
Real-time Mission Critical

Supercomputing with

Cray Systems

Napa Valley, May 19 2013

Jason Temple and Luc Corbeil, CSCS

I
n

tr
o

d
u

c
ti

o
n

• MeteoSwiss’ Context

– HPC Services

– Client definition

– Client needs

• Design Considerations

– Partitions

– Scheduler

– Filesystems

– Network

© CSCS 2013 2 of 22

• Sonexion
• Lustre issues

• Lustre Support
• Silent Data

Corruption
• Implications

HPC Services for MeteoSwiss

• Maintenance of a 24/7 mission critical infrastructure within a

research environmnent

– Leverage existing infrastructure where it makes sense

– Mid-term storage and archiving

– User environment (homes, etc.)

– Put in place the required safeguards/failover mechanisms

– Infrastructure, power and cooling

– UPS

– Hardware configuration

– System configuration

– Global systems monitoring (Nagios, Ganglia)

– 24/7 on-call support (Pichetto and external inf. company)

– Close collaboration between both organizations at all levels

– Management

– Operations

3 of 21 © CSCS 2013

• “MeteoSwiss is the national weather and climate service for the Swiss

public, for government, industry and science. With our public service we

ensure the basic supply of weather and climate information in

Switzerland.”

• In addition, must provide on-demand monitoring for the Nuclear

Regulatory Agency in the event of a nuclear incident somewhere in the

world.

© CSCS 2013

MeteoSwiss

4 of 21

MeteoSwiss – some details

6.6 km resolution 2.2 km resolution

COSMO 2km: 8 times/day, within 25 minutes
COSMO 7km: 3 times/day, within 25 minutes

Correct results required to issue weather warnings in a timely manner
• Must be right the first time (unlike running linpack until success)

© CSCS 2013 6 of 21

© CSCS 2013

Two Distinct Partitions/One System

Albis

5 Login Nodes
18 compute blades
 -24 cores each
72 nodes
144 sockets
1728 cores
16.5 TFLOPS

||||| Cray XE6

Lema

5 Login Nodes
42 compute blades
 -24 cores each
168 nodes
336 sockets
4032 cores
33.5 TFLOPS

||||| Cray XE6

- Two distinct systems (Albis/Lema)

||||| Cray XE6

7 of 21

© CSCS 2013

Albis and Lema Complex Configuration

Sonexion
storage

8 of 21

© CSCS 2013

Albis and Lema Filesystem Configuration

Albis
(production, 1728 cores)

Lema
(R&D, failover, 4032 cores)

Lustre
/opr eLustre – Sonexion

/scratch
/workspace

GPFS
/home
/project
/store

Login Login Pre/Post-processing Pre/Post-processing

Lustre
/opr

~ 230 TB
~7.5 GB/s sustained
~30,000 IOPS/s

9 of 21 4 copies

SLURM for Compute and Pre/Post Proc Scheduling

“Classic Cray Environment”

Compute Node SLURM

Alps

Compute Nodes

“Converted Pre/Post Environment”

Post Processing SLURM

Direct Access to

Converted Compute Nodes

Resource Control

SLURM
• «Simple Linux Utility for Resource Management»

• Open Source from LLNL
• Free
• Very configurable, extensible

© CSCS 2013 10 of 21

© CSCS 2013

Problems for Mission-Critical Supercomputing

11 of 21

© CSCS 2013

Problems with the Sonexion 1300

12 of 21

• Management GUI is not very useful in our version

• Incorrect installation

– Failover patch not on all servers

• Substandard switch hardware installed (unmanaged switches)

– Occasionally froze, needed rebooting

• Difficult to administer

– No external ports

– Puppet/certificate setup non-trivial

– No «reliable» performance metrics

– Basically a black box

• Apparent communication problems between Cray and Xyratex

• No «smooth» upgrade path between 1.0 -> 1.2.1

• Silent Data Corruption (not isolated to Sonexion, Lustre in general)

© CSCS 2013

Problems with the Sonexion 1300

13 of 21

© CSCS 2013

Problems with the Sonexion 1300

14 of 21

© CSCS 2013

Reliability of Tools and Scientific Computing

How can you trust your
scientific results if the tools
you use are not 100%
reliable?

Do you make many runs,
then choose a 95%
confidence level from the
normal distribution?

15 of 21

• After going into production, MeteoSwiss started to experience data corruption

• Absolutely silent in the Lustre logs, at any level

• 3 different types of corruption

– Zero size files resulting from a simple untar of text files

– Corrupted data in the middle of files, either zeroes or random

– Truncated files.

• Random occurrences in random types of files

• Caused MeteoSwiss to send corrupted product output files to their clients

• Problem lasted more than 10 months

– First reported in June ‘12

– Cray got involved in August

– Still corruption in February ‘13

© CSCS 2013

Silent Data Corruption

16 of 21

© CSCS 2013

Examples of Data Corruption

17 of 21

© CSCS 2013

Examples of Data Corruption

18 of 21

© CSCS 2013

Examples of Data Corruption

19 of 21

• The fact that it was silent and random made it almost impossible to

troubleshoot.

• Was not easily reproduceable, therefore, not easy to capture.

• CSCS managed to reproduce the zero-size file by untar issue one time

after over 50,000 attempts, but nothing was seen in the logs

• MeteoSwiss was forced to fsync() almost every write operation in an

attempt to flush the cache

– No discernable effect, other than slowing down I/O

• Most Vexing: Happened on internal Lustre, as well as on the Sonexion!!!

– Lustre versions 1.8.x and 2.0 (Sonexion 1300)

• Despite CSCS’ & Cray’s efforts, no serious progress on the case

• What next?

© CSCS 2013

Difficulties Capturing the Problem

20 of 21

• The Lustre mailing lists are a fantastic resource for people using Lustre

– Very quick response time from experienced Lustre engineers

(Andreas Dilger, now with Intel, is the most prominent)

• At our wits’ end, a question describing out data corruption issue was sent

to the mailing lists.

– Almost immediately, we received a response from another Cray

user that had experienced almost the exact same problems, with

links to lustre bug reports

• This email coincides with sudden renewed interest on the part of Cray

• Weekly con-calls were implemented in order to corner the problem

© CSCS 2013

Using the Lustre Mailing Lists

21 of 21

• After more than 10 months of silent data corruption, Cray fast-tracked

some more-than-year-old Lustre patches:

(from the patch readme files)

– Handle network errors during bulk I/O.

– Lookup returns wrong inode following rename by another client

– Modify LND message send/recv rx timeout policy

• As of today, more than 2 months later, there have been no further

incidents of corruption

© CSCS 2013

Finally a Solution

22 of 21

• When a company freezes or forks Lustre, it freezes it

– «Slow» access to recent bug fixes

– «Even slower» access to recent developements

– E.g. HA failover

– Our bugs

• Public mailing lists: to post or not to post?

– CSCS primary duty is to protect MeteoSwiss operations

• Other centers around the world can be impacted by these problems

– How many systems are sold to this day without these patches?

– How are customers supposed to know?

• Lustre is always advertised as scratch space

– Implying «don’t trust it, it can be lost at any time», but it must still

provide data integrity – «fast vs reliable»

© CSCS 2013

Implications

23 of 21

© CSCS 2013

Examples of Data Corruption

24 of 21

Are you producing
results with
data corruption?

• Significant and respected scientific results are produced using Lustre

• For Real-Time operations, it must work the first time. All the time.

• No parallel filesystem is 100% reliable

– But supportability is key, so issues are quickly addressed

– The breach of trust occurs once the first byte of data is lost

• Sites must be made aware of major filesystem issues and be given the

opportunity to mitigate

– And reformatting the filesystem is not a viable upgrade path

© CSCS 2013

And Real-Time Mission Critical Supercomputing?

25 of 21

© CSCS 2013

How can we make this better?

26 of 21

• For CSCS:
• Acceptance

• Run the entire suite (not IOR)
• Work with Cray to standardize bug reporting
• Consider lobbying within OpenSFS to prioritize supportability

• For Cray:

• Field Notices for critical issues
• Admitting knowledge of a bug to clients is not a weakness

• Consider lobbying within OpenSFS to prioritize supportability
• Back-porting essential
• Closer collaboration with Lustre entities (i.e. Xyratex)

Thank you for your attention.

© CSCS 2013 27 of 21

