
1

Real-time Mission Critical Supercomputing with Cray Systems

Jason Temple

Senior Systems Engineer

CSCS – Swiss National Supercomputing Center

Lugano, Switzerland

jason.temple@cscs.ch

Luc Corbeil

Group Leader, HPC Services

CSCS – Swiss National Supercomputing Center

Lugano, Switzerland

luc.corbeil@cscs.ch

Abstract—System integrity and availability is essential for Real-

time Scientific Computing in Mission Critical Environments.

Human lives rely on decisions derived from results provided by

Cray supercomputers. The tools used for science in general must

be reliable and produce the same results every time without fail, on

demand, or the results will not be trustworthy or worthwhile. In

this paper, we will describe the engineering challenges to provide

a reliable and highly available system to the Swiss Weather service

using Cray solutions, and we will relate recent real life

experiences that lead to specific design choices.

Keywords-Cray XE, centralized filesystems, Lustre,

Sonexion, Infiniband, XDP, reliability, high availability

I. INTRODUCTION

A. Context

“MeteoSwiss is the national weather and climate service

for the Swiss public, for government, industry and science.

With our public service we ensure the basic supply of

weather and climate information in Switzerland.”

MeteoSwiss relies on CSCS for system integrity and

availability in order to provide the country with Real-time

weather analysis and up-to-date forecasts. Any delays have

the potential to be fatal, such as incorrect forecasts of

extreme weather events, and many design choices were

made with this in mind. CSCS utilizes Cray XE6 and

Sonexion technology for this purpose, to great success.

The current system, or set of systems, is the fourth

iteration of Cray technology that MeteoSwiss has been

relying on for close to 8 years.

In addition to the regular forecasting duties, MeteoSwiss

has a mandate from the Swiss government to provide on-

demand monitoring for the Nuclear Regulatory Agency in

the event of a nuclear incident. Such a mandate was used to

monitor fallout from the Chernobyl accident, for instance.

MeteoSwiss is also responsible for monitoring the weather

patterns around the four nuclear plants in the north of

Switzerland, in case there is an unforeseen negative event.

MeteoSwiss runs 8 production 7 km resolution runs a

day, with 2 and 1km resolution ensemble runs in between.

In addition to this, the “failover” system is used for

development of future codes. Although 100% uptime is the

ultimate target, 99% availability is the agreed contractual

commitment.

B. Operational Constraints

Because of the obligation to so many different parties,

system availability is paramount. This impacts almost every
aspect of Systems Administration. Fixing downed nodes
typically has to be done during a complete system downtime,
or the production suite needs to be switched to the failover
system before hardware faults can be resolved.

Upgrading the Programming Environment is nearly
impossible, as this most often requires a recompile of the
software suite, as well as the necessity of validating the
results compared with earlier data sets, something that can
take months. Because MeteoSwiss is providing forecasts
that people’s lives depend on, this is not a lightweight
process. Any changes must be carefully deliberated, planned,
and perfectly implemented.

C. History

Since 2005, with the arrival of the first XT3, MeteoSwiss

has been relying on Cray systems for their suite. Since that
time, they have moved through almost every iteration of the
Cray – XT4, then the XT5, and on the XE6.

This migration to Cray coincided with a Center-wide
change in the strategy of CSCS – the decision to switch from
NEC SX vector systems, to the x86 solution provided by
Cray.

D. Contract

The contract between MeteoSwiss and CSCS guarantees

that MeteoSwiss will have 24 hour support and near-100%
system availability. These two objectives are achieved
through high-availability designs and CSCS’s On-Call
service.

CSCS has a team of Systems Engineers who rotate
within on-call shifts. The functionality of the system is
monitored by the 24/7 MeteoSwiss operators. Any problems
that arise are first assessed by MeteoSwiss, and escalated to
CSCS if the problem is unresolvable. Nagios would also
report system issues that are not necessarily perceived by the
MeteoSwiss operators.

2

II. DESIGN CONSIDERATIONS

A. Two Partitions/One XDP

Albis and Lema

MeteoSwiss purchased a three-cabinet system from Cray,
which is made up of XE6 hardware with AMD twelve core
Magny-Cours processors and the Gemini network.

The three cabinets are partitioned into two separate
partitions – one one-cabinet system, and another two-cabinet
system. A single System Management Workstation (SMW)
controls both systems, although there are short-term plans to
run the second partition from a separate SMW. This will
further increase the failover capabilities of this system.

The one-cabinet system, named “Albis”, is the
production partition, where MeteoSwiss creates all its

products and runs its calculations. This partition contains 5
login nodes and 18 compute nodes.

The second, two-cabinet system is the failover and
development machine. It consists of 5 login nodes and 42
compute blades.

On both of these systems, a compute blade has been
converted into a service blade, with 4 individual nodes that
run the full linux OS that is present on the login nodes.
These two groups of four nodes are used as the pre and post-
processing nodes for the set up and completion of the
computational suite.

While this design is resistant to one partition going down,
at this moment there are two single points of failure, the first
being the single SMW for both partitions. This problem will
soon be mitigated by the aforementioned addition of a
second SMW.

However, the one single point of failure that can’t be
resolved without significant expenditure is that of the XDP.
Despite the fact that the XDP has an incredibly low mean
time to failure of 1,410,000 hours (about 160 years), it is still
necessary to prepare for the worst. Contingency plans
involving other systems hosted at CSCS have therefore been
developed.

B. Scheduler

The scheduling of resources for Cray systems has

historically been handled by PBS and was used for nearly a
decade by CSCS. Recently however, after carefully
evaluating and comparing PBS, Torque with Moab, and
SLURM, it was decided that we would move every system in
our center to SLURM.

In the course of setting up the scheduling system on
Albis and Lema, it was first attempted to include the pre-
and-post-processing nodes in the same SLURM cluster. This
was accomplished using a workaround provided by
SchedMD, which took a list of “front end nodes”, and if the
size and node count of your job were both set to 0, then your
jobs would be run there.

Due to the way that SLURM schedules resources via the
alps interface, using the “cray” select type, it was found to be
impossible to control the resources. If a user submitted 1000
processes, the scheduler would fill up the first node, then the
next, and so on, then return to the first node and place more
jobs than there were cores, scheduling all 1000 jobs at the
same time, and overcommitting the resources.

It was then decided to create two separate SLURM
clusters per system – the main SLURM cluster which ran
jobs on the compute nodes, and the postproc cluster which
was scheduled like a normal SLURM cluster, using the
“consumable resources” select type. This solution is not
ideal, as SLURM still fills up each node in order, which is
vulnerable to overloading some nodes and underutilizing the
others.

In order to use the postproc nodes evenly, in a “least-
loaded node” fashion, it was necessary to write a lua script
that queried SLURM for the number of jobs per node, and
returned the node with the least number of jobs. This script
was used at submit time, making the –nodelist variable
dynamic.

This unfortunately, exhibits undesired behavior if more
jobs than available cores are scheduled using this method,
but this problem can be contained. If some jobs run slower
than jobs submitted later, the scheduler does not dynamically

3

re-assign them to less-loaded nodes at run time. This can
lead to partition contention and a slower overall suite-
completion time.

CSCS is currently working with SchedMD to make
SLURM support least-loaded node scheduling so that this
behavior works at job-start time rather than at submit time.

C. Filesystems

1) Lustre

Production of weather forecasts relies on relatively large

data sets that are vital to the production of the results. This
includes historical observations, as well as a near-constant
flow of up to date meteorological observation data. Storage
of computational data on a Cray is done via a Lustre
filesystem.

Both Albis and Lema have their own internal Lustre
filesystems. MeteoSwiss requires five login nodes, with the
rest of the service nodes being dedicated to SLURM, DVS
and lnet routers. This leaves only 2 service nodes available
for the Lustre servers. The main production data is fed from
observational sites around Switzerland via a proxy to Albis,
and is then copied via an rsync to Lema throughout the day.

The current design of the two separate systems does not
allow for the conversion of a login node into a normal
service node. This prevents us having more service nodes
available for the standard Lustre High-Availability set up,
with one OSS or MDS failing over to another in the case of
problems. This means that it is highly probable that one of
these servers may die, making the filesystem unavailable. In
order to get past this limitation, the rsyncs were introduced
between the two systems.

In addition to the two internal Lustre filesystems, we
installed a Sonexion 1300 made up of two SSU’s, and cross-
mounted them natively on both systems. This third external
Lustre is designated as long-term storage of files, and is used
in non-production runs. A third duty is as a third backup of
the data that resides on the internal Lustre filesystems. In the
event that both filesystems are unavailable, it is possible for
MeteoSwiss to use the Sonexion.

2) GPFS

In addition to Lustre, we have GPFS mounted natively
via Infiniband on the login and service nodes, and then fed to
the internal compute and postproc nodes via DVS. Our
multiple GPFS filesystems contain our users’ home
directories, apps, long term spinning disk storage, and our
TSM/HSM archiving filesystem.

The production operational homes for the MeteoSwiss
users, and in fact all users, resides on GPFS. In the rare
event that this filesystem is not available for whatever reason,
we have instituted another set of rsync scripts which copy the
required home directories to both the internal Lustre
filesystems of Albis and Lema, as well as to the external
Sonexion. We have written in-house scripts which, in the
event of such a failure, change virtual links on the login
nodes, as well as change the links in the compute node
images to point at these other filesystems. This new
compute node image is written to disk, and the compute
nodes are restarted. The service nodes do not need to be
rebooted, though the users do need to log back in.

D. Wide Area Network Connectivity

CSCS has two WAN links coming into the Center, one

from the north, and one from the south. We have two core
routers that are both in a virtual stack, and can fail over to
each other. However, if these both stopped working,
MeteoSwiss would still need to feed information into and out
of their systems.

MeteoSwiss is part of a large consortium of
meteorological centers around Europe that have created their
own, separate private network, called RMDCN – The
Regional Meteorological Data Communication Network.
Working with a private telecommunication company
providing this service, we have installed a secondary
Ethernet network that is accessible via one of the service
nodes, and allows access to other centers in the event that our
dual backbone Ethernet network becomes unavailable.

III. SONEXION ISSUES

A. OEM of Hardware/not OES (Original Engine Support)

The Sonexion Appliance is an integrated “plug and play”

Lustre solution sold by Cray. It is an external Lustre solution
that is accessed by the supercomputers via lnet routers.
There are two versions of this hardware – the first version
was the 1300, and the latest version, based on the Intel
Sandybridge architecture, is called the 1600.

For the purpose of this paper, we will be discussing our
experiences with the 1300. The Sonexion 1300 is actually a
pretty impressive piece of hardware. 3GB/s sustained
performance per SSU, it can achieve up to 30,000 IOP/s.
The unique design of the metadata raid bitmap being placed
on two RAID1 SSDs is not original, but its implementation
is logical and very performant.

4

However, not everything about this product works
perfectly. One of the main problems that we have observed
with the Sonexion is that the early versions of the software
that the 1300 shipped with were not without issues. The GUI
management interface does not properly start and stop the
filesystem, in addition to showing incorrect server states or
whether LUNs are mounted or not. MeteoSwiss is using this
storage as a large, very fast workspace where up to 230 TB
of data can be kept over the medium term. At this time,
there are over 13 million files that are stored on this
appliance. There are very high availability expectations for
this data.

Another problem CSCS has encountered is that many
features of the version of the management software used on
the Sonexion 1300 do not work. In the absence of a
functioning GUI interface, the command-line procedure of
physically starting and stopping the appliance is unreliable,
often requiring multiple reboots of every Lustre server. In
order to stop and start the filesystem itself from the
command line, one must log into the management node and
run a series of scripts in a very particular order. There is very
little margin for error in this complex process, and given that
these commands are performed while system administrators
are under pressure to bring the service back, it increases the
risk of lengthy outages. A solution to this would be a simple
command, such as an init script, which would do it all in a
straightforward fashion. Such a trivial operation should be
covered by reliable mechanisms provided with the appliance.

Monitoring the system is very difficult, as the monitoring
web page is always stuck at some point in the past, never
displaying real-time statistics. In addition to this, the Puppet
certificate can be lost in between reboots, and getting it back
is not a straightforward process.

The system was shipped with a very basic, unmanaged
Infiniband switch. This switch would occasionally stop
working, and had to be manually rebooted when this
happened. There was no way to tell what was causing this
problem, and as a consequence, the switch was replaced with
a managed switch.

There are no management ports on any of the SSU’s.
This is a major drawback if, for example, the certificates for
Puppet are lost. You can’t log into the machine physically to
recover the certificates.

Another problem observed is that failover does not work
in a consistent manner. Fortunately, failovers are not
frequent, but a in a recent event where the MGS died, the
failover didn’t occur. Although there is now a software
patch for this problem, early reports from Sonexion 1600
units are indicating similar issues where failover is not
successful, even with this new patch installed.

CSCS has been informed by Cray that the solution to
several of these problems will be to upgrade the software
release to the latest version. However, this upgrade requires
a complete reformat of the filesystem and potentially extra
hardware – specifically, two new MMU’s (four in total),
which are now sold with any new systems. For CSCS and
MeteoSwiss, moving more than 13 million files and 200 TB
of data within a two hours maintenance window is not trivial
task. For Lustre and the Sonexion to be successful in the real

time supercomputing market, smoother, less disruptive
upgrade paths are very strong requirements.

B. Support of Sonexion

Support of the Sonexion hardware is another issue that

we have seen problems with. Cray is the OEM, but Cray is
not the actual manufacturer of the system. As it is very well
known, Xyratex makes the hardware, and this hardware is
rebranded with the Cray name. From what we’ve seen,
technicians from Xyratex do the installs, and have to be on
hand during acceptance in order to make sure that everything
works adequately, as opposed to Cray personnel who should
have adequate training and experience with their own
products.

In the event of major problems with the Sonexion, the
onus falls on Cray to solve it. It is not clear to us whether the
proper communication channels are set and established so
that severe problems are escalated to Xyratex. There have
been instances where our center encountered some issues
that Cray took ownership of, but that Xyratex didn’t seem to
know about. Even if this is not the case, and there is no
problem with communication between the two support
groups of both companies, the impression that we, the clients
have, is that there is a disconnect somewhere in the
communication channels.

As Lustre, the Sonexion product line and the relationship
between Cray and Xyratex progress, these support issues will
hopefully disappear.

IV. SEVERE LUSTRE ISSUES

A. Relying upon open source software resold by third

parties can cause problems

Nowadays, Lustre is not a monolithic product, despite

coming from a single main tree. Companies have their own
version of Lustre that is forked, tested, and shipped. Very
long lag times can develop between the original tree of
Lustre releases and the Lustre provided by the company who
is selling you the filesystem.

Other companies freeze their Lustre versions, and after
extensive testing remain at that version for many years. Cray
falls into this category. One example of this being
detrimental is the introduction of High Availability failover
capability, which was available about a year and a half
before it was released into the Cray environment. Our center
was experiencing problems with the MDS failing, and since
there was no way for it to failover to another server, the
entire system became unusable.

Another situation that can develop from a frozen
distribution is that new, often desirable, features are not
accessible to the client base in a timely manner. In this
instance, 2.x is not available on Cray XE systems internally.
One must move to the eLustre solution either provided by
Cray or some other solution.

5

Other problems with Third Party Lustre support were

encountered as well. Parallel filesystems have a very strong

dependency on the components they are running on:

hardware, firmware and drivers, operating system and the

network. For complex Lustre issues, only a deep

understanding of the complete picture of the storage

architecture will allow for a timely resolution of the problem.

In particular, knowledge of various Cray proprietary

interconnects is not widely available outside of Cray’s

support team.

B. Silent Data Corruption

After we put the MeteoSwiss machines into production,

the expectation was smooth sailing, with the usual care and
maintenance such a system requires. Then, gradually,
MeteoSwiss started to notice that their files were at times
being corrupted. The really difficult part arose from the fact
that this corruption was silent, random, and happened during
different file operations.

We observed three different types of corruption:
truncated files, corrupted files with random data at random
blocks, or zero-sized files coming out of untar operations.

These corrupted files ended up causing MeteoSwiss to
send corrupted results products to their clients, forced them
to write many verification routines into their code that
impacted performance, and when a corruption was detected,
to run the suite all over again. The worst part of all of this is
that it was not only random, but seemed to mainly occur very
early in the morning, or on the weekend.

C. Difficulties Capturing Problem

Despite our many efforts, these corruption instances were

almost impossible to reproduce. This had the result of
making troubleshooting nearly impossible as well without
the proper help from the Filesystem to report properly these
events. If one can’t capture the corruption in a controlled
environment, can’t figure out why it is happening, and
therefore can’t figure out a solution. We were able to
reproduce the zero-sized file corruption from an untar one
time out of hundreds of thousands of attempts, but
unfortunately there was nothing in the logs to indicate what
happened when it finally did happen. We were not able to
reproduce the other corruptions.

The most vexing issue was that this problem also
occurred on the Sonexion when we asked MeteoSwiss to run
their suite on the external Lustre appliance. We were having
silent file corruption on two different Cray supported
versions of Lustre, 1.8.x and 2.x.

We reported these issues to Cray, no results were
obtained within four months before serious leads gave some
progress. Most of the time was spent testing the operational
suite on different filesystems to isolate where it was
occurring, but all attempts did not provide more information
than the observation of the same symptoms. We did not see
the problem on our other external filesystems, but, as

mentioned earlier, we saw the problem on both internal and
external Lustre.

There are clear cases where either Lustre does not have
the proper mechanisms to identify, log and behave when
corruption occurs, and/or Cray did not provide sufficient
guidance in order to debug what the issue was. CSCS was
never told, for example, which debugging flags (should there
be any) to turn on while trying to isolate the problems.

D. CSCS’ Goal: Resolve the Issue

After the silent data corruption problem lasted more than
4 months with no sensible progress on the resolution, a
question was posed to the Lustre mailing list, hoping to get
any ideas from another source of help that didn’t come from
the supplier. A response was immediately provided from
another Cray user who was encountering almost identical
problems, and pointed CSCS to several bug reports from
another Lustre tree describing similar issues. This email to a
public mailing list didn’t go unnoticed by Cray management,
and the timing of this email coincided with a sudden,
renewed interest on the part of Cray.

The Lustre mailing lists exist so that people can get help
from other experienced engineers for an Open Source
product. This initiative provided us new leads to investigate
and allowed the case to progress beyond the stalling point it
was stuck in. Our clients rightfully expect CSCS to take the
necessary actions so that the functionality they require is
delivered.

After the discovery of the existence of bugs in the Lustre
code that introduce silent data corruption, there was finally
good progress made in the investigation with Cray support.

E. A Solution is Found for Internal Lustre

After 10 months of silent data corruption and near-

constant complaints from MeteoSwiss, Cray came up with
some patches for our internal Lustre installation. These are
the descriptions of the patches from the readme files:

 Handle network errors during bulk I/O.

 Lookup returns wrong inode following rename by
another client

 Modify LND message send/recv rx timeout policy

 So far, these patches appear to have fixed the problem.

The MeteoSwiss operational suite has been running for over
two months without further incident. However, CSCS does
not feel totally relieved, as no solid analysis was provided by
Cray to identify the link between the problem and the
patches. At this moment, it is still not clear if the root cause
was identified and the problem fixed (or if the frequency of
the problem only decreased).

As far as CSCS is aware, this problem still exists on the
external Sonexion devices.

6

V. REFLECTIONS

A. Feasibility of Lustre for Mission-critical Operations

At the end, after having the issue escalated, Cray was

able to act on the problem. However, this event pointed out
a fundamental problem, since real-time mission critical HPC
requires at any time the most stable and robust parallel
filesystem. It appears difficult to operate Lustre in a mission
critical context when bugs are reported and patches are
issued in a source tree, with no clear coordination between
the different involved entities. Known major filesystem bugs
in the field must be quickly identified, escalated and
addressed with all affected customers, regardless of where
the problem was first reported.

In order to cope with this lack of confidence in Lustre,
we currently maintain four copies of the data on four
different filesystems to ensure that one copy is available at
all times. This strategy may sound paranoid, but proved to be
necessary to protect MeteoSwiss operations. This is not a
sustainable approach, and may become a competitive
disadvantage for Cray if not addressed.

In the bug fix, Cray notes that these patches had been
available for over a year. However, they were not pushed to
affected sites, and worse, there is not clear link between the

patch and the problem. As a customer, it is hard to assess
whether the problem was actually fixed in a deterministic
manner, or if it was resolved via an educated guess. “Hit or
miss until you succeed” is not a sustainable support model.
The community needs better ways to report problems and
provide Cray with the required information to troubleshoot,
get to the root cause and get fixes. This should be a high-
priority item for Cray, and there should be better
communication channels to advise sites about patches that
should be installed.

B. Not Just Lustre

These problems with support are not just isolated to the

code base in general, but there are also demonstrable issues
getting support for difficult to capture problems. However,
when great numbers of large-scale scientific applications rely
on filesystem software that could potentially produce silent
file corruption, and in the end, incorrect scientific results, it
raises doubts with Lustre’s ability to sustain mission-critical
operations, and should be trusted with these caveats in mind.

