process eventually produces the so called reads that 
are used by the different tools to assemble the genome [6].  



Reads are in general 36 to less than 500 bases [2].  However, 
recent technologies allow for larger reads [7]. 

 

Fig.1. Summary of the process of sequencing 

The steps summarized in Fig. 1 do not reflect all of the  
technologies required from an IT point of view to complete the 
NGS process.  In the next section we briefly describe what they 
are and what components are required from beginning to end. 

A. IT Sequencing Technologies 

The IT user environment is shown in Fig. 2.  This 
environment illustrates the multiple paths that data follows and 
the IT resources required.  The tasks that are related to the 
sequencer are in yellow.  The tasks identified as part of the data 
center are highlighted in green.  Finally, desktop tasks are 
highlighted in blue. 

Fig. 2 illustrates that there are three main components in the 
NGS environment. 

• Sequencer 

• Desktop 

• Data Center 

There are a variety of sequencers and different laboratories 
have adopted different technologies.  Some of the commonly 
available sequencers come from companies like 454 Life 
Sciences, Illumina, Life Technologies, PacBio and Ion Torrent 
[8].  The flowchart in Fig.3 is based on the Illumina sequencer.  
One of the initial tasks in this diagram is to convert image files 
to Illumina base calling files [9].   

 

Fig. 2.  NGS workflow based on IT requirements. 

Subsequent file conversions can be accomplished using the 
resources provided by the data center.  This is how it is 
performed in the flowchart presented in Fig. 2.  As part of the 
tasks carried out in the data center, the diagram illustrates 
assembly as one of the key tools for genome sequencing.  As 
previously indicated we illustrate the use of a de novo 
assembler, in particular, Ray [3].  However, before we proceed 
to describe Ray, we’ll illustrate the data center components 
based on a system similar to the configuration used for Ray in 
this study. 

 

Fig. 3  NGS data center configuration. 

The Sanger FASTQ [10] files can be stored in the Cray 
Sonexion scale-out Lustre storage system for fast I/O [11].  All 
the applications are installed on the Cray server. The 
configuration uses InfiniBand to connect storage to the external 
data movers as well as the Cray server.   

In this diagram the sequencer exports data to the 
workstation to filter images.  Sonexion is mounted directly 
using Common Internet File System (CIFS) file-sharing 
protocol in Windows over Ethernet.  No local disk cache is 
necessary for the workstation unless required.  In this case the 
application is reading and writing data directly to the Sonexion 
via InfiniBand.  The end-user workstation mounts Sonexion 
directly using CIFS over Ethernet Native with Lustre support 



for Hierarchical Storage Management (HSM), a data storage 
system that automatically moves data between storage media. 

B. Cray XE6 Server 

The Ray benchmarks shown in this study were run on a 
Cray XE6 system with AMD Opteron™ Interlagos IL-16 
processors with a clock frequency of the core of 2.1 GHz.  
There are two sockets per node and the number of cores per 
socket is 16.  The cache sizes correspond to L3 cache with 8 
MB shared per die, L2 cache: 2 MB per core module and L1 
cache data 16 KB, Instructions: 64KB.  Peak performance per 
core is 16.8 GFlop/s.  The interconnect is Cray Gemini, 3D 
Torus with 48 switch ports per Gemini chip and, 160 GB/s 
internal switching capacity per chip with latency of < 1.5 µs 
[12]. 

The Cray XE6 system runs the Cray Linux Environment 
(CLE) operating system on the login nodes and a lightweight 
kernel called CNL on the compute nodes.   In this work we 
used CLE release 4.0 [12]. 

C. Data 

The data used in this study to test a modified version of 
Ray 2.0.0 corresponds to the Illumina-based metagenomic 
sequencing, assembly and characterization of 3.3 million non-
redundant microbial genes, obtained from 576.7 Gigabases of 
sequence, from fecal samples of 124 European individuals 
[13]. In this study we used the sample ERS006494 with runs 
ERR011117.sra through ERR0111123.sra. 

III.  DE NOVO ASSEMBLERS LANDSCAPE 

There are many genome tools currently available.  As a 
result of the fast growth in raw data coming from faster 
sequencing machines, there has also been an increase in the 
number of tools to assemble genomes.  In whole-genome 
sequence assembly (WGSA) the goal is to assemble contigs.  
What characterizes de novo assembly is that there is no 
reference genome.  As described in the literature [1], 
assemblers follow the heuristic that “if two reads share a 
sufficiently long subsequence then they can be assumed to 
have originated from the same location in the genome” [1]. 
This heuristic overlooks the case of large DNA sequence 
duplication in the genome and other confounding features, but 
is a good starting point. 

A. Greedy Algorithm-Based Assemblers 

These assemblers use the Greedy algorithm to identify the 
shortest common sequence[1].  This method builds a solution 
by continuously expanding fragments. Two nucleotide 
fragments with high overlap scores are merged into one larger 
fragment.  This new fragment is added to the set of fragments, 
the process of merging fragments is repeated until no more 
fragments can be merged.  The result of this process is a 
collection of contigs or larger DNA strings [1].  Advantages 
and disadvantages of this approach have been documented in 
the literature [1,6].  Narzisi and Mishra [1] have reported TIGR 
[14], PHRAP [15], CAP3[16] uses Greedy only for the first 
step, PCAP [17], and Phusion [18] as assemblers based on this 
methodology. 

B. Graph-Based Assemblers 

In simple terms, in this approach the genome corresponds 
to identifying a path in a graph [2].  The overlap-layout-
consensus (OLC) was one of the early methodologies utilized 
to build graphs [6].  The graph is constructed by nodes 
representing reads and edges representing overlaps [1].  
Examples of assemblers based on this methodology are: 
CELERA [19], CABOG [20], ARACHNE [21], Minimus [22],  
and Edena [23]. 

The advent of the next-generation sequencing technology 
introduced shorter reads.  This made it difficult for assemblers 
based on the OLC methodology to cope with large genomes 
and insufficient overlaps [1].  This problem was overcome by 
the adoption of assemblers based on the de Bruijn graph 
methods [2].  This methodology considers nodes as k-mers and 
the edges are placed between pair of k-mers that show in 
consecutive reads [2].  For a comprehensive review of 
assemblers based on de Bruijn methods see [1,2]. 

 

IV.  PARALLEL RAY : DE NOVO ASSEMBLER 

De novo assembly is computationally intensive, requiring 
parallel execution for reasonable run times. Ray is parallelized 
using the message-passing interface (MPI) [24].  It is 
implemented using peer-to-peer communication.  Ray is built 
on top of RayPlatform a message-passing-interface 
programming framework.  Fig. 4 illustrates Ray’s architecture. 

 

 

Fig. 4  Ray software-stack.  RayPlatform is a programming 
framework  that provides easy access to the message-passing 
protocol.  Currently it is MPI. 

RayPlatform is a development framework that simplifies 
distributing data via a lower level message passing protocol 
such as MPI.  Content creation is done by creating plugins that 

S.B. is recipient of a doctoral award from the Canadian Institutes of 
Health Research (200910GSD-226209-172830). JC is the holder of the 
Canada Research Chair in Medical Genomics. 



can be added on the RayPlatform compute engine.  The 
message-passing protocol becomes transparent to the 
developer.  Ray bundles the following functionality that 
developers and users can access in one single package:  

• De novo genome assembly 
• De novo meta-genome assembly 
• De novo transcriptome assembly  
• Quantification of contig abundances 
• Quantification of microbiome consortia members 
• Quantification of transcript expression 
• Taxonomy profiling of samples 
• Gene ontology profiling of samples 
• Profiling with any database of choice 

Recently a mini-ranks programming model has been 
implemented in RayPlatform. Mini-ranks are a hybrid 
programming model where MPI ranks and mini-ranks co-
exist. Mini-ranks are run on separate threads that are spawn by 
the MPI ranks. This enables the usage of a  hybrid paradigm 
with MPI and threads. 

 

A. Message-Passing Main Loop 

The driver parallel loop is analogous as if each rank has its 
own message inbox and its own message outbox where 
received messages go in the inbox and sent messages go in the 
outbox.  This loop is illustrated in Fig. 5. 
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while(running){ 

    receiveMessages(); 

    processMessages(); 

    processData(); 

    sendMessages(); 

} 

Fig. 5.  Main parallel construct in Ray. 
 
This can be considered the general architecture utilized in 
Ray.   

B. Distributed Storage 

 
Distributed storage engine used by Ray is a distributed 

sparse hash table that uses these features: 
• Incremental resizing 
• Double hashing 
• Buckets are in groups 
• Distributed 

The run-time options include hash-table-buckets that 
set the initial number of buckets which has to be a power of 2.  
The default value: 262144.  Hash-table-buckets-per-
group sets the number of buckets per group for sparse 
storage, default value is 64 and it must be between 1 and 64.  
Hash-table-load-factor-threshold  sets the load 
factor threshold for real-time resizing, default value is 0.6 and 

must be between 0.5 and 1.  Hash-table-verbosity 
activates verbosity for the distributed storage engine. 

C. Ray Functionality 

In addition to its parallel capabilities, Ray can be utilized 
as a k-mer counter.  It also builds a k-mer graph (subgraph of 
a full de Bruijn graph).  Once the graph has been assembled, 
Ray finds paths in the graph.  The code is implemented in C++ 
and it utilizes MPI version 2.2.  Various network interconnects 
are supported via MPI libraries.  K-mers are using distributed 
sparse hash tables with double hashing via MyHashTable.  
Ray also  utilizes smart pointers and garbage collection using 
real-time memory defragmentation & compaction via 
DefragmentationGroup.  To avoid storing most of the 
erroneous k-mers in memory Ray uses a distributed Bloom 
filter. Ray utilizes virtual communication 
(VirtualCommunicator).  Ray supports substitution 
DNA sequencing errors (Illumina) and very short indels DNA 
sequencing errors (Pacific Biosciences, 454) [8]. 

D. Ray Profiling 

Ray generates some profiling information by default 
without introducing overhead.  The first is the network testing. 
Before doing the biologically-work, Ray tests the network. 
Each MPI rank sends a number of messages to measure the 
latency of a round trip. So the point-to-point latency is 
actually half this value. The result is written to 
RayOutput/NetworkText.txt.  The network test can also dump 
detailed data with the option -write-network-test-
raw-data. 

RayPlatform implements an array of communication 
graphs such as complete, de Bruijn, Kautz, hypercube, 
polytope, random, group [3,4]. It can be activated with -route-
messages. The model is set with -connection-type 
<type>. The model complete is the default. The best is the 
hypercube/regular polytope because it can do load balancing 
of routed messages. This is useful on supercomputers with 
network hardware that does not support too many 
communication peers. The Cray XE6 does not require this 
option because the Gemini Interconnect [25] is already 
optimized for any-to-any communication patterns with a 
hardware torus. 

In Ray, all the code paths must use the format imposed by 
RayPlatform.  All the code is put inside functions/methods 
starting with call_followed by the signal name.  The Ray code 
actually runs in a supervisor implemented in RayPlatform. It 
deleguates the signals such as a received message, or a slave 
mode or master mode that must be executed for one tick.  All 
scheduling information is written in RayOutput/Scheduling/*.  
These reports provide, for each MPI rank, with the granularity 
in nanoseconds, the number of messages sent/received per 
second, the number of ticks in the supervisor, the total number 
of milliseconds for any given slave mode or master mode, and 
so on.  Statistics on messages sent or received are written in 
RayOutput/MessagePassingInterface.txt 

The option -show-communication-events activates 
the reporting of all communications (send and receive 



operations). The option -run-profiler will run Ray in 
slow mode, but the supervisor will collect a lot of profiling 
information. There is also a compile time option to add 
collectors in the code. The option is 
PROFILER_COLLECT=y (or -D 
CONFIG_PROFILER_COLLECT). 

The file RayOutput/ElapsedTime.txt contains a human-
readable report of the time required by each step.  In the 
standard output, Ray reports its memory usage for each MPI 
rank. When compiling the code, turning on link time 
optimization and using the native instruction set is suggested. 

V. RESULTS AND DISCUSSION 

In general, multiple tools have been developed as a result of 
the fast growth in raw data coming from faster sequencing 
machines. In particular, there has been an increase in the 
number of tools to assemble genomes.  However, work is 
required to assess the accuracy of these new assemblers.  The 
first set of results reported by the team that developed Ray 
appeared in 2010 [3] and more recently in the Assemblethon 2 
paper [5].  In their paper Boisvert et al. [3] have compared Ray 
against some of the state-of-the-art assemblers.  They 
compared against ABySS [4,5], EULER-SR[6] and Velvet [7].  
To assess the quality of their results they selected a set of 
metrics such as the number of contigs having at least 500 base 
pairs (bp), the number of bp, the mean size of contigs, the N50, 
the largest contig size, the genome coverage, incorrect contigs, 
mismatches and indels.  The datasets they selected correspond 
to S. pneumonia R6 divided into three subsets: SpSim, 
SPErSim and SpPairedSim.  For further details and additional 
meaning of the metrics  and datasets the reader should refer to 
[3]. 

The second key Ray paper corresponds to their work on 
de novo metagenome assembly [3].  In this paper they 
have illustrated that Ray can accurately assemble a 
three-billion-read metagenomic experiment in 15 hours 
with 1,024 cores using 1.5 GB of memory per core [3].   
 

Table 1.  Ray profile (ERS006494). 

MPI Tasks 128 256 512 1024 
 Elapsed Time in Sec. 
 Network testing 10 29 66 78 
 Counting sequences to assemble 24 81 446 24 
 Sequence loading 843 747 433 229 
 K-mer counting 1174 563 258 110 
 Coverage distribution analysis 4 2 1 1 
 Graph construction 2580 1236 578 254 
 Null edge purging 1217 1072 1009 986 
 Selection of optimal read markers 861 420 210 119 
 Detection of assembly seeds 810 405 218 134 
 Est. outer distances for paired reads 84 54 33 22 
 Bidirectional extension of seeds 1458 897 585 638 
 Merging of redundant paths 1422 1050 515 456 
 Generation of contigs 37 39 36 37 
 Scaffolding of contigs 616 434 315 305 
 Counting sequences to search 0 0 0 0 
 Graph coloring 2 2 0 0 
 Counting contig biological abundances 103 78 70 42 
 Counting sequence biological 
abundances 0 0 0 1 
 Loading taxons 2 1 1 0 

 Loading tree 2 2 0 0 
 Processing gene ontologies 4 2 1 1 
 Computing neighbourhoods 0 0 1 0 
 Total 11254 7117 4807 3478 
 

This work has been extended to run on Cray 
supercomputers.  Table 1 shows the run time profile produced 
by Ray.  This is the default profiling with little or no overhead.  
The first line in Table 1 corresponds to each MPI rank sending 
a number of messages to measure latency of a round trip.  
When the number of MPI ranks increase, the elapsed time 
decreases. 

Table 1 also illustrates how CPU usage is distributed 
among the different tasks in the code.  The top tasks that 
consume CPU for more than 1000 seconds correspond to   k-
mer counting, graph construction, null edge purging, 
bidirectional extension of seeds, and merging of redundant 
paths.   K-mer counting and graph construction scale linearly.  
On the other hand, the scalability for null edge purging is 
limited after 128 MPI tasks. This behavior was due to a bug 
and it has been fixed in later versions.  The Bidirectional 
extension shows a parallel speed up to 512 cores.  

Fig. 6 shows the total scalability of Ray for this particular 
example.  Ray can scale to 1024 cores.  Additional 
optimization in some of the timing routines could improve 
scalability.  In this work optimization for network routing, 
memory allocation, and tasks allocations showed a 20% 
improvement as illustrated in Fig. 6.    Better task allocation 
was carried out via Cray’s aprun options [12].  

 

Fig. 6.  Illustrates Ray scalability using the Qin et al. human 
gut microbiome dataset (ERS006494). 

Finally, as part of the Assemblathon 2 [3] competition 
many assemblers currently utilized throughout the world were 
tested.  Some of the relevant questions investigated included 
speed, hardware requirements, flexibility toward new read 
technologies, and composition of the assembled sequence.  The 
objective as described in the Assemblathon 2 paper [5] was to 
test state-of-the-art methods.  The data used for testing 
consisted of three vertebrate species: bird, fish and snake.  This 
careful and systematic study concluded by ranking Ray very 
highly.  “The Ray assembly was ranked 1st overall, and also 



ranked 1st for all individual measures except multiplicity 
(ranked 7th)”.  

VI.  CONCLUSIONS 

The advances in Next Generation Sequencing machines 
technology have provided critical tools for deciphering DNA 
sequences of vital importance in biology.  The cost of one Mb 
of DNA sequence has gone down from about $5,000 in 2001 
to approximately $0.78 in 2009 [26].  On the other hand, this 
has come at a cost.  Assembler programs have been created to 
assist in the process of assembling genomic data.  However, as 
data coming from sequencers outpaces Moore’s law, it is 
critical to develop tools and procedures that can accurately 
and efficiently keep pace with the data production.  Ray 
provides to the sequence assembly field the next quantum leap 
into the development of the next generation of assemblers by 
mixing sequencing technologies.  It reduces the number of 
errors and the number of contigs.  However, more importantly 
by recognizing that key to the design of an assembler is to 
leverage the architecture underneath the software.  Ray 
represents a major step forward in overcoming some of the 
major challenges facing genome assembling today.  This is 
particularly true for large datasets that otherwise are 
intractable. 
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