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Abstract - Edison, a Cray XC30 machine, is the NERSC's 
newest peta-scale supercomputer. Along with the Aries 
interconnect, Hyper-Threading (HT) is one of the new 
features available on the system. HT provides simultaneous 
multithreading capability on each core with two hardware 
threads available. In this paper, we analyze the potential 
benefits of HT for the NERSC workload by investigating the 
performance implications of HT on a few selected 
applications among the top 15 codes at NERSC, which 
represent more than 60% of the workload. By relating the 
observed HT results with more detailed profiling data we 
discuss if it is possible to predict how and when the users 
should utilize HT in their computations on Edison. 

Keywords-Hyper-Threading, HPC workload, application 
performance 

I. INTRODUCTION 
 

Edison, a Cray XC30, is NERSC’s next petascale 
machine [1]. One of the new features available on the 
machine is Hyper-Threading (HT), Intel’s simultaneous 
multi-threading technology. HT makes a physical core 
appear as two logical cores. These two logical cores have 
their own architectural states, but share most of the 
execution resources on the physical core. Two independent 
processes/threads can run simultaneously on the two 
logical cores, and when one of them stalls due to cache 
misses, branch mis-predictions, data dependencies, and/or 
waiting for other resources, the other process/thread can 
run on the execution resources which would otherwise be 
idle, increasing the resource utilization and improving the 
performance of the processors. HT has shown big potential 
in the processor design, because it has introduced a new 
direction and a complementary approach, Thread Level 
Parallel (TLP), to the traditional technique, Instruction 
Level Parallelization (ILP), used to improve the processor 
speed. The ILP approach improves processor speed by 
increasing the number of execution resources so that more 
instructions can be executed per clock cycle. Therefore, 
ILP increases the number of transistors and power 
consumption on the processor, and leads to a more 
complex and expensive processor design. HT, on the other 
hand, has the same goal of improving the processor speed 
but by increasing the resource utilization by making use of 
otherwise wasted cycles with only a small increase on the 
die size and power cost. HT was first introduced on the 
Intel® Xeon® processor MP in 2002, and with only 5% 

more die area, Intel observed a 30% performance gain due 
to HT with common server application benchmarks [2]. In 
an Intel follow-on analysis with compute-intensive 
workloads, significant performance gains, up to 30%, were 
also observed with threaded applications from a wide 
range of scientific fields [3]. 

Intel’s measured performance of HT was limited to the 
threaded applications in the past. Given the big potential of 
HT, it is of great interest to see if HT improves the 
performance of MPI/MPI+OpenMP codes, which are a 
large portion of the HPC workload. As the two 
processes/threads share the physical resources, the speedup 
from HT will not necessarily be as great as running on two 
physical cores. On the one hand, HT could benefit 
application performance by increasing the processor 
resource utilization. On the other hand, it may also 
introduce various overheads. Since the two 
processes/threads share the caches, the cache sizes 
available for each process/thread will be only one-half of 
the cache sizes on the physical core. Therefore HT may 
cause more cache misses compared to the single stream 
execution on the same physical core. In addition, HT runs 
twice as many processes/threads on the node; therefore, 
the memory available per process/thread will be only one-
half of the memory available on the physical core, 
potentially creating additional memory contention. In 
addition, as we will discuss later in the paper, a proper way 
to measure the HT performance gain is to compare the 
performance with and without HT at the same node 
counts. Therefore applications with HT run using twice as 
many MPI tasks/threads compared to single stream runs. 
This may introduce additional communication overhead. 
Therefore, whether HT benefits an application 
performance or not depends on whether the higher 
resource utilization that HT enables overcomes the 
overheads introduced from using HT. A good parallel 
scaling is necessarily for HT to realize any performance 
benefits. There have been a few previous studies regarding 
the performance impact of HT on HPC workloads [4,5]. 
The amount of gain observed from various kernel codes 
and MPI benchmark codes varied widely. Up to 15% 
performance gain was observed with some of the compute-
intensive codes, while some slow down was observed with 
other codes. These studies have pointed out that HT 
benefits some applications while hinders other applications 
depending on the application characteristics and the 
processor configurations. Some attempts were made to 



predict what characteristics of applications could serve as 
the indicators for HT performance.  Ref. [3] used the 
cycles per instruction and the cycles per micro operation as 
the indicators for HT opportunity. However, it has been 
difficult to come up with a set of common indicators for a 
wide range of codes to predict if an application could 
benefit from HT, especially for real applications that are 
far more complicated than the kernel codes that are 
specially designed to illustrate certain aspects of 
computations. 

HT is enabled on Edison by default. From the user’s 
perspective, HT presents a “free” extra resource available 
that may improve scientific productivity by reducing time 
to solution and/or increasing the throughput. Since the 
benefit of using HT is highly application dependent, it is 
interesting to examine what major applications at NERSC 
could benefit from HT. Since NERSC supports a diverse 
workload and hundreds of different application codes run 
on Edison, it is also important to provide general HT 
performance guidance to users. Therefore we will attempt 
to find some connection between profiling data and the 
observed HT performance.  

 The rest of this paper is organized as follows. We will 
describe the environment where our HT tests were 
conducted in Section II. In Section III, we will present our 
results with five selected applications among top 15 
application codes in the NERSC workload, and we will 
analyze and discuss the measured profiling data. We 
conclude the paper by summarizing our observations in 
section IV. 

 

II. EXPERIMENT ENVIRONMENT SETUP 

A. Edison 
Edison, Cray XC30, is NERSC’s next peta-scale 

machine. It is scheduled to deliver in two phases. The 
Phase I system was delivered to NERSC in November 
2012 and has been in production for a few months. The 
Edison Phase I system is composed of 664 dual-socket 
nodes each with 64GB of DDR3 memory running at 1600 
MHz. All sockets are populated with 8-core Sandy Bridge 
processors running at a frequency of 2.6GHz.  Edison 
compute nodes are interconnected with Cray’s Aries high-
speed network with Dragon fly topology.  The Phase II 
system is scheduled to arrive in June 2013. It will be 
populated with Ivy Bridge processors and will have more 
than 100K cores. The sustained system performance [6] 
will be 236 TFlops. The HT performance tests presented in 
this paper were conducted on Edison Phase I system, 
where HT is made available through the Intel Sandy 
Bridge Processors. 

B. NERSC Workloads and Application Code Selections 
NERSC serves a broad range of science disciplines 

from the DOE office of science, supporting more than 
4500 users across about 650 projects. As shown in Fig. 1, 
the most computing cycles were consumed on Fusion 
Energy (19%), Materials Science (19%), Lattice QCD 

(13%), Chemistry (12%), and Climate (11%) research. 
Fig. 2 shows the top applications codes according to the 
computing hours used (Jan-Nov of 2012) on Hopper [7], a 
Cray XE6 machine and the NERSC’s main workhorse. 
Among the top 15 codes, which represent more than 60% 
of the NERSC workload, we selected five application 
codes and listed them in Table I. We selected these 
applications based on the ranking and the scientific fields 
of the codes. We also tried to cover a variety of 
programming models. In addition, we use the NERSC-6 
benchmark suite [8] to measure Edison’s system 
performance. Among the seven application codes in the 
NERSC-6 benchmark suite, Cray used HT with four of 
them to meet the performance requirement in the contract 
for Edison, which covers the Climate, Fusion Energy, 
Chemistry, and Plasma sciences (see Table II). We 
selected one code among these four fields, GTC [9], a 
fusion plasma code, to further investigate the HT effect. 
We chose VASP [10], which is the #2 code at NERSC, to 

 

 
 

Figure 1. NERSC 2012 allocation breakdown 
 
 

 
 

Figure 2.  Top application codes on Hopper, Cray XE6 machine by 
hours used.  

 



represent the materials science workload. We included 
another materials science code, Quantum Espresso [11] 
(#9 code) in the tests, because it contains a non-trivial 
OpenMP implementation in addition to MPI, which is 
suitable to test the effect of HT on hybrid codes. We chose 
NAMD [12], a molecular dynamics code, which is widely 
used by the chemistry and bioscience users (similar to the 
#6 code, LAMMPS [13], see Fig. 2). NAMD uses 
Charm++ [14] built on top of MPI as its communication 
library. We chose NWChem [15], a commonly used 
chemistry code, which uses Global Arrays (GA) [16], to 
test the HT effect with the GA programming model.    

C. Codes and Test Cases 
1) VASP 5.3.3 

VASP [10] is a density functional theory (DFT) 
program that computes approximate solutions to the 
coupled electron Kohn-Sham equations for many-body 
systems. The code is written in Fortran 90 and MPI. Plane 
waves basis sets are used to express electron 
wavefunctions, charge densities, and local potentials. 

Pseudopotentials are used to describe the interactions 
between electrons and ions. The electronic ground state is 
calculated using the iterative diagonalization algorithms. 

We used VASP version 5.3.3 in our tests, and used a 
test case provided by a NERSC user, which contains 154 
atoms (Zn48O48C22S2H34) in the system. The code was 
built with the Intel compilers and used the MKL for 
ScaLapack, BLAS and FFTW3 routines. We tested the 
most commonly used iteration scheme, RMM-DIIS, ran 
the code over a range of node counts (strong scaling), and 
reported the total runtime to complete the first four 
electronic steps.  

2) NAMD CVS version 2013-03-28 
NAMD [12] is a C++ application that performs 

molecular dynamic simulations that compute atomic 
trajectories by solving equations of motion numerically 
using empirical force fields. The Particle Mesh Ewald 
algorithm provides a complete treatment of electrostatic 
and Van der Waals interactions. NAMD was built with 
the Intel compiler, used the single-precision FFTW2 
libraries, and used Charm++ as its communication library. 
We used the NAMD CVS version 2013-03-28, and tested 
with the standard STMV (virus) benchmark (containing 
1,066,628 atoms, periodic, PME).  We ran the tests over a 
range of node counts (strong scaling), and measured the 
time to complete the first 500 MD steps. 

3) Quantum ESPRESSO 5.2.0 
Quantum Espresso [11] (opEn-Source Package for 

Research in Electronic Structure, Simulation and 
Optimization) is a materials science program that 
performs electronic structure calculations and materials 
modeling at the nanoscale level. Quantum Espresso (QE) 
is one of the most commonly used DFT codes. It uses a 
plane wave (PW) basis set and pseudopotentials. The 
code is written in Fortran 90 and parallelized with MPI 
and OpenMP.  

We used the Quantum ESPRESSO 5.2.0. The code 
was compiled with the Intel compilers and used the Intel 
MKL for its ScaLapack and BLAS routines, and used the 
internal FFTW libraries distributed with the QE code. In 
the QE benchmark, we tested a self-consistent field (SCF) 
calculation with a commonly used iteration scheme, 
Blocked Davidson diagonalization algorithm, with a 
standard benchmark ausurf112 (containing 112 Au atoms, 
slightly modified to reduce the amount of IO). We ran the 
code over a range of node counts (strong scaling), and at 
each node count ran with different combinations of MPI 
tasks/threads, and reported the total runtime to complete 
the first two electronic steps.   

4) NWChem 6.1 
NWChem [15] is a chemistry application that is 

designed to be scalable on high performance, parallel 
computing systems. It is written in Fortran and C, and its 
parallelization is mainly implemented with Global Arrays. 
We used the NWChem version 6.1, and tested with the 
cytosine_ccsd.nw test case from the NWChem 

TABLE I. SELECTED APPLICATION CODES 

Codes Descriptions Programming 
languages and 

models 

Libraries 
used 

 

Rank 

VASP DFT Fortran, C 
MPI 

 

MPI, 
MKL, 

FFTW3 

2 

NAMD MD C++ 
Charm++ 

(MPI) 

Charm++, 
FFTW2 

7 

QE DFT Fortran, C; 
MPI, OpenMP 

 

MPI, 
MKL, 

FFTW3  

9 

NWChem Chemistry Fortran, C 
GA, MPI, 
ARMCI 

MKL,  
GA 

13 

GTC Fusion 
plasma code 

(PIC) 

MPI, OpenMP 
 

MPI 
 

15 

 
 

TABLE II. NERSC-6 APPLICATION BENCHMARKS 

Applications Descriptions MPI 
Concurrencies 

HT 
usage 

 CAM Climate  240 Yes 

GAMESS Chemistry 1024 Yes 

GTC Fusion Plasma 2048 Yes 

IMPACT-T Accelerator Science 1024 Yes 

MAESTRO Astrophysics 2048 No 

MILC 
Quantum 

Chromodynamics 8192 No 

PARATEC Materials Science 1024 No 
 



distribution, which performs a coupled cluster calculation. 
The code was compiled with the Intel compilers and used 
BLAS routines from the Intel MKL. We ran the code over 
a range of node counts (strong scaling), and reported the 
total runtime.  

5) 3D Gyrokinetic Toroidal Code 
GTC [9] is a 3-dimensional code used to study 

microturbulence in magnetically confined toroidal fusion 
plasmas via the Particle-In-Cell (PIC) method. It is 
written in Fortran 90, and parallelized with MPI and 
OpenMP. It is one of the NERSC-6 application 
benchmark codes, which has been used to measure the 
sustained system performance [14] for Edison. The code 
was compiled with the Intel compilers and was built 
without enabling OpenMP directives (in order to be 
consistent with the standard benchmark runs).   

We used the large test case from NERSC-6 
benchmark suite, slightly modified to run a fewer 
iterations in our tests. We ran the code over a range of 
node counts and reported the total runtime.  

D. Methods 
On Edison, HT is enabled in the BIOS by default. 

Therefore, we were not able to do any tests with HT 
turned off in the BIOS. In this paper, when we say 
running jobs with HT, it means running two processes or 
threads per physical core (dual stream); and by running 
jobs without HT, it means to run one process or thread per 
physical core (single stream), which appears as running 
on the half-packed nodes. It is a runtime option for users 
to run applications with or without HT. We ran each 
application with and without HT at the same node counts, 
and compared the run time. This means jobs using HT use 
two times as many MPI tasks or threads compared to jobs 
running without HT. In the previous work mentioned 
above, Intel VTune [17] was used to profile the 
applications, which can report accurate and detailed 
hardware activities on the Intel processors. However, on 
the Cray XC30, Intel VTune is not supported [18]. To 
obtain profiling data, we instrumented the application 
codes with the IPM [19] profiling tool, which can 
measure the memory usage, the MPI overhead (and 
detailed MPI profiling), floating point operations and 
other hardware events available through PAPI [20]. It is 
worth pointing out that on Sandy Bridge with HT turned 
on, the floating-point operations could not be measured 
accurately with the PAPI due to the insufficient hardware 
performance counters available [21]. Therefore we did not 
use them in our analysis. We measured the total 
instructions completed (PAPI_TOT_INS), and the total 
cycles (PAPI_TOT_CYC).  Then we derived the cycles 
per instruction completed for a physical core by 
(PAPI_TOT_CYC/PAPI_TOT_INS) x (number of logical 
cores used per physical core). The cycles/instruction 
metric can be an indicator of whether there are many 
interruptions (or stalls) during a program execution. 

Therefore it could serve as an indicator for the HT 
opportunity as suggested in Ref [3]. Although it is 
difficult to quantitatively measure all the interruptions 
occurring during a program execution, especially due to 
data dependencies, we still tried to measure some of the 
interruptions that are measurable through the PAPI 
hardware events available on Sandy Bridge. We also 
measured L3 cache misses (PAPI_L3_TCM), TLB data 
misses (PAI_TLB_DM), and conditional branch 
instructions mis-predicted (PAPI_BR_MSP), which could 
represent the longer stalls during the program execution. 
Since only four programmable hardware performance 
counters are available on Sandy Bridge, we had to run the 
IPM-instrumented application codes multiple times, each 
time collecting three different hardware events.  

 

III. RESULTS AND DISCUSSION 
Fig. 3 shows the VASP results, where Fig. 3 (a) 

shows the run time using HT (dual stream) and without 
using HT (single stream) over a range of node counts 
(strong scaling). Note at each node count, the job using 
HT ran with two times as many MPI tasks compared to 
the job without HT. As shown in Fig. 3 (a), HT slows 
down the VASP code for all node counts instead of 
improving the performance. The slowdown is about 8% 
running on a single node, gets larger in percentage when 
running with a larger number of nodes, and is about 50% 
when running with eight nodes. Fig. 3 (b) shows the 
percentage time spent in MPI communication. We can see 
that due to running with twice as many MPI tasks with 
HT, the communication overhead for the HT runs is 
higher compared to the runs without HT at each node 
count. However, the communication overhead increases 
by a smaller amount when doubling MPI tasks from the 
single to the double stream executions at each node count 
compared to that of doubling MPI tasks by doubling node 
counts. Fig. 3 (b) shows the code spent about 6-28% of 
the total runtime on communication, which is an 
acceptable communication overhead for the VASP code. 
Fig. 3 (a) and (b) suggest that HT does not benefit VASP 
and will not likely benefit at any node counts where the 
code scales.  

Fig. 4-6 show the analogous results for NAMD, 
NWChem and GTC in the same format as in Fig. 3. One 
can see that HT benefits these codes at the smaller node 
counts, and the performance gain is 6-13%. However, the 
HT benefit decreases when running with a larger number 
of nodes, and eventually HT hurts the performance. For 
example, NAMD runs about 13% faster with HT if 
running with one or two nodes, but slows down more than 
40% if running with 16 nodes. The communication 
overhead (Fig.4 (b)) and the parallel scaling (Fig. 4(a)) 
suggest that it is preferable to run this job with eight 
nodes to effectively shorten the time to solution. 
Unfortunately, HT starts to hurt the performance near this 



node count. We see the similar situation with the 
NWChem code. The only difference is that HT has less of 
an effect on this code, as the maximum performance gain 
is around 6% at the single node run. Again we see that HT 
benefits the runs at small node counts, but slows down the 
code near the sweet spot of the parallel scaling (near node 
count 16 or up). Similarly, the GTC code runs around 
11% faster with HT if running with 32 or 64 nodes, but 
slows down by 80% if running with 128 nodes (Fig. 6 
(a)). Fig. 6 (b) shows that this code has a relatively low 
communication overhead at the node count 128 where it 
stops to scale further up to the larger number of nodes. 
The sweet spot is near the node count 128, which is 
outside the HT benefit region (near 32 and 64 nodes). 
However, the gap between the parallel sweet spot and the 
HT benefit region is not that large, and it is possible to 
have some overlap between these two regions. Compared 
to running at the parallel sweet spot at 128 nodes without 
HT, if running with 64 nodes with HT users can complete 
the same computation at 83% of the total charge 
(although the job runs longer), users could get more 
computations done within a given allocation (NERSC 
charges the machine hours per physical core). This would 
be helpful to users who are limited by the allocation 
hours. Compared to running on the same node count (64 
nodes) without HT, HT allows the code to run 11% faster 
with 11% less charge.  Therefore, for the GTC code, HT 
may bring a real benefit to users in practice.  

Fig. 7 shows the runtime of QE with different 
combinations of MPI tasks and OpenMP threads. For an 
MPI+OpenMP hybrid code, it is desirable to run two 
threads per physical core with HT, because the two 
threads on the same physical core may share the cache 
contents. Fig. 7 (a) is the result of running two threads per 
physical core with HT, but running one thread per 
physical core without HT. Fig. 7 (a) shows that there is no 
observable performance benefit from using HT. Fig. 7 (c) 
shows an up to 15% performance gain from HT at two 
nodes (8 and 4 threads per MPI task with HT and without 
HT, respectively). However, since the runtime at this MPI 
task and thread combination is much longer than running 
two threads per physical core with HT (a), the HT 
performance gain at this MPI task and OpenMP thread 
combination is probably not relevant to users in practice.  

To understand the observed HT effect on these 
applications, we have attempted to correlate the profiling 
data with the observed HT performance. Fig. 3-6 (d), (e) 
and (f) show the cycles used per instruction, the L3 cache 
misses, and the branch mis-predictions per physical core 
with and without HT for VASP, NAMD, NWChem and 
GTC, respectively. We were not able to collect the similar 
data for QE because the IPM available on Edison does not 
work with the MPI+OpenMP codes. It should be noted 
that we present these values per physical core instead of 
per logical core when HT is used to compare with the 
results without HT. The values of the physical core with 

HT were obtained by adding the values on the two logical 
cores. As pointed out in Ref. [3] the cycles/instruction 
metric is an indicator for HT opportunity. If a code spends 
more cycles to retire a single instruction, it indicates more 
stalls have occurred during the program execution. From 
Fig. 3-6 (d) we can see that with HT all codes have shown 
a reduced number of cycles/instruction per physical core, 
which should be an indicative of higher resource 
utilizations from using HT. Meanwhile, we also see that 
HT introduces extra overheads to program execution. Fig. 
3-6 (e) show that HT increases the L3 cache misses for a 
physical core. This is expected because the two processes 
on the same physical core share the caches (each of them 
may use only one-half of the caches). In addition, Fig. 3-6 
(f) show that each physical core has to deal with more 
branch mis-predictions. This is also not surprising 
because now the branch mis-predictions on the two 
logical cores add up for the physical core. Moreover, the 
extra communication overhead introduced by running two 
times as many MPI tasks with HT imposes an additional 
data dependency across all or many physical cores, which 
may stop HT from utilizing the idling cycles. Fig. 3-6 (d) 
show that VASP has the highest cycles/instruction among 
the four codes, which indicates a better chance for HT to 
improve the code performance, however we did not 
observe any performance benefit from HT with VASP. 
We noticed VASP spends the MPI time almost entirely on 
MPI_Alltoallv, MPI_Allreduce, MPI_Alltoall, 
MPI_Bcast, and MPI_Barrier which may result in some 
data dependencies across all or many physical cores. This 
may account for partially the VASP slowdown due to HT. 
As shown in Fig. 3-6 (a) and (d), HT benefit occurred 
only at the smaller node counts, and a relatively low 
communication overhead is necessarily for HT to improve 
the performance. HT should have a better chance to 
benefit embarrassingly parallel codes for which no/low 
communication overhead is present. It is worth 
mentioning again that the communication overhead 
increased due to doubling MPI tasks from the single to the 
double stream execution (keeping the number of nodes 
unchanged) is smaller than that of doubling MPI tasks by 
doubling node counts with all four codes, which is 
favorable for HT. For the GTC code, doubling MPI tasks 
for HT at smaller node counts does not even increase the 
communication overhead, which may account for 
partially why HT improves the GTC performance in that 
region. As we have listed above, while HT increases the 
resource utilizations, it introduces extra communication 
overhead, more cache misses, branch mis-predictions, and 
other interruptions that are not listed here.   

Although we have identified some competing 
elements that contribute to HT effect, it is difficult to 
quantitatively predict the HT performance with the 
profiling data. The contribution from each competing 
element depends on the applications characteristics and 
the concurrencies at which the applications are run. As an 



attempt to learn the characteristics of the applications, in 
Fig. 3-6 (c) we show the instructions completed per 
physical core with and without HT for the codes we 
examined. Fig. 3-6  (c) suggests that when the instructions 
completed per physical core are similar with and without 
using HT, the codes have a better chance to get 
performance benefit from HT.  

To summarize, for HT to realize any performance 
benefit for applications, it seems the following necessarily 
conditions have to be met.  

 
• The cycles/instruction value should be sufficiently 

large so that HT has enough work to do to help, 
although HT may not address all the interruptions.  

• The communication overhead needs to be 
sufficiently small, in particular the extra 
communication overhead from doubling MPI 
tasks should be small so that the amount of the 
interruptions that HT can not address do not 
dominate the HT effect. This indicates that HT 
benefits likely to happen at relatively smaller node 
counts in the parallel scaling region of applications 
except for embarrassingly parallel codes. 

• The number of instructions completed per physical 
core with and without HT need to be similar, 
which requires highly efficient parallel codes (less 
serial portion in the codes). 
  

On Edison, these numbers can be measured using the 
easy-to-use IPM tool (with the PAPI_TOT_INS hardware 
event), so it will be helpful if users look into these 
numbers to see if their application is a candidate for HT 
performance benefits. The overall HT performance should 
be the competing result between the higher resource 
utilization that HT enables and the overheads that HT 
introduces to the program execution.  

 

IV. CONCLUSIONS 
We investigated the HT performance impact on the 

five selected applications that are used to represent 
NERSC workload. We consider a proper measure of the 
HT performance effect is comparing the performance with 
HT and without HT on the same number of nodes, 
meaning the codes run with two times as many MPI tasks 
when HT is used compared to the runs without HT. We 
compared the runtime with and without HT for the five 
selected applications over a range of node counts (strong 
scaling). We observed that HT slows down VASP and QE, 
but improves the performance of NAMD, NWChem and 
GTC by about 6-13% when running with a smaller number 
of nodes where the communication overhead is relatively 
small. However, the HT performance gain for these codes 
decreases and a big performance penalty occurs when 
running with a larger number of nodes, where the sweet 
spot of the parallel scaling of the codes usually reside. For 
NAMD and NWChem, the sweet spot of the parallel 
scaling do not overlap with the HT benefit region, 

therefore, the HT performance gain occurring with the 
small node counts probably has a limited use to users in 
practice. For the GTC code, these two regions have some 
overlap, although they do not match exactly. HT may 
bring a higher throughput to users so that they can get 
more computations done within the given allocations 
without hurting the time to solution too much. It should be 
noted that the HT benefit is not only application 
dependent, but also concurrency dependent, i.e., at which 
node counts an application is run. Therefore blindly using 
HT may result in a large performance penalty, and users 
should use HT with caution. 

We also attempted to relate the observed HT 
performance with the profiling data, cycles/instructions, 
L3 cache misses, branch mis-predictions, and the 
communication overhead. We were able to confirm that 
with HT the cycles/instruction per physical core are 
reduced for all codes, indicating higher resource 
utilizations. Meanwhile, HT increases L3 cache misses, 
branch mis-predictions, and other stalls during the 
program execution which contributing negatively to the 
code performance. In addition, the extra communication 
overhead due to running two times as many MPI tasks 
with HT contributes negatively to the code performance as 
well. The overall HT performance should be the 
competing result between the higher resource utilizations 
that HT enables and the various overheads that HT 
introduces to the program execution. Our analysis shows 
that the applications with higher cycles/instruction metric 
could be the candidates for HT benefits. In addition, for 
HT to realize any performance benefits, the low 
communication overhead and high parallel efficiency are 
necessary, which makes the HT benefits likely to occur at 
relatively lower nodes counts in the parallel scaling region 
of applications. 

HT, as a complementary approach (thread level 
parallel) to the existing modern technique (instruction 
level parallel) to improve processor speed, has a big 
potential in processor design. We observed that the HT 
benefit is not only application dependent, but also 
concurrency dependent, occurring at the smaller node 
counts. Since the gap between the HT benefit region and 
the parallel sweet spot is relatively large for the major 
codes we examined in the NERSC workload, and also 
some of the codes do not get any performance benefit from 
HT, the HT performance benefit to the NERSC workload 
is probably limited on Edison at this point. However, with 
the continuous improvement on the HT implementation 
and the parallel scaling of the application codes, we may 
expect to see more role of HT in HPC workload in the 
future. 
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Figure 3.  The VASP results, where (a) shows the run time using HT (dual stream) and without using HT (single stream) at a range of node counts with a 
test case containing 105 atoms. Figure (b) shows the percentage time spent on communication, and Figure (c) shows the instructions completed per 

physical core with and without using HT, and Figure (d) shows the cycles used per instructions completed per physical core with and without using HT, 
and the panel (e) shows the L3 cache misses per physical core with and without using HT, and the panel (f) shows the branch mis-predictions per physical 

core with and without using HT. At each node count, the run with HT used twice the number of MPI tasks. 
 



  

Figure 4. The NAMD results in the same format as in Fig. 3. The STMV standard benchmark case was used. 
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(a) (d) 

(f) (c) 

(b) (e) 

Figure 5. The NWChem results in the same format as in Fig. 3 with a standard benchmark case, cytosine_ccsd.nw. In Panel (e) 
and (f) the results without using HT at single node are missing due to the IPM-instrumented code failed to run with the specified 

hardware performance events.  
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Figure 6. The GTC results in the same format as in Fig. 3 with a slightly modified NERSC-6 benchmark input. 
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