
Taking Advantage of Multi-cores for the Lustre
Gemini LND Driver

James Simmons

Oak Ridge National Laboratory
Leadership Computing Facility

Background

● ORNL largest cray system upgraded from XT5 to XK7
● Went from using SeaStar to Gemini
● Currently using modified Lustre 1.8.6 clients

Performance evaluation

● Theoretical promised raw performance
● 6 to 7 GB/s bulk messages
● 3 GB/s small messages

● Gemini 1.8 LND driver real numbers
● 2.6 GB/s bulk messages
● 1.6 GB/s small messages

Causes

● Checksumming
● On – node to node gives 1.6 GB/s
● Off – node to node gives 3.8 GB/s

● Kernel threads not optimized
● Are their enough?
● Threads free to migrate to any core
● Memory allocation not NUMA aware

● Has this been solved before?

Lustre 2.4

● Lustre had the same challenges
● New crypto api used for check summing.

– future work for gemini LND

● SMP scaling enhancements

– Results covered in this talk.

Gnilnd SMP scaling enhancements

● Rework LND driver according to mapping between layers
● X LNET interfaces : Y devices : Z

CPT

● Per CPT allocations to limit cache migration

● CPU affinity to threads

SMP API gives greater control

● You can control which cores belong to
which CPT
● Don't need to use all cores

● You can map LNET interfaces to
specific CPT
● Use this to limit compute node

noise

Hardware influences configuration

● Processor properties
● NUMA and cache shared between cores
● Some AMD processors shares the FPU between 2 cores
● Exploit instruction set for hardware checksumming

● Gemini hardware attached to one socket via the
HyperTransport

● Socket has two NUMA nodes. Using wrong one gives penalty.

16 compute nodes to 1 router – 1MB transfers

16 compute nodes to 1 router – 4K transfers

16 compute nodes to 1 router – pings

● Adding 3 threads does
not give us a gain.

● Creating more CPTs
degrades performance

● We get consistent
performance at all
scales

● Pings show without
checksumming we
should have linear
scaling

Many compute nodes with increasing kernel threads to
one router – 1MB transfers

Many compute nodes with increasing kernel threads to
one router – 4K transfers

Many compute nodes with increasing kernel threads to
one router – pings

● More than 3
threads gives no
gain

● 3 threads only
small gain over
one at small
compute pool
size

● Consistent
behavior

● Pings reveal
linear scaling

Are more kernel threads worth it on compute nodes
 compute to compute improvements

Are more kernel threads worth it on compute nodes
 compute to compute improvements

Future work

● Testing on AMD Interlogos
● Two thread testing on computes

● Recent testing shows behavior like three threads

● Lustre Crypto api
● Test other checksum algorithms
● Hardware accelerate checksum if platform not supported
● Only do LND checksum for small packets or DVS
● Other more long term solutions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

