
Taking Advantage of Multi-cores for the Lustre Gemini LND Driver

James Simmons
Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA
e-mail: simmonjs@ornl.gov

John Lewis
Customer Service

Cray Inc.
Seattle, WA 98164, USA
e-mail: lewisj@cray.com

Abstract— High performance computing systems have for
some time embraced the move to multi-core processors, but
parts of the operating system stack have only recently been
optimized for this scenario. The Lustre file system has
improved its performance on high core-count systems by
keeping related work on set of cores that share a NUMA node
or cache, though low-level network drivers must be adapted to
the new API. The multi-threaded Lustre network driver (LND)
for the Cray Gemini high-speed network improved
performance over its single-threaded implementation, but did
not employ the benefits of the new API. In this paper, we
describe the advantages of the new API and how the Gemini
LND performance was impacted. We will take a detail look at
various setups to determine what is the best possible
configuration.

Keywords: Gemini, Lustre, multi-cores, SMP

I. INTRODUCTION AND MOTIVATION

World wide HPC centers have enabled scientist to
resolve complex problems. With these solutions even larger
questions about the nature of the problem come to light. To
handle these very increasing demands HPC centers are at the
forefront of expanding technological horizons. In 2012
ORNL, to meet the increasing needs of its users, upgraded
the main computational resource Jaguar to a new architecture
and renamed the machine to Titan. The upgrade changed the
machine from an Cray XT5 machine using an SeaStar
interconnect to the Cray XK7 platform which has the newer
Gemini interconnect. Part of the process of these upgrades is
to evaluate what the benefits and limitations are for the new
hardware. These analysis help us to determine such things as
optimal application placement and best router configuration
to maximize the through put to the file system. The
expansion of the machine has placed additional pressures on
the current file system which will be remedy with the
deployment of the next file system.

Internal data on the Gemini interconnect have shown a
peak of 7 GB/s between compute nodes at packets sizes of
64KB and up. When transmitting 4KB size packets a
sustained output of slightly above 3GB/s is observed. This is
the ideal conditions so some loss is expected when this
network layer is implemented in different software stacks for
specific use cases. The question becomes how efficient is the
software stack to minimize the loss experience and if the loss
is substantial what can be done to improve the performance.

The area of impact that this paper explores is to the
parallel file system deployed. The file system of choice at
ORNL for production is the Lustre file system. Lustre
possess a abstraction layer called LNET to enable supporting
many network topologies in a uniform way. To take
advantage of this abstract for the Gemini interconnect an
LND driver had to written to interface with the LNET layer.
As stated before some loss was expected off the raw values
but our studies showed how poorly utilized the bandwidth,
currently 1.6GB/s, was on the Gemini LND. Data collected
pointed to a large penalty from the checksumming that was
performed on data packets being processed by the LND
driver. The problem expressed itself in two ways. The first
was the check sum algorithm itself performed poorly with
large data sets. Secondly the LND driver did not scale to
handling increased network traffic coming in. In later
versions of the driver's code more threads were added to help
with performance but we still saw significant penalties with
having checksums enabled. Disabling checksumming seems
to be the logical choice but one risk allowing potential
corrupted data being written to disk. Secondly even with
checksumming disabled the maximum performance
observed was 4 GB/s between a compute node and service
node.

To meet these challenges the research of this paper
explores leveraging modern hardware to decrease the losses
experienced with the Gemini LND driver. First we will
examine the current behavior of the LND driver to evaluate
were the bottle necks occur. This paper details the various
combinations tested to validate the theoretical configurations
that would give the best performance. Using this data we
show how to approach future hardware platforms to best
utilize the hardware. Also we go over the future direction of
the driver's software stack to over come the limitation of the
checksumming algorithm itself.

II. THEORY

The current challenges to the Gemini LND driver were
also problems for the Lustre file system in the past. Today
we can adopt their solutions but first lets look at the history
of the problem for Lustre and how it was solved. One of
major bottle necks for Lustre is the metadata server not being
able to scale. The problem can be attacked in two ways, one
being to spread the meta data across multiple servers which
is being developed in the new DNE frame work that is partial
completed. The other approach was to look at vertical
scaling by taking advantage of multiple core machines that

the MDS resides on. The SMP scaling work that came out of
this research was also applied to other layers of the Lustre
stack to increase performance. Lustre version 2.3 and above
ships with the SMP improvement completed and integrated
into the stack.

Since the focus of this paper is improving a LND driver
let us study the problems that hindered the LNET that were
resolved by the SMP changes. As larger file systems were
deployed the limitation was not the disk but the fact that the
back end servers would easily become CPU bounded which
resulted in the Lustre clients ending up in a soft locked
condition. Their were a few reasons for what triggered these
conditions. Lockmeter analysis showed that large contention
existed for the global locks that were present in the LNET
layer at that time. The source of contention was the lock
being synchronization so a consistent view of its state was
presented to every core. Since memory has a lower clock rate
then the processor large latency would occur. Other data
types, such as the wait queues, in the stack also were
impacted by this contention. In the case of wait queue an
additional penalty would results from the natural round robin
nature of handling the next event. By the time we came back
to the same thread in the queue the data would have to be
migrated into an CPU's cache. Besides the penalty of cache
migration the data being migrated into the cache's rarely
were laid out to minimize cache line misses. This problem is
enabled by the lack of CPU affinity for the kernel threads.

With a understanding of the problems the SMP api was
developed to address these issues. The center of the design is
the CPU partition which is a grouping of cores. The premise
of the grouping is to place together cores that share a cache
or belongs to the same NUMA node to minimize the
memory penalty. Default CPU partitions are created based
on how the Linux kernel sees the topology of system.
Usually this is the best case layout but we shall see this is not
always the case. To take advantage of the memory locality
one needs to use the per-partition and partition local memory
allocator routines in your code. With the localized memory
one can avoid the penalty of the thread migration when the
thread is bind to the proper CPT. One needs to ensure the
proper cores belong to the same CPT so that the thread
migration between cores in the CPT has no penalty. Having
parallel handling of events with multiple threads lacking
contention enables far better scalability.

With any well written api you give your users choices in
system behavior. Here we go over the setting that have a
impact on LNET layer as well Gemini LND driver. The
center of the api is the CPT so we shall go over that first. To
get the CPT (CPU partition table) the command lctl
get_param cpu_partition_table is used. In the example
output below we get a visual of the layout of cores.

 cpu_partition_table =
 0 : 0 1 2
 1 : 3 4 5

In this example we have two partition tables with table one
containing cores 0, 1, and 2. This layout can be controlled
with two types of module parameters for the libcfs module.
The first approach is to control the number of CPTs created.
An example of this would be

options libcfs cpu_npartitions=3

In the above example we would have three unique partitions
with each partition having a total of two cores. Care must be
done with the number of cores in the partition. Any core has
the potential of becoming CPU bounded so having a CPT
containing only one core would prevent the LND thread
from migrating to a non blocking core. Sometimes one needs
even finer grain control of the layout so a method is provided
to control which cores belong to a CPT. Using the same
example we change the cores of the CPT to contain each
only the even number or the odd number cores.

options libcfs cpu_pattern="0[1,3,5] 1[0,2,4]"

If you have many partition you can use short hand notations
such as 0[0-20/2]. How this is done depends on the
architecture of your machine. In the case of Cray hardware
this will be handled differently on the service nodes versus
the compute nodes. Service nodes and compute nodes
contain not only different number of processors but these
processors can also be different types. The api is flexible
enough to require you don't need to use all the cores on a
system. Let us take the case of limiting the OS noise on a
compute node to limit the impact to an application. In this
case the job is launched with aprun -r to have all the OS
specific handling to be migrated to a specific core. The stock
Gemini LND driver doesn't follow this behavior but carving
out a single CPT containing two cores would remedy the
situation. Having two core would prevent the IRQs or IO
handling from stalling one another. This would further
optimize lowering the noise level on the compute nodes. One
does need to take note which NUMA node the Gemini
interconnect is attached to with the Hyper-Transport bus so
the CPT belonging to the same NUMA node is used for
performance reasons.

The CPT you create will be the ones used by the LNET
layer. The impact this has on the LNET layer was the ability
to have localized buffers and have thread pools bounded to
specific CPT. Parallel event queues handling incoming
traffic enables for far better scalability plus you receive less
lock contention. To maximize this advantage the LND driver
needs to aware of the LNET CPT that come into play. Like
the CPT being configurable the administrator can control
which CPT subset each LNET interface can be aware of.
Using a 6 core 2 CPT example lets say you want the Gemini
LND driver to only use the second partition. For this
example the module parameter option would be

options lnet networks="gni0[1]"

Remember having your LND driver use less CPT than the
LNET layer can impact performance since data can migrate
from one CPT in use by the ptlrpc thread to the CPT in use
by your LND driver. Usually this case is used in situation
that you have more than one physical network interface.

Now that we understand the components behind SMP
scaling the next step was to apply it to the Gemini LND
driver. To properly implement the api we have to lay out the

proper mapping between the variable number of
components. For the typical LND driver we have:

 X LNET interfaces : Y devices : Z CPT

Most drivers only use one LNET interface per device but this
is not the case for our driver. On Cray systems the LNET
layer is used by Lustre and DVS. Each uses the same gni
interface but are registered to different Portal ids. In reality
for Lustre the LNET configuration of a Gemini driver really
looks like 12345-30@gni0. You can see this result when you
do a lctl ping. In the case of DVS the port will be some thing
besides 12345. So in this case we will have 2 LNET
interfaces. Currently the hardware only support one device
but the driver is written to take advantage of multiple devices
if a platform ever comes into existence. Lastly we have to
handle mapping the CPT to each device. Nothing stops
devices from having over lapping CPT. In our case of DVS
and Lustre we want to share the CPT setting for each LNET
interface so as not to degrade performance.

III. TEST EQUIPMENT ARCHITECTURE AND CONFIGURATION

In the previous section we discussed the foundation of
this work in order to understand how to apply it the specific
machine architecture. How each machine is configured is
hardware dependent but the rules for optimal layout can be
generalized such that it is easy to apply the same principles
to a new machine and get the improvements we expect. For
our test system we have a single cage Cray XE6 which we
named Arthur. In our test system configurations we have
total 20 compute nodes, 6 router service nodes, and 2 login
service nodes in use by the file system that is supplied by a
DDN S2A9900.

This platform has no GPUs and the CPU installed are
AMD Magny-Cours. In total 6 cores are placed within a
NUMA region (or die) sharing a 6MB L3 cache with each
core having a 512KB L2 data cache and 64KB L1 data

cache. For compute nodes as we can see below we have two
sockets were each socket contains two dies with 6 cores
embedded each thus a total of 24 cores per compute node.

The service nodes have a single socket which contains a
total of 6 cores. For both computes and service nodes the
Gemini interconnect communicates directly with the cores
on NUMA node 0 using the Hyper Transport bus. As we can
see in the figure which represents the compute node case, we
want to divide up the system in four different regions. Using
the wrong NUMA region for the Gemini NIC will come with
a performance penalty. This is a case were we want to avoid
using any cores not on NUMA node 0. In testing we will
explore if we can saturate the Gemini interconnect using
only cores on NUMA node 0 and if we need to use cores on
other dies study what that cost is.

With the ability to use more than one core on a NUMA
node introduces with it the potential cost of impacting an
running application. So the question is how does one
minimize this. On our Cray XE Magny-Cours test system
each processor has its own FPU so there is no easy solution
to this problem. In the future out work will be migrated to
Titan which uses the AMD Interlogos chipset. Separate
experimentation showed using Linpack that on Cray AMD
Interlogos based systems you could get nearly the same
performance using only half of the cores on node if you
correctly picked the cores to run on. The reason for this is
that on AMD Interlogos processors every two cores share a
FPU. Taking advantage that most scientific applications only
care about using the FPU ideally we want at most 4 well
placed threads on the compute nodes. This can take place
because the Gemini LND driver will never touch the FPU.
Normally the times when a application doesn't use the FPU
are when it has to deal transferring data to the file system
which in our setup will be taken advantage of.

IV. TEST CASES

A. LNET and LND configurations

Now that we have a good grasp of the hardware we can
define what our test parameters will be. With the service
nodes having only one socket with a single NUMA node
containing six cores so the combinations are limited. For the
stock Gemini LND driver 3 threads are created to handle the
traffic that is caused by the high ratio of compute nodes to
individual routers. Those threads do not have any affinity
with any cores so they are free to migrate. Our current test
system only has twenty compute nodes but increasing the
kgnilnd threads on the compute can help create an
environment that simulates having a larger set of compute
nodes. We can use this setup to explore effectively what the
impact of more threads on the service node will have on
performance. Thus the other option is running 6 threads to
see how if it has any influence on performance.

Moving to a 2.4 version of Lustre we see by default
libcfs creates two CPTs on the service nodes with each CPT
containing 3 cores. If we consider that the L3 cache is shared
with all cores the only advantage of having more than one
partition is to increase parallelism of the handling the events.
As with all CPT configurations having one CPT with all
cores or having too many CPTs are costly so those test
scenarios can be omitted. This leaves us with testing CPTs

containing two or three cores to evaluate its interactions with
the largest set of compute nodes we have in our test system.
Experimentation will determine which sets of cores are the
optimal setup.

For the case of compute nodes the stock Gemini LND
driver takes a conservative approach by using only one
thread to handle all traffic. Without CPU affinity this thread
is free to migrate to any one of the 24 cores on the node.
Earlier in this paper we discussed the reasons why the cores
on NUMA node 0 are optimal. In the case of the default
driver we see that the single thread is allowed to freely
migrate to another NUMA node which incurs an extra
penalty. Since only one thread is used the question is
whether adding more threads add value. This question will
be answered by increasing the number of threads up to the 24
cores present in the system. To make the comparison for
both SMP and non SMP cases the number of cores for each
set of tests will be identical.

Compute nodes that have Lustre 2.4 clients installed for
our hardware platform are automatically setup with 4 CPTs
each containing 6 cores. By default to match the original
behavior of the stock LND driver we also only start a single
thread on each node. For the case of using less than six
threads all spawned threads will be located in the same CPT.
While our LND driver will be using one CPT the LNET
layer will be handling data on all the CPTs. A penalty will be
encountered when that data has to be transferred to a
different CPT. The initial set of test will focus on creating
CPTs only for NUMA node 0 to minimize the path to the
Gemini interconnect. Much like the service nodes the options
for CPT configurations on each NUMA node is limited.
Using the data collected from the service node runs we will
have a grasp on whether a NUMA node using CPTs
containing two core or three cores is the better choice. In
either case we will have the second layer of testing using the
cores on NUMA node one and then using both NUMA nodes
on socket 0. The last setup described is the most optimal
relative to applications but to make the test complete we will
examine the case of using all cores on socket 0 as well as
having six core in use on socket 0 as well as six more cores
on socket 1. Even though we have the same number of cores
this will show the impact of placement will have. The final
set of test will use all the cores on the compute node. At
some time during testing we will witness the saturation of
the Gemini interface. At that point no extra amount of
threads or placement will have an impact.

B. Benchmarking software

Our testing will be modeled after the original SMP
work done under the OpenSFS contract with Whamcloud.
Based on that work we see the focus of their testing was
done with LNET selftest and mdtest. The reason for the lack
of bulk message study is due to the interaction of the bulk
messages with the cache. The larger the data packet the more
probable that some of that data will be flush from the cache
especially as time progresses. LNET selftest is a tool
distributed with Lustre can be used to analysis the
performance of the LNET layer itself. In the course of our
studies we will do a impact study to ensure that the SMP
scaling work does not degrade the current bulk message

handling. Due to time constraints mdtest were not
performed.

With LNET Selftest you can create batches of test
which have several controlling factors. The basic LNET
functionality that is exercised are LNET ping rates, and read
write transfer rates. In the case of reading and writing
different sizes messages can be sent. The most common
message size observed on the production file system at
ORNL are 4K and 1M in size. These sizes will be the focus
of our testing. Also both these sizes will reveal the impact
the SMP changes to both small as well as bulk messages.
Along side these test parameters we can also control how
many concurrent request are outstanding. For most test
conditions we will have the number of outstanding request to
equal to the number of cores on our compute nodes to ensure
that each node is saturated. One special set of test do exist
that have one node communicate with a another node with
every increasing number of request to see where the upper
bound exist for sending request. This will have a influence
on the proper number of threads to spawn on each node as to
not waste cores which could be used for other tasks. Besides
selecting which basic functionality these tests can be done
with different combinations of senders and receivers. In one
set of tests we will be looking at one to one communications.
In this test group we will look at compute to compute,
compute to service, and finally service to service node
interaction. The other set of test will be many computes
nodes to one service node which is the typical production
communication pattern. Here we want to study how well the
routers handle a scale up in the number of clients
communication simultaneously with increasing traffic.

V. RESULTS

A. Smoke test

One of most basic test done to evaluate the
performance of the network fabric is the smoke test using
LNET selftest. This test floods the network with synthetic
traffic with all nodes communicating with each other. This is
the test that can most saturate the network. For our test bed
this was done with 16 compute nodes and 4 routers send
network traffic to each other.

TABLE I. LNET SMOKE TEST RESULTS

Compute
node thread

count

Service node
thread
count

CPT count
1MB writes

transfer rate

1 3 unimplemented 2227.19 MB/s

1 6 unimplemented 2272.32 MB/2

1 3 2 3625.74 MB/s

1 6 2 3650.57 MB/s

1 6 3 3180.05 MB/s

3 6 2 3672.71 MB/s

6 6 2 3692.82 MB/s

12 6 2 3711.70 MB/s

24 6 2 3689.49 MB/s

First lets look at how different configurations on the
service node impacts the smoke test. From this set of data
one can see that for the default driver adding three additional
threads on the service nodes increases the amount of network
traffic being handled. When you compare both cases of a
different thread count on the SMP enhanced driver we see
negligible improvements at this ratio of compute nodes to an
router. This was the case when our compute nodes were
running with a large number of kernel threads as well. So
most likely for many compute nodes the addition of threads
will make no difference. When one compares the SMP to the
non SMP case you see a definite improvement.

B. Increasing compute node to router ratio

While the smoke test is a interesting test case what
is critical to installations is how well a router will handle the
network traffic coming in from many compute nodes. The
routers can easily become the bottlenecks in the file systems
performance. The environment is similar as the smoke test in
that we use 16 compute nodes communicating with one
router. Like the smoke test we will vary the number of
threads on both the compute and service nodes. This analysis
will need to broken to two different parts for clarity due to
variability that can be done on the compute nodes as well as
the server nodes.

1) Service node configuration effects

First we will examine the case were the compute
nodes will be using the default one thread in the LND
driver. The variability will be solely on the service side to
discover which combination is the best for the service node.
As detailed early since the service node has less
combinations to experiment with we can eliminate the less
optimal conditions. This will help with limiting the number
of test for the compute node. In all case we will examine the
different test scenario covering 1M and 4K read as well as
writes of the same size. LNET ping also will be included to
show the network behavior without the impact of check
summing.

Inspection of the LNET ping test results reveal for
the default stock LND driver only after a few compute nodes
we reach a saturation point and remain at approximately that
level independent of the number of compute nodes pinging
the router. For the SMP enabled driver a linear scaling is
observed for all test configurations. By default Lustre 2.4
SMP layer creates two CPTs but in one of the set of test
three CPTs are created. Intuitively you would think that have
three parallel threads handling the network traffic would give
better performance but this is not the case. What is observed
is each thread is experiencing greater competition for access
to an core since it now has fewer less busy cores to migrate
too. Since this is a many computes to router test we can't say
that the router node is being not driven hard enough. When
we look at the SMP cases with identical CPT counts but
different threads being created the data reveals nearly
identical behavior. With a small number of computes we
have demonstrated that have 6 threads added only a small

margin of gain. At the same time it also shows us that extra
threads are not a penalty either. This is some what expected
since all the service node cores share the same L3 cache.

When we look at the data for the read and write cases we see
the impact of the check summing has on scaling. For the
SMP case we see a ramp up to five nodes and then a flatting

out of the amount of data we can handling. This is for the 4K
and 1MB size cases with the only difference is that for small
packet sizes we see some thing similar to a step function
when we reach the fifth node. Remember this data
represents how the service node is handling the incoming or
out going data. The thought here is that the sum of the
amount of data being received grows in scale with the
number of computes interacting with the router. As this
amount of data grows then those larger memory chunks can
be handled more efficiently. As you will note that again
creating three CPTs instead of two causes a performance hit.
Also with the SMP work the we experience nearly constant
handling of network data where as the default driver displays
greatly varying performance.

We can conclude from the data collected that the
SMP work has helped not only improve performance but
also made that performance consistent at larger scales. We
see that more CPTs does not guarantee greater returns but at
the same time adding more threads come at very little cost on
the service node. The best results here will be used as the
control group for the other test sets that follow. For the case
of deployment the best setup on a router would be one CPT

with three threads for the Gemini interconnect and one CPT
with three threads for the infiniband interface.

2) Compute node optimization

For the following set of tests we will keep the
service nodes in the same setup but vary the compute nodes
instead. For the service nodes we will use a two CPT six
thread setup since this was the best setup for the default
stock Gemini LND driver. This ensures that the same test
parameters are uses for the patched and non patched LND
driver cases. We will use the default CPT setup for the
compute nodes since they map nicely to the hardware
topology. By default 4 CPTs are created with each CPT
mapping to the six core die. Here we will analysis how the
service node handles the traffic changes in behavior due to
increasing kernel threads on the compute nodes. In this
section we will focus mainly on the different SMP
configurations. The reason for this is the non SMP case
showed a collapse in performance when increasing the
number of kgnilnd thread when data was collected for the
node to node test. From that we know that one thread on a
compute node with high concurrency has the best
performance.

We can see that ping scales very much like the
service node case. Also like the service node case we see the
default LND driver top out at about four compute nodes and
remain at the level. As you can see a very large performance
gain occurs. What is interesting is we see nearly identical
performance with five or more compute nodes independent
of the number of threads. This shows too many extra threads
has no advantage at all. In the six thread case we do see
improvements when dealing with less than five compute
nodes.

Looking at the results for reads and writes
measuring 1MB in size we see similarity in behavior. For the
default LND driver scaling occurs until we reach the fifth
compute node communicating with the router. After this
point the amount of data being handled decreases. When you
compare it to the SMP cases we reach saturation earlier than
the default case and then a leveling off in the amount of data
being processed. As you can see no decrease in performance

occurs in the SMP case. Only in the read case does the
default driver outperform the SMP driver in one special case.
As we observed from the ping results when the computes go
from one thread to three a performance gain is experienced
when a small number of compute nodes are communicating
with the router. Future testing with multiple routers will
determine if this is router saturation.

When dealing with 4K reads and writes we see a
less smooth behavior for the default driver case. As with the
1MB results we see a peaking in performance around five
compute nodes to one router. Instead of a steady decreasing
performance the data transfer rates become range bound
oscillating between the envelope defining its range. If you
look at the earlier figures for the service node you see a very
similar behavior for 4K packets. If we were to test with only
three threads on the service node the performance would not
only oscillate but continue to decrease as we would scale
more compute nodes. The six threads for the default case
does not experience this decay. Once you turn your attention
to the SMP results you will that the oscillation is absent. The
performance gains in this case were also present. Again the
gains added are negligible when adding more threads on the
compute nodes. The reason for no gain with the twelve
threads and above is that we incur a penalty accessing the

cores located in a different NUMA region. This penalty
erases all possible gains. When dealing with a smaller pool
of compute nodes we see that three threads on the compute
node instead on one gives a noticeable gain.

C. Node to node behavior

So far we have looked at the over all behavior of
the system and with the SMP work witnessed improvements.
The metrics we have so far gathered are defined by the
aggregate of all the nodes that compose the network. In this
section we will look at node to node behavior to see the
lowest level alterations in performance. Due to the nature of
the Gemini hardware this set of test will not reveal the
highest amounts of traffic since we will not be transversing
all the directions of the torus. Node to node evaluation does
gives us an insight in how the LND driver behaves when
varying levels of data are being pushed through the LNET
layer's software stack. To simulate this both nodes that will
be communicating with each other will be loaded with an
increasing number of LNET self test threads being created to
push data on the network. Three cases of node to node
interaction will be examined. The first is compute node to

compute node, second one compute node to a service node,
and the final case is service node to service node. For cases
involving the compute node two separate graphs will be
displayed. One for the SMP case and the other for the default
LND driver. For both cases we will examine 1, 3, 6, 12, 24
kgnilnd threads being spawned on the compute node.

1) Compute node to Compute node

From previous test it was demonstrated that using
six or more threads on the compute node add very little gain.
For the case of one thread verses three threads the gain was
only observed for a small pool of compute nodes when using
the larger number of threads. The question is it worth that
small increase. To get the proper answer to this question
properly examining compute to compute node behavior is
required. Before we look for this answer we need to
examine the default drivers characteristics when adding these
additional threads.

For the default LND driver each time we increase
the kgnilnd thread count the performance degrades even
more. The only except happens when we go to three kgnilnd
threads but those improvements are conditional. As LNET
self test pushes its concurrency above five the three thread
case begins to degrade at a much faster rate then the single
thread setting. In all cases including the default single thread
case as the concurrency increases the performance drops off.

When we examine the read and write cases the
same performance is observed. Between the 1MB and 4K
results a similar pattern emerges. In the case of the 1MB tesst
case the single thread case has a small peak plateau around
two to four nodes with a mild decline with increasing
concurrency for LNET self test. At three threads a small gain
occurs but with increasing concurrency contention eliminates
all gains. While we might get some benefit for three threads
with bulk messages when one looks at the 4K size messages
we see a total lose for any increase number of threads on the
compute node. For the non SMP case we are seeing the
impact of thread migration especially as well increase the
number of threads. More threads means more flushing of the
cache when the thread is migrated the next time it is
scheduled to run. This would only be more amplified if a

intensive application was running across these compute
nodes.

From these results and the 4K read that follows we see that
the best case scenario is the one thread or three three case
depending on which functionality you are testing. Since
checksumming can influence the results the data for the

LNET pings gives us the clearest picture of how adding
more threads impacts the performance. If we weigh the ping
results most heavily then the three thread for the default
driver will be used as are baseline against the SMP results.

The next set of results are for the runs using the
SMP patched driver. The same set of thread counts will be
used as the non patched driver version. The SMP results will
be compared with the best results of the default driver. From
the results in the last section we see that peak performance
occurred when the thread count was three on the compute
node. Looking at the below graph The first thing that stands
out is the reversal of the impact that adding more threads has.
Each increase in thread count comes with gain instead of a
loss. In the SMP case going from one to three threads has
enormous gain. Each increase in thread count after three
threads comes with no penalty as well as no gain. From this
we can conclude more than six or more threads add no
benefit.

We do see a small peak around two lnet self test then a small
dip with a leveling off. With the SMP work the contention
that existed in the original driver has been removed. When
comparing the both one thread cases for the SMP scaling
work and the default driver you see a nearly the same
behavior. We should observed this same type of behavior for
the two classes of read and write test.

Our testing for 4K read and write for the default
driver revealed that unlike bulk messages that the best
performance was with the default one thread. So for this test
case we will be comparing the SMP results to the one thread
results of the default driver.

For both 4K and 1MB message sizes we see the
exact same behavior which is not the case for default driver.
Much like the service nodes behavior having to many threads
adds no extra benefit. While it was not clear in the N to 1
test, or the N to M test we can clearly see that around three
threads get the best performance for compute nodes.

2) Compute node to Service node
Earlier we did a detail study of many compute

nodes communicating with one router. In this section we will
look at the characteristics of a single compute node to an
router. Instead of scaling more compute nodes we will, like
the compute to compute case, scale the number of LNET self
test threads being spawn. The data is sampled on the service
node to see the affects of having extra kernel threads on
compute nodes. Due to the large number of test cases we will
look at the default LND driver and then separately study the
SMP enabled LND driver.

So far the common behavior for default LND driver
for this class of test is to peak quickly then follow a path of
degradation. A show of the performance of the ping
eliminates the impact of check summing. As expected the
best configuration is using only one thread on the compute
node with three threads on the service node. Increasing the
number of threads on the service node nearly cuts the
performance in half.

Continuing to the scale the number of threads serves to only
degrade the system. We see the typical spike in performance
and then a gradual decline. As the number of LNET self test
increase on the compute node the more the network data
rates converge together on the service node. This is true for
all read and write conditions as seen below.

The data for the 4K sized messages shows a much more
rapid convergence of the network transfer rates

With smaller messages the cost is less so convergence
happens at a more rapid pace then with bulk transfers. As is
the case with the default driver the lack of support for CPU
affinity for the threads negatively impact any improvements
we might expect by adding more threads to any system. As
we seen in the compute to compute case a heavy cost occurs
with a larger number of threads being migrated between
cores. Even in the default driver when running six threads on
the service node we see the three thread setting on the
compute nodes do slightly better than the others.

This data repeats the previous behavior we seen in
the compute to compute case. If the trend is to be followed
then we should see the opposite behavior on the SMP
enhanced system. As the number of threads are added no
penalties will occur but we will experience diminishing
return with each increase in the number of the threads in the
system. Also expected is that the performance of the SMP
driver will be greater than the default LND driver. The
question that needs to be answered does the three thread case
on the compute node give a edge over using a single thread .
If that is true then we know over all it is safe to increase the
thread count on the compute node to three. The first hint to
this behavior can be observed with the LNET ping test. The
data reveals that once again that the SMP version in this case
doubled the performance. Going from one to three threads on
the compute gave another thirty five percent increase.

Increasing the thread count any further gives a increase only
for a small number of LNET self test threads. With enough
self test threads we see the network performance converge
with all the other high thread count cases.

While we see a convergence to a lower value for
LNET pings data but for read and write performance
this is not the case. The values recorded at the lowest
concurrency don't start out at the highest value as is the case
for LNET pings but the lowest. A maximum is reached
between four and six LNET self test threads. This is
expected since we are running with six threads on the service
node. Depending on the data we are seeing several factors of
increased performance. The data supports that using three
threads on the compute node helps to push more data to the
router.

Using the local cache of the core the thread is
running on removes the contention that we see in the default
case. Some performance loss in the single thread case for
SMP still occurs. In this case the routers own threads are
under utilized which is causing the dip we see.

Small size packets track very closely the bulk
message behavior. In the default driver we see no contention

but also missing is any performance. The amount of data
being received just flat lines.

3) Service node to Service node

Our last test scenario deals with service node to
service node communications. While not the most critical
path in the system we do encounter this configuration. It also
gives us more insight into how service nodes are affected by
the SMP scaling changes. Due to the service node hardware
we have less limited configurations to test than the compute
nodes. In this case we can directly compare the SMP and non
SMP versions of the LND driver in the same figure.

 As in the previous service node analysis we have
the options of three or six threads. Included are cases of
using different size CPTs. In previous test we seen adding
another CPT decreases the performance.

Much like the compute node to service node results
we see the behavior of the LNET pings experiencing a small
decrease at higher concurrency. In all cases the performance
is very consistent.

This concludes our examination of our Gemini system. Even
with these results being specific to our hardware it helps lay
down the how to best take advantage of your equipment.
Even on different hardware we expect that only a small
number of threads would be needed on the compute nodes.

FUTURE WORK

A great amount of data was collected for this
project but there are more options to be explored. Currently
the code in the patch is written to spawn a new thread in the
same CPT until it is filled. To help parallelism in the LNET
stack better each new thread could be spawned on a different

CPT. We briefly touch on the checksumming issues. The
truth is they are some of the biggest obstacles to reach our
performance goals. In future work different check summing
methodologies algorithms will be tested to see if we can
improve performance. Lustre versions 2.3 and above
provides an infrastructure to take advantage of the hardware
to accelerate check summing. With these new algorithms
Lustre also applies them to the ptlrpc layer. Currently the
Gemini LND driver does check summing of bulk messages
as well as the ptlrpc. Double check summing is a waste of
valuable cycles. Eliminating this double checking will help
cut the loss in performance to services provided to LNET
users.

	I. Introduction and Motivation
	II. Theory
	III. Test equipment architecture and configuration
	IV. Test cases
	A. LNET and LND configurations
	B. Benchmarking software

	V. Results
	A. Smoke test
	B. Increasing compute node to router ratio
	1) Service node configuration effects
	2) Compute node optimization

	C. Node to node behavior
	1) Compute node to Compute node
	2) Compute node to Service node
	3) Service node to Service node

	Future work

