
Trillion Particles, 120,000 cores, and 350 TBs:
Lessons Learned from a Hero I/O Run on
Hopper
Suren Byna (LBNL – Scientific Data Management group)

Andrew Uselton (NERSC), Prabhat (LBNL), David Knaak (Cray
Inc.), Helen He (NERSC)

The application: Vector Particle-in-Cell (VPIC)
Simulation

2

VPIC-Hopper

²  A state-of-the-art 3D electromagnetic

relativistic PIC plasma physics

simulation

²  It is an exascale problem and scales

well on large systems

²  An open boundary VPIC simulation of

magnetic reconnection (Space

weather)

²  NERSC Hopper Supercomputer
o  6,384 compute nodes; 2 twelve-core AMD 'MagnyCours' 2.1-GHz

processors per node; 32 GB DDR3 1333-MHz memory per node;
Interconnect with a 3D torus topology

o  Lustre parallel file system with 156 OSTs at a peak BW of 35 GB/s

The application: Vector Particle-in-Cell (VPIC)
Simulation

3

•  March 1989: A power blackout in Canada affected 6
million people.

•  October-November 2003: Solar panels fail on the
$450 million Midori 2 research satellite, and
astronauts take cover in the International Space
Station.

•  June 2011: Airlines report disruption of high-
frequency radio communications near the Arctic.

VPIC Trillion Particle Simulation setup

4

²  20,000 MPI processes (MPI domains) using 120,000 cores
²  Each MPI process writes ~51 Million (±15%) particles
²  Each particle has 8 variables
²  Lustre-aware MPI-IO implementation

ü  MPI collective buffer size is equal to the stripe size
ü  Number of MPI aggregators is equal to the stripe count

²  Particle dataset size varies (30TB to 43TB) per time step – A total
of 350 TB data + 150 TB checkpoint data

Data Challenges

5

²  What is a scalable I/O strategy for storing massive particle
data output?
o  In situ analysis works well when analysis tasks are known a priori
o  Many scientific applications require to store data for exploratory

analysis
²  What is a scalable strategy for conducting analysis on

these datasets?
o  Sift through large amounts of data looking for useful information

²  What is the visualization strategy for examining the
datasets?
o  Display information that makes sense

•  Scheduling a large job that would take ~80% of
compute nodes

•  Queue time may be longer
•  Thanks to reg_xbig queue, which is turned on at 9PM on

Fridays

•  Lustre file system may be stressed due to large
volume of data produced

•  But…
•  There were a few more lessons we learned

Expected challenges in running the application

1. Collective writes to a single shared HDF5 file can
work as well as file-per-process writes

2. Tuning multiple layers of parallel I/O subsystem is
a challenging task

3. Advance verification of file system hardware is
important for obtaining peak performance

4. Advance verification of available resources for
memory-intensive applications is important

5. Scalable tools are required for diagnosing
software and hardware problems before running
applications using 100k cores

Lessons Learned

•  I/O of VPIC follows a banded pattern
•  Two file writing strategies

•  File per process model
•  Shared file with HDF5 and H5Part

Lesson 1: Parallel HDF5 works – I/O pattern

Lesson 1: Parallel HDF5 works – File-per-process

•  Performance of 20,000
files with a combined
size of ~30TB

•  Lustre Monitoring Tool
•  Load imbalance and

the last OST finishing
writing dictate
performance

•  I/O rate: 27,007 MB/s

Lesson 1: Parallel HDF5 works – File-per-process

•  Uneven load leads to uneven completion times
•  Problems with file per process model

•  Too many files – 20,000 files per time step in our case
•  Dictates the concurrency of subsequent stages in the analysis pipeline
•  Many data management and visualization tools only support standard data

formats, such as HDF5 and NetCDF

11 http://vis.lbl.gov/Research/H5Part/

Lesson 1: Parallel HDF5 works – HDF5 and H5Part

Lesson 1: Parallel HDF5 works – HDF5 and H5Part

•  Performance of writing
one ~31 TB particle file

•  I/O rate: 27,035 MB/s
•  Need for rendezvous

after writing each
variable, due to H5Part
and HDF5 interactions

Lesson 1: Parallel HDF5 works – Load balance

•  Uniform load across the 156 OSTs and the RAIDs
•  Some variability due to collective operations after each variable dump
•  Overall, I/O performance of parallel HDF5 compares favorably with that

of file-per-process
•  HDF5 and Lustre performance was not automatic, but needed some

tuning

Lesson 2: Tuning parallel I/O is a challenge, but not
impossible – I/O Stack

•  Layers of parallel I/O software stack offer various tunable parameters
•  Finding the right tunable parameters is a challenge
•  To search the parameter space, we extracted the I/O kernel of VPIC

•  VPIC-IOBench
•  Two versions: Uniform and non-uniform writes from each process

Lesson 2: Tuning parallel I/O is a challenge, but not
impossible – Lustre and MPI-IO tuning

•  Lustre stripe count and stripe size
•  Varied stripe count from 64 to 156 and stripe size from 1MB to 1GB
•  Chose stripe count of 144 and stripe size of 64MB

•  Lustre-aware MPI-IO collective buffering on Hopper uses CB2 algorithm
•  Number of collective buffering aggregator nodes is equal to the stripe count
•  Size of collective buffer is equal to the stripe size

Lesson 2: Tuning parallel I/O is a challenge, but not
impossible – HDF5 truncate

•  HDF5 file close function verifies the size of the file matching with its
allocated size to detect any external modification or corruption

•  This is an expensive operation because of its collective nature
•  Modified HDF5 to disable this “truncate” operation and achieved 3-5X

performance improvement

•  Early runs obtained a 60% of peak bandwidth
•  To achieve peak performance, each OST needs to be

performing at 250 MB/s

Lesson 3: Advance verification of file system
software is important – OSTs behaving badly

•  Early runs obtained a 60% of peak bandwidth
•  To achieve peak performance, each OST needs to be

performing at 250 MB/s

Lesson 3: Advance verification of file system
software is important – OSSs behaving badly

•  On most nodes, Hopper has 32 GB memory
•  Some nodes have 64 GB
•  Total memory of 5,000 nodes: ~156 TB

•  VPIC memory footprint is ~142 TB
•  Translates to ~29 TB on each node when the simulation

uses 5,000 nodes
•  90% of the memory on each node

•  Considering some lightweight OS tasks running
on the nodes, 90% of memory requirement puts
significant pressure

•  Experienced OOM error from one node crashing
the application

Lesson 4: Advance verification of resources for
memory intensive apps is important

•  Used a combination of tools to verify memory
availability before each run and after dumping
large particle data

•  Node Health Checker (NHC)
•  Free Memory Check to verify the available free memory
•  “Admindown” nodes with less than 29GB free memory

•  Developed a Perl script that reads the free
memory information from /proc/buddyinfo on all
the nodes in allocation

•  Manually sorted and verified the free memory

Lesson 4: Advance verification of resources for
memory intensive apps is important - Solution

•  It can be time consuming and tedious for a user to
verify system health prior to a large run

•  Scalable tools can help diagnosing the SW and
HW problems

•  Some tools exist, but need streamlining the
process of verification

•  Scalable computation and memory resource
checker

•  With the help of Cray and NERSC staff, used NHC and
“xtprocadmin” to verify the current status of nodes

•  Used NHC and local script to check memory status

Lesson 5: Scalable tools are required for
diagnosing SW and HW problems

•  Scalable I/O subsystem checker
•  Used manual I/O tuning to identify good set of

optimization parameters
•  Our work in progress to identify tuned set of parameters at

each layer of the parallel I/O stack
•  Scalable Runtime I/O Monitor

•  Typically, many applications idle during I/O wasting CPU
resources

•  Even one sluggish OST can increase the waste
significantly

•  Lustre Monitoring Tool (LMT) was great; OSTs of bad
behavior had to be found manually in postmortem – Any
better and pro-active solutions??

Lesson 5: Scalable tools are required for
diagnosing SW and HW problems

1. Collective writes to a single shared HDF5 file can
work as well as file-per-process writes

2. Tuning multiple layers of parallel I/O subsystem is
a challenging task

3. Advance verification of file system hardware is
important for obtaining peak performance

4. Advance verification of available resources for
memory-intensive applications is important

5. Scalable tools are required for diagnosing
software and hardware problems before running
applications using 100k cores

Lessons Learned

Thanks!

24

Application Scientists: H. Karimabadi, W. S. Daughton, V. Roytershteynz,

Colleagues: J. Chou, O. Rübel, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W.
Lin, A. Shoshani, K. Wu, Q. Koziol (HDF5), J. Shalf

NERSC: Tina Butler, Katie Antypas, Francesca Verdier, Woo-Sun Yang,
and Harvey Wasserman.

Cray: Steve Luzmoor, Terence Brewer, Randell Palmer, Bill Anderson,
Mark Pagel, and Steven Oyanagi

Advanced Scientific Computing Research (ASCR) for funding the
ExaHDF5 Project; Program Manager: Lucy Nowell

