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Abstract—  High  performance  computing  systems  have  for 
some time embraced the move  to multi-core processors,  but 
parts  of  the operating system stack have only recently  been 
optimized  for  this  scenario.  The  Lustre  file  system  has 
improved  its  performance  on  high  core-count  systems  by 
keeping related work on set of cores that share a NUMA node 
or cache, though low-level network drivers must be adapted to 
the new API. The multi-threaded Lustre network driver (LND) 
for  the  Cray  Gemini  high-speed  network  improved 
performance over its single-threaded implementation, but did 
not  employ  the  benefits  of  the  new  API.  In  this  paper,  we 
describe the advantages of the new API and how the Gemini 
LND performance was impacted. We will take a detail look at 
various  setups  to  determine  what  is  the  best  possible 
configuration.
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I.  INTRODUCTION AND MOTIVATION

World  wide  HPC  centers  have  enabled  scientist  to 
resolve complex problems. With these solutions even larger 
questions about the nature of the problem come to light. To 
handle these very increasing demands HPC centers are at the 
forefront  of  expanding  technological  horizons.  In  2012 
ORNL, to meet the increasing needs of its users, upgraded 
the main computational resource Jaguar to a new architecture 
and renamed the machine to Titan. The upgrade changed the 
machine  from  an  Cray  XT5  machine  using  an  SeaStar 
interconnect to the Cray XK7 platform which has the newer 
Gemini interconnect. Part of the process of these upgrades is 
to evaluate what the benefits and limitations are for the new 
hardware. These analysis help us to determine such things as 
optimal application placement and best router configuration 
to  maximize  the  through  put  to  the  file  system.  The 
expansion of the machine has placed additional pressures on 
the  current  file  system  which  will  be  remedy  with  the 
deployment of the next file system.

Internal data on the Gemini interconnect have shown a 
peak of 7 GB/s between compute nodes at packets sizes of 
64KB  and  up.  When  transmitting  4KB  size  packets  a 
sustained output of slightly above 3GB/s is observed. This is 
the  ideal  conditions  so  some  loss  is  expected  when  this 
network layer is implemented in different software stacks for 
specific use cases. The question becomes how efficient is the 
software stack to minimize the loss experience and if the loss 
is substantial what can be done to improve the performance.

The  area  of  impact  that  this  paper  explores  is  to  the 
parallel  file system deployed. The file system of choice at 
ORNL  for  production  is  the  Lustre  file  system.  Lustre 
possess a abstraction layer called LNET to enable supporting 
many  network  topologies  in  a  uniform  way.  To  take 
advantage  of  this  abstract  for  the  Gemini  interconnect  an 
LND driver had to written to interface with the LNET layer. 
As stated before some loss was expected off the raw values 
but our studies showed how poorly utilized the bandwidth, 
currently 1.6GB/s, was on the Gemini LND. Data collected 
pointed to a large penalty from the checksumming that was 
performed  on  data  packets  being  processed  by  the  LND 
driver. The problem expressed itself in two ways. The first
was the check sum algorithm itself performed poorly with 
large  data sets.  Secondly the LND driver  did not scale to 
handling  increased  network  traffic  coming  in.  In  later 
versions of the driver's code more threads were added to help 
with performance but we still saw significant penalties with 
having checksums enabled. Disabling checksumming seems 
to  be  the  logical  choice  but  one  risk  allowing  potential 
corrupted  data  being  written  to  disk.  Secondly  even  with 
checksumming  disabled  the  maximum  performance 
observed was 4 GB/s between a compute node and service 
node.

To  meet  these  challenges  the  research  of  this  paper 
explores leveraging modern hardware to decrease the losses 
experienced  with  the  Gemini  LND  driver.  First  we  will 
examine the current behavior of the LND driver to evaluate 
were the bottle necks occur. This paper details the various 
combinations tested to validate the theoretical configurations 
that  would give the best  performance.  Using this  data we 
show how to  approach  future  hardware  platforms  to  best 
utilize the hardware. Also we go over the future direction of 
the driver's software stack to over come the limitation of the
checksumming algorithm itself.

II. THEORY 

The current challenges to the Gemini LND driver were 
also problems for the Lustre file system in the past. Today 
we can adopt their solutions but first lets look at the history 
of the problem for Lustre and how it was solved. One of 
major bottle necks for Lustre is the metadata server not being 
able to scale. The problem can be attacked in two ways, one 
being to spread the meta data across multiple servers which 
is being developed in the new DNE frame work that is partial 
completed.  The  other  approach  was  to  look  at  vertical 
scaling by taking advantage of multiple core machines that 



the MDS resides on. The SMP scaling work that came out of 
this research was also applied to other layers of the Lustre 
stack to increase performance. Lustre version 2.3 and above 
ships with the SMP improvement completed and integrated 
into the stack.

Since the focus of this paper is improving a LND driver 
let us study the problems that hindered the LNET that were 
resolved by the SMP changes.  As larger file systems were 
deployed the limitation was not the disk but the fact that the 
back end servers would easily become CPU bounded which 
resulted  in  the  Lustre  clients  ending  up  in  a  soft  locked 
condition. Their were a few reasons for what triggered these
conditions. Lockmeter analysis showed that large contention 
existed for the global locks that were present in the LNET 
layer  at  that  time.  The source  of  contention was  the  lock 
being synchronization so a consistent view of its state was 
presented to every core. Since memory has a lower clock rate 
then  the  processor  large  latency  would  occur.  Other  data 
types,  such  as  the  wait  queues,  in  the  stack  also  were 
impacted by this contention. In  the case of wait  queue an 
additional penalty would results from the natural round robin 
nature of handling the next event. By the time we came back
to the same thread in the queue the data would have to be 
migrated into an CPU's cache. Besides the penalty of cache 
migration  the  data  being  migrated  into  the  cache's  rarely 
were laid out to minimize cache line misses. This problem is 
enabled by the lack of CPU affinity for the kernel threads.

With a understanding of the problems the SMP api was 
developed to address these issues. The center of the design is 
the CPU partition which is a grouping of cores. The premise 
of the grouping is to place together cores that share a cache
or  belongs  to  the  same  NUMA  node  to  minimize  the 
memory penalty.  Default  CPU partitions are created based 
on  how  the  Linux  kernel  sees  the  topology  of  system. 
Usually this is the best case layout but we shall see this is not 
always the case. To take advantage of the memory locality 
one needs to use the per-partition and partition local memory
allocator routines in your code. With the localized memory 
one can avoid the penalty of the thread migration when the 
thread is bind to the proper CPT. One needs to ensure the 
proper  cores  belong  to  the  same  CPT so  that  the  thread 
migration between cores in the CPT has no penalty. Having 
parallel  handling  of  events  with  multiple  threads  lacking 
contention enables far better scalability.

With any well written api you give your users choices in 
system behavior.  Here  we go over the setting that  have a 
impact  on  LNET  layer  as  well  Gemini  LND  driver.  The 
center of the api is the CPT so we shall go over that first. To 
get  the  CPT  (CPU  partition  table)  the  command  lctl  
get_param  cpu_partition_table is  used.  In  the  example 
output below we get a visual of the layout of cores.

        cpu_partition_table =
                0   : 0 1 2
                1   : 3 4 5

In this example we have two partition tables with table one 
containing cores 0, 1, and 2. This layout can be controlled 
with two types of module parameters for the libcfs module.
The first approach is to control the number of CPTs created. 
An example of this would be

options libcfs cpu_npartitions=3

In the above example we would have three unique partitions 
with each partition having a total of two cores. Care must be 
done with the number of cores in the partition. Any core has 
the potential of becoming CPU bounded so having a CPT 
containing  only  one  core  would  prevent  the  LND  thread 
from migrating to a non blocking core. Sometimes one needs 
even finer grain control of the layout so a method is provided 
to  control  which  cores  belong to a  CPT.  Using the  same 
example we change the cores  of  the CPT to contain each 
only the even number or the odd number cores.

options libcfs cpu_pattern="0[1,3,5] 1[0,2,4]"

If you have many partition you can use short hand notations 
such  as  0[0-20/2].  How  this  is  done  depends  on  the 
architecture of your machine. In the case of Cray hardware 
this will be handled differently on the service nodes versus 
the  compute  nodes.  Service  nodes  and  compute  nodes 
contain not  only different  number of  processors  but  these 
processors  can also be different  types.  The api  is  flexible 
enough to require you don't need to use all the cores on a 
system. Let us take the case of limiting the OS noise on a 
compute node to limit the impact to an application. In this 
case the job is launched with aprun -r to have all the OS 
specific handling to be migrated to a specific core. The stock 
Gemini LND driver doesn't follow this behavior but carving 
out a single  CPT containing two cores  would remedy the 
situation. Having two core would prevent  the IRQs or  IO 
handling  from  stalling  one  another.  This  would  further 
optimize lowering the noise level on the compute nodes. One 
does  need  to  take  note  which  NUMA  node  the  Gemini 
interconnect is attached to with the Hyper-Transport bus so 
the CPT belonging  to  the  same NUMA node is  used  for 
performance reasons.

The CPT you create will be the ones used by the LNET 
layer. The impact this has on the LNET layer was the ability 
to have localized buffers and have thread pools bounded to 
specific  CPT.  Parallel  event  queues  handling  incoming 
traffic enables for far better scalability plus you receive less 
lock contention. To maximize this advantage the LND driver 
needs to aware of the LNET CPT that come into play. Like 
the  CPT being  configurable  the  administrator  can  control 
which CPT subset  each  LNET interface  can be aware  of. 
Using a 6 core 2 CPT example lets say you want the Gemini 
LND  driver  to  only  use  the  second  partition.  For  this 
example the module parameter option would be

options lnet networks="gni0[1]"

Remember having your LND driver use less CPT than the 
LNET layer can impact performance since data can migrate 
from one CPT in use by the ptlrpc thread to the CPT in use 
by your LND driver. Usually this case is used in situation 
that you have more than one physical network interface.

Now that  we understand  the  components  behind SMP 
scaling the next step was  to apply it  to the Gemini  LND 
driver. To properly implement the api we have to lay out the 



proper  mapping  between  the  variable  number  of 
components.  For the typical LND driver we have:

 X LNET interfaces : Y devices : Z  CPT

Most drivers only use one LNET interface per device but this 
is not the case for our driver. On Cray systems the LNET 
layer  is used by Lustre and DVS. Each uses the same gni 
interface but are registered to different Portal ids. In reality 
for Lustre the LNET configuration of a Gemini driver really 
looks like 12345-30@gni0. You can see this result when you 
do a lctl ping. In the case of DVS the port will be some thing 
besides  12345.  So  in  this  case  we  will  have  2  LNET 
interfaces.  Currently the hardware only support one device 
but the driver is written to take advantage of multiple devices 
if a platform ever comes into existence. Lastly we have to 
handle  mapping  the  CPT  to  each  device.  Nothing  stops 
devices from having over lapping CPT. In our case of DVS 
and Lustre we want to share the CPT setting for each LNET 
interface so as not to degrade performance.

III. TEST EQUIPMENT ARCHITECTURE AND CONFIGURATION

In the previous section we discussed the foundation of 
this work in order to understand how to apply it the specific 
machine  architecture.  How each  machine  is  configured  is 
hardware dependent but the rules for optimal layout can be 
generalized such that it is easy to apply the same principles 
to a new machine and get the improvements we expect. For 
our test system we have a single cage Cray XE6 which we 
named Arthur.  In  our  test  system configurations  we have 
total 20 compute nodes, 6 router service nodes, and 2 login 
service nodes in use by the file system that is supplied by a 
DDN S2A9900.

This platform has no GPUs and the CPU installed are 
AMD Magny-Cours.  In  total  6  cores  are  placed  within  a 
NUMA region (or die) sharing a 6MB L3 cache with each 
core  having  a  512KB L2  data  cache  and  64KB L1  data 

cache. For compute nodes as we can see below we have two 
sockets  were  each  socket  contains  two  dies  with  6  cores 
embedded each thus a total of 24 cores per compute node.

The service nodes have a single socket which contains a 
total of 6 cores.  For both computes and service nodes the 
Gemini  interconnect  communicates  directly with the cores 
on NUMA node 0 using the Hyper Transport bus. As we can 
see in the figure which represents the compute node case, we 
want to divide up the system in four different regions. Using 
the wrong NUMA region for the Gemini NIC will come with 
a performance penalty. This is a case were we want to avoid 
using any cores not on NUMA node 0. In testing we will 
explore  if  we  can  saturate  the  Gemini  interconnect  using 
only cores on NUMA node 0 and if we need to use cores on 
other dies study what that cost is.

With the ability to use more than one core on a NUMA 
node introduces with it  the potential  cost  of impacting an 
running  application.  So  the  question  is  how  does  one 
minimize this.  On our Cray XE Magny-Cours  test  system 
each processor has its own FPU so there is no easy solution 
to this problem. In the future out work will be migrated to 
Titan  which  uses  the  AMD  Interlogos  chipset.  Separate 
experimentation showed using Linpack that on Cray AMD 
Interlogos  based  systems  you  could  get  nearly  the  same 
performance  using  only half  of  the  cores  on  node  if  you 
correctly picked the cores to run on. The reason for this is 
that on AMD Interlogos processors every two cores share a 
FPU. Taking advantage that most scientific applications only 
care about using the FPU ideally we want at  most 4 well 
placed threads on the compute nodes. This can take place 
because the Gemini LND driver will never touch the FPU. 
Normally the times when a application doesn't use the FPU 
are when it has to deal transferring data to the file system 
which in our setup will be taken advantage of. 

IV. TEST CASES

A. LNET and LND configurations

Now that we have a good grasp of the hardware we can 
define  what  our  test  parameters  will  be.  With the  service 
nodes having only one socket  with a  single NUMA node 
containing six cores so the combinations are limited. For the 
stock Gemini LND driver 3 threads are created to handle the 
traffic that is caused by the high ratio of compute nodes to 
individual routers.  Those threads  do not  have any affinity 
with any cores so they are free to migrate. Our current test 
system only has  twenty compute nodes but increasing the 
kgnilnd  threads  on  the  compute  can  help  create  an 
environment that  simulates having a larger set of compute 
nodes. We can use this setup to explore effectively what the 
impact  of  more  threads  on the  service  node will  have  on 
performance. Thus the other option is running 6 threads to 
see how if it has any influence on performance.

Moving  to  a  2.4  version  of  Lustre  we  see  by  default 
libcfs creates two CPTs on the service nodes with each CPT 
containing 3 cores. If we consider that the L3 cache is shared 
with all cores the only advantage of having more than one 
partition is to increase parallelism of the handling the events. 
As  with  all  CPT configurations  having  one  CPT with all 
cores  or  having  too  many  CPTs  are  costly  so  those  test 
scenarios can be omitted. This leaves us with testing CPTs 



containing two or three cores to evaluate its interactions with 
the largest set of compute nodes we have in our test system. 
Experimentation will determine which sets of cores are the 
optimal setup.

For the case of compute nodes the stock Gemini LND 
driver  takes  a  conservative  approach  by  using  only  one 
thread to handle all traffic. Without CPU affinity this thread 
is free to migrate to any one of the 24 cores on the node. 
Earlier in this paper we discussed the reasons why the cores 
on NUMA node 0 are  optimal.  In  the case of the default 
driver  we  see  that  the  single  thread  is  allowed  to  freely 
migrate  to  another  NUMA  node  which  incurs  an  extra 
penalty.  Since  only  one  thread  is  used  the  question  is 
whether adding more threads add value. This question will 
be answered by increasing the number of threads up to the 24 
cores  present  in  the  system.  To make the comparison  for 
both SMP and non SMP cases the number of cores for each 
set of tests will be identical.

Compute nodes that have Lustre 2.4 clients installed for 
our hardware platform are automatically setup with 4 CPTs 
each  containing 6 cores.  By default  to  match the original 
behavior of the stock LND driver we also only start a single 
thread  on  each  node.  For  the  case  of  using  less  than  six 
threads all spawned threads will be located in the same CPT. 
While our LND driver  will  be using one CPT the  LNET 
layer will be handling data on all the CPTs. A penalty will be 
encountered  when  that  data  has  to  be  transferred  to  a 
different CPT. The initial set of test will focus on creating 
CPTs only for NUMA node 0 to minimize the path to the 
Gemini interconnect. Much like the service nodes the options 
for  CPT  configurations  on  each  NUMA  node  is  limited. 
Using the data collected from the service node runs we will 
have  a  grasp  on  whether  a  NUMA  node  using  CPTs 
containing two core or three cores  is  the better choice.  In 
either case we will have the second layer of testing using the 
cores on NUMA node one and then using both NUMA nodes 
on socket  0.  The last  setup described is  the most  optimal 
relative to applications but to make the test complete we will 
examine the case of using all cores on socket 0 as well as 
having six core in use on socket 0 as well as six more cores 
on socket 1. Even though we have the same number of cores 
this will show the impact of placement will have. The final 
set of test  will  use all  the cores  on the compute node. At 
some time during testing we will witness the saturation of 
the  Gemini  interface.  At  that  point  no  extra  amount  of 
threads or placement will have an impact.

B. Benchmarking software

Our testing will be modeled after the  original SMP 
work done under the OpenSFS contract  with Whamcloud. 
Based on that  work we see the focus of  their testing was 
done with LNET selftest and mdtest. The reason for the lack 
of bulk message study is due to the interaction of the bulk 
messages with the cache. The larger the data packet the more 
probable that some of that data will be flush from the cache 
especially  as  time  progresses.  LNET  selftest  is  a  tool 
distributed  with  Lustre  can  be  used  to  analysis  the 
performance of the LNET layer itself. In the course of our 
studies we will do a impact study to ensure that the SMP 
scaling  work  does  not  degrade  the  current  bulk  message 

handling.  Due  to  time  constraints  mdtest  were  not 
performed. 

With LNET Selftest you can create batches of test 
which  have  several  controlling  factors.  The  basic  LNET 
functionality that is exercised are LNET ping rates, and read 
write  transfer  rates.  In  the  case  of  reading  and  writing 
different  sizes  messages  can  be  sent.  The  most  common 
message  size  observed  on  the  production  file  system  at 
ORNL are 4K and 1M in size. These sizes will be the focus 
of our testing. Also both these sizes will reveal the impact 
the SMP changes to both small as well as bulk messages. 
Along side these test parameters  we can also control  how 
many  concurrent  request  are  outstanding.  For  most  test 
conditions we will have the number of outstanding request to 
equal to the number of cores on our compute nodes to ensure 
that each node is saturated. One special set of test do exist 
that have one node communicate with a another node with 
every increasing number of request to see where the upper 
bound exist for sending request. This will have a influence 
on the proper number of threads to spawn on each node as to 
not waste cores which could be used for other tasks.  Besides 
selecting which basic functionality these tests can be done 
with different combinations of senders and receivers. In one 
set of tests we will be looking at one to one communications. 
In  this  test  group  we  will  look  at  compute  to  compute, 
compute  to  service,  and  finally  service  to  service  node 
interaction.  The  other  set  of  test  will  be  many  computes 
nodes to one service node which is the typical  production 
communication pattern. Here we want to study how well the 
routers  handle  a  scale  up  in  the  number  of  clients 
communication simultaneously with increasing traffic.

V. RESULTS

A. Smoke test

One  of  most  basic  test  done  to  evaluate  the 
performance of the network fabric  is the smoke test using 
LNET selftest.  This test floods the network with synthetic 
traffic with all nodes communicating with each other. This is 
the test that can most saturate the network. For our test bed 
this was done with 16 compute nodes and 4 routers  send 
network traffic to each other.

TABLE I. LNET SMOKE TEST RESULTS

Compute 
node thread 

count

Service node 
thread 
count

CPT count
1MB writes

transfer rate 

1 3 unimplemented 2227.19 MB/s

1 6 unimplemented 2272.32 MB/2

1 3 2 3625.74 MB/s

1 6 2 3650.57 MB/s

1 6 3 3180.05 MB/s

3 6 2 3672.71 MB/s

6 6 2 3692.82 MB/s

12 6 2 3711.70 MB/s

24 6 2 3689.49 MB/s



First lets look at how different configurations on the 
service node impacts the smoke test. From this set of  data 
one can see that for the default driver adding three additional 
threads on the service nodes increases the amount of network 
traffic being  handled. When you compare both cases of a 
different thread count on the SMP enhanced driver we see 
negligible improvements at this ratio of compute nodes to an 
router.  This  was  the  case  when  our  compute  nodes  were 
running with a large number of kernel threads as well. So 
most likely for many compute nodes the addition of threads 
will make no difference. When one compares the SMP to the 
non SMP case you see a definite improvement.

B. Increasing compute node to router ratio

While the smoke test is a interesting test case what 
is critical to installations is how well a router will handle the 
network traffic coming in from many compute nodes. The 
routers can easily become the bottlenecks in the file systems 
performance. The environment is similar as the smoke test in 
that  we  use  16  compute  nodes  communicating  with  one 
router.  Like  the  smoke  test  we  will  vary  the  number  of 
threads on both the compute and service nodes. This analysis 
will need to broken to two different parts for clarity due to 
variability that can be done on the compute nodes as well as 
the server nodes.

1) Service node configuration effects

First  we will  examine the case were the compute 
nodes  will  be  using  the   default  one  thread  in  the  LND 
driver. The variability will be solely on the service side to 
discover which combination is the best for the service node. 
As  detailed  early  since  the  service  node  has  less 
combinations to experiment with we can eliminate the less 
optimal conditions. This will help with limiting the number 
of test for the compute node.  In all case we will examine the 
different test scenario covering 1M and 4K read as well as 
writes of the same size. LNET ping also will be included to 
show  the  network  behavior  without  the  impact  of  check 
summing.

Inspection of the LNET ping test results reveal for 
the default stock LND driver only after a few compute nodes 
we reach a saturation point and remain at approximately that 
level independent of the number of compute nodes pinging 
the router.  For the SMP enabled driver  a  linear  scaling is 
observed  for  all  test  configurations.  By default  Lustre  2.4 
SMP layer  creates  two CPTs but in one of the set of test 
three CPTs are created. Intuitively you would think that have 
three parallel threads handling the network traffic would give
better performance but this is not the case. What is observed 
is each thread is experiencing greater competition for access 
to an core since it now has fewer less busy cores to migrate 
too.  Since this is a many computes to router test we can't say
that the router node is being not driven hard enough. When 
we look at  the SMP cases  with identical  CPT counts  but 
different  threads  being  created  the  data  reveals  nearly 
identical  behavior.  With  a  small  number  of  computes  we 
have demonstrated that have 6 threads added only a small 

margin of gain. At the same time it also shows us that extra 
threads are not a penalty either. This is some what expected 
since all the service node cores share the same L3 cache. 

When we look at the data for the read and write cases we see 
the impact  of the check summing has on scaling.  For the 
SMP case we see a ramp up to five nodes and then a flatting 



out of the amount of data we can handling. This is for the 4K 
and 1MB size cases with the only difference is that for small 
packet  sizes we see some thing similar to a step function 
when  we  reach  the  fifth  node.   Remember  this  data 
represents how the service node is handling the incoming or 
out  going  data.  The  thought  here  is  that  the  sum  of  the 
amount  of  data  being  received  grows  in  scale  with  the 
number  of  computes  interacting  with  the  router.  As  this 
amount of data grows then those larger memory chunks can 
be  handled  more  efficiently.  As  you  will  note  that  again 
creating three CPTs  instead of two causes a performance hit.
Also with the SMP work the we experience nearly constant
handling of network data where as the default driver displays 
greatly varying performance. 

We can conclude from the data collected that the 
SMP work  has  helped  not  only improve performance  but 
also made that performance consistent at larger scales. We 
see that more CPTs does not guarantee greater returns but at 
the same time adding more threads come at very little cost on 
the service node. The best results here will be used as the 
control group for the other test sets that follow. For the case 
of deployment the best setup on a router would be one CPT 

with three threads for the Gemini interconnect and one CPT 
with three threads for the infiniband interface. 

2) Compute node optimization

For  the  following  set  of  tests  we  will  keep  the 
service nodes in the same setup but vary the compute nodes 
instead. For the service nodes we will use a two CPT six 
thread  setup  since  this  was  the  best  setup  for  the  default 
stock Gemini LND driver.  This ensures that the same test 
parameters are uses for the patched and non patched LND 
driver  cases.  We  will  use  the  default  CPT  setup  for  the 
compute  nodes  since  they  map  nicely  to  the  hardware 
topology.  By  default  4  CPTs  are  created  with  each  CPT 
mapping to the six core die. Here we will analysis how the 
service node handles the traffic changes in behavior due to 
increasing  kernel  threads  on  the  compute  nodes.  In  this 
section  we  will  focus  mainly  on  the  different  SMP 
configurations.  The  reason  for  this  is  the  non  SMP case 
showed  a  collapse  in  performance  when  increasing  the 
number of kgnilnd thread when data was collected for the 
node to node test. From that we know that one thread on a 
compute  node  with  high  concurrency  has  the  best 
performance.

We can  see  that  ping  scales  very  much  like  the 
service node case. Also like the service node case we see the 
default LND driver top out at about four compute nodes and 
remain at the level. As you can see a very large performance 
gain occurs.  What is interesting is we see nearly identical 
performance with five or more compute nodes independent 
of the number of threads. This shows too many extra threads 
has no advantage at  all.  In  the six thread case we do see 
improvements  when  dealing  with  less  than  five  compute 
nodes.

Looking  at  the  results  for  reads  and  writes 
measuring 1MB in size we see similarity in behavior. For the 
default LND driver scaling occurs until we reach the fifth 
compute  node  communicating  with  the  router.  After  this 
point the amount of data being handled decreases. When you 
compare it to the SMP cases  we reach saturation earlier than 
the default case and then a leveling off in the amount of data 
being processed.  As you can see no decrease in performance 



occurs  in  the  SMP case.  Only  in  the  read  case  does  the 
default driver outperform the SMP driver in one special case. 
As we observed from the ping results when the computes go 
from one thread to three a performance gain is experienced 
when a small number of compute nodes are communicating 
with  the  router.  Future  testing  with  multiple  routers  will 
determine if this is router saturation. 

When dealing with 4K reads and writes we see a 
less smooth behavior for the default driver case. As with the 
1MB results we see a peaking in performance around five 
compute nodes to one router. Instead of a steady decreasing 
performance  the  data  transfer  rates  become  range  bound 
oscillating between the envelope defining its range. If you 
look at the earlier figures for the service node you see a very 
similar behavior for 4K packets. If we were to test with only 
three threads on the service node the performance would not 
only oscillate  but continue to decrease as  we would scale 
more compute nodes.  The six threads for  the default  case 
does not experience this decay. Once you turn your attention 
to the SMP results you will that the oscillation is absent. The 
performance gains in this case were also present. Again the 
gains added are negligible when adding more threads on the 
compute  nodes.  The  reason  for  no  gain  with  the  twelve 
threads and above is that we incur a penalty accessing the 

cores  located  in  a  different  NUMA  region.  This  penalty 
erases all possible gains. When dealing with a smaller pool 
of compute nodes  we see that three threads on the compute 
node instead on one gives a noticeable gain.

C. Node to node behavior

So far we have looked at the over all behavior of 
the system and with the SMP work witnessed improvements. 
The  metrics  we  have  so  far  gathered  are  defined  by  the 
aggregate of all the nodes that compose the network. In this 
section we will  look at  node to  node behavior  to  see  the 
lowest level alterations in performance. Due to the nature of 
the  Gemini  hardware  this  set  of  test  will  not  reveal  the 
highest amounts of traffic since we will not be transversing 
all the directions of the torus. Node to node evaluation does 
gives us an insight in how the LND driver behaves when 
varying levels of data are being pushed through the LNET 
layer's software stack. To simulate this both nodes that will 
be communicating with each other will be loaded with an 
increasing number of LNET self test threads being created to 
push  data  on  the  network.  Three  cases  of  node  to  node 
interaction will be examined. The first is compute node to 



compute node, second  one compute node to a service node, 
and the final case is service node to service node. For cases 
involving  the  compute  node  two  separate  graphs  will  be 
displayed. One for the SMP case and the other for the default 
LND driver. For both cases we will examine 1, 3, 6, 12, 24 
kgnilnd threads being spawned on the compute node.  

1) Compute node to Compute node

From previous test it was demonstrated that using 
six or more threads on the compute node add very little gain. 
For the case of one thread verses three threads the gain was 
only observed for a small pool of compute nodes when using 
the larger number of threads.  The question is it worth that 
small  increase.  To get  the proper  answer  to  this  question 
properly examining compute to  compute node behavior  is 
required.   Before  we  look  for  this  answer  we  need  to 
examine the default drivers characteristics when adding these 
additional threads.

For the default LND driver each time we increase 
the  kgnilnd  thread  count  the  performance  degrades  even 
more. The only except happens when we go to three kgnilnd 
threads but those improvements are conditional.  As LNET 
self test pushes its concurrency above five the three thread 
case begins to degrade at a much faster rate then the single 
thread setting. In all cases including the default single thread 
case as the concurrency increases the performance drops off.

When  we  examine  the  read  and  write  cases  the 
same performance is observed. Between the 1MB and 4K 
results a similar pattern emerges. In the case of the 1MB tesst 
case the single thread case has a small peak plateau around 
two  to  four  nodes  with  a  mild  decline  with  increasing 
concurrency for LNET self test. At three threads a small gain 
occurs but with increasing concurrency contention eliminates 
all gains. While we might get some benefit for three threads 
with bulk messages when one looks at the 4K size messages 
we see a total lose for any increase number of threads on the 
compute  node.  For  the  non SMP case  we  are  seeing  the 
impact of  thread  migration especially as well  increase  the 
number of threads. More threads means more flushing of the 
cache  when  the  thread  is  migrated  the  next  time  it  is 
scheduled to run. This would only be more amplified if a 

intensive  application  was  running  across  these  compute 
nodes.  

From these results and the 4K read that follows we see that 
the best case scenario is the one thread or three three case 
depending  on  which  functionality  you  are  testing.  Since 
checksumming  can  influence  the  results  the  data  for  the 



LNET  pings  gives  us  the  clearest  picture  of  how adding 
more threads impacts the performance. If we weigh the ping 
results  most  heavily  then  the  three  thread  for  the  default 
driver will be used as are baseline against the SMP results.

The next set  of results are for the runs using the 
SMP patched driver. The same set of thread counts will be 
used as the non patched driver version. The SMP results will 
be compared with the best results of the default driver. From 
the results in the last section we see that peak performance 
occurred when the thread count was three on the compute 
node. Looking at the below graph The first thing that stands 
out is the reversal of the impact that adding more threads has.
Each increase in thread count comes with gain instead of a 
loss. In the SMP case going from one to three threads has 
enormous  gain.  Each  increase  in  thread  count  after  three 
threads comes with no penalty as well as no gain. From this 
we  can  conclude  more  than  six  or  more  threads  add  no 
benefit.    

We do see a small peak around two lnet self test then a small 
dip with a leveling off. With the SMP work the contention 
that existed in the original driver has been removed. When 
comparing the both one thread cases  for the SMP scaling 
work  and  the  default  driver  you  see  a  nearly  the  same 
behavior. We should observed this same type of behavior for 
the two classes of read and write test. 

Our testing for 4K read and write for  the default 
driver  revealed  that  unlike  bulk  messages  that  the  best 
performance was with the default one thread. So for this test 
case we will be comparing the SMP results to the one thread 
results of the default driver.

 



For both 4K and 1MB message sizes we see the 
exact same behavior which is not the case for default driver. 
Much like the service nodes behavior having to many threads 
adds no extra benefit. While it was not clear in the N to 1 
test, or the N to M test we can clearly see that around three 
threads get the best performance for compute nodes.

2) Compute node to Service node
Earlier  we  did  a  detail  study  of  many  compute 

nodes communicating with one router. In this section we will 
look at  the characteristics  of a single compute node to an 
router. Instead of scaling more compute nodes we will, like 
the compute to compute case, scale the number of LNET self 
test threads being spawn. The data is sampled on the service 
node to  see  the  affects  of  having extra  kernel  threads  on 
compute nodes. Due to the large number of test cases we will 
look at the default LND driver and then separately study the 
SMP enabled LND driver.

So far the common behavior for default LND driver 
for this class of test is to peak quickly then follow a path of 
degradation.  A  show  of  the  performance  of  the  ping 
eliminates  the impact of check summing. As expected the 
best configuration is using only one thread on the compute 
node with three threads on the service node. Increasing the 
number  of  threads  on  the  service  node  nearly  cuts  the 
performance in half.

Continuing to the scale the number of threads serves to only 
degrade the system. We see the typical spike in performance 
and then a gradual decline. As the number of LNET self test 
increase  on  the  compute node the  more  the  network  data 
rates converge together on the service node. This is true for 
all read and write conditions as seen below.

The data  for  the  4K sized messages  shows a much more 
rapid convergence of the network transfer rates



With  smaller  messages  the  cost  is  less  so  convergence 
happens at a more rapid pace then with bulk transfers. As is 
the case with the default driver the lack of support for CPU 
affinity for the threads negatively impact any improvements 
we might expect by adding more threads to any system. As 
we seen in the compute to compute case a heavy cost occurs 
with  a  larger  number  of  threads  being  migrated  between 
cores. Even in the default driver when running six threads on 
the  service  node  we  see  the  three  thread  setting  on  the 
compute nodes do slightly better than the others. 

This data repeats the previous behavior we seen in 
the compute to compute case. If the trend is to be followed 
then  we  should  see  the  opposite  behavior  on  the  SMP 
enhanced  system. As the number of threads are added no 
penalties  will  occur  but  we  will  experience  diminishing 
return with each increase in the number of the threads in the 
system. Also expected is that the performance of the SMP 
driver  will  be  greater  than  the  default  LND  driver.   The 
question that needs to be answered does the three thread case 
on the compute node give a edge over using a  single thread . 
If that is true then we know over all it is safe to increase the 
thread count on the compute node to three. The first hint to 
this behavior can be observed with the LNET ping test. The 
data reveals that once again that the SMP version in this case 
doubled the performance. Going from one to three threads on 
the  compute  gave  another  thirty  five  percent  increase. 

Increasing the thread count any further gives a increase only 
for a small number of LNET self test threads. With enough 
self test threads we see the network performance converge 
with all the other high thread count cases.

While we see a convergence to a lower value for 
LNET  pings  data  but  for  read  and  write  performance 
this  is  not  the  case.   The  values  recorded  at  the  lowest 
concurrency don't start out at the highest value as is the case 
for  LNET  pings  but  the  lowest.  A  maximum  is  reached 
between  four  and  six  LNET  self  test  threads.  This  is 
expected since we are running with six threads on the service 
node. Depending on the data we are seeing several factors of 
increased  performance.  The data  supports  that  using three 
threads on the compute node helps to push more data to the 
router.

Using  the  local  cache  of  the  core  the  thread  is 
running on removes the contention that we see in the default 
case.  Some performance loss in the single thread case for 
SMP still  occurs.  In  this case the routers  own threads are 
under utilized which is causing the dip we see. 

Small  size  packets  track  very  closely  the  bulk 
message behavior. In the default driver we see no contention 



but also missing is any performance.  The amount of data 
being received just flat lines.

 

3) Service node to Service node

Our last  test  scenario  deals  with  service  node to 
service  node communications.  While  not  the  most  critical 
path in the system we do encounter this configuration. It also 
gives us more insight into how service nodes are affected by 
the SMP scaling changes. Due to the service node hardware 
we have less limited configurations to test than the compute 
nodes. In this case we can directly compare the SMP and non 
SMP versions of the LND driver in the same figure.

 As in the previous service node analysis we have 
the options of  three  or  six  threads.  Included  are  cases  of 
using different size CPTs. In previous test we seen adding 
another  CPT decreases the performance. 

 

Much like the compute node to service node results 
we see the behavior of the LNET pings experiencing a small 
decrease at higher concurrency. In all cases the performance 
is very consistent.

 



This concludes our examination of our Gemini system. Even 
with these results being specific to our hardware it helps lay 
down the  how to best  take  advantage  of  your  equipment. 
Even  on  different  hardware  we  expect  that  only  a  small 
number of threads would be needed on the compute nodes.

FUTURE WORK

A  great  amount  of  data  was  collected  for  this 
project but there are more options to be explored. Currently 
the code in the patch is written to spawn a new thread in the 
same CPT until it is filled. To help parallelism in the LNET 
stack better each new thread could be spawned on a different 

CPT. We briefly  touch on the checksumming issues. The 
truth is they are some of the biggest obstacles to reach our 
performance goals. In future work different check summing 
methodologies  algorithms will  be  tested  to  see  if  we  can 
improve  performance.  Lustre  versions  2.3  and  above 
provides an infrastructure to take advantage of the hardware 
to  accelerate  check  summing.  With  these  new algorithms 
Lustre  also applies  them to the ptlrpc layer.  Currently the 
Gemini LND driver does check summing of bulk messages 
as well as the ptlrpc. Double check summing is a waste of 
valuable cycles. Eliminating this double checking will help 
cut the loss in performance to services provided to LNET 
users.
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