<A NVIDIA.

’ ‘

ion on

ing GPU
t

Jeff Larkin

1Ca

imiz

Opt;
Commun

What Amdahl says about GPU communication f%_

* If you make your GPU computation infinitely fast, performance
will be bound by your communication.

* GPU-2-GPU communication has
* Higher latency (additional hop over PCle)
* Lower bandwidth (limited by lowest bandwidth link)

* G2G communication cannot be an afterthought when running at
scale.

How do GPUs communicate? S,TZD.A

But what
really
happens
here?

MPI Send ()

MPI_Recv ()

Until recently... fﬁzm

cudaMemcpy () cudaMemcpy ()

MPI Send() MPI Recv ()

Unified Virtual Addressing f,%

No UVA: Multiple Memory Spaces UVA : Single Address Space

System GPU System GPU
Memory Memory Memory Memory

OxFFFF OXFFFF

| |

Unified Virtual Addressing E,%A

No UVA: Multiple Memory Spaces UVA : Single Address Space
cudaMemcpy
GPU Buffer - GPU System GPU
m ry Memory Memory Memory
Pinned fabric Buffer I 1 | | 1
| | FCle ‘ | PCl-e
Host Buffer memcpy

* One address space for all CPU and GPU memory
¢ Determine physical memory location from a pointer value
* Enable libraries to simplify their interfaces (e.g. MPI and
cudaMemcpy)

* Supported on Tesla starting with Fermi 64-bit applications on
Linux and Windows TCC

MPI+CUDA £ B %"ﬂ..,;;;
oal|a s
o qmm— T | o |
Server 0 Server 1 Server n-1
With UVA and CUDA-aware MPI No UVA and regular MPI
//MPI rank O //MPI rank O
MPI_Send(s_buf_d,size,...); cudaMemcpy(s_buf_h,s_buf_d,size,...);
MPI_Send(s_buf_h,size,...);
//MPI rank n-1 //MPI rank n-1
MPI_Recv(r_buf_d,size,...); MPI_Recv(r_buf_h,size,...);

cudaMemcpy(r_buf_d,r_buf_h,size,...);
CUDA-aware MPI makes MPI+CUDA easier.

CUDA-Aware MPI Libraries May

* Use RDMA to completely remove CPU from the picture.

GPU GPU
0 1

* Stage GPU buffers through CPU memory automatically
GPU CPU CPU GPU
0 ‘ 0 ! ‘ 1

* Pipeline messages

GPU # # GPU
0 ‘ ‘ 1

¢ All the programmer needs to know is they’ve passed a GPU
pointer to MPI, the library developer can optimize the rest

=

NVIDIA

<3

GPU-Awareness in Cray MPI R

Cray began supporting GPU-awareness in 5.6.3
Functions on XK7, but not optimally performing
Expected to work very well on XC30

* Must be explicitly enabled via run-time environment variable
MPICH_RDMA_ENABLED_CUDA
Works with both CUDA and OpenACC

* Version 5.6.4 adds a pipelining feature that should help large
messages
* Enabled with MPICH_G2G_PIPELINE

'

OMB Latency 1

Host-to-Host will always
have the lowest latency
(fewest hops)

* Staging through host
memory explicitly adds
significant latency

* GPU-aware library is able
to fall in the middle.

Note: 2 nodes on separate
blades.

OMB Bandwidth <3

NnviDIA

OHB Bandwidth Test

Once again, H2H wins out
(probably by a difference of

latency)
_ * Direct RDMA suffers badly
g 'fjg"jj‘ with this benchmark.
¢ Setting

MPICH_G2G_PIPELINE=64
pipelines messages and
opens up more concurrency.

Il
Pipeline {64}

500000 1e+06 1.5e+86 2e+86 2. 5e+86 Je+06 3.5e+06 de+Bt 4,.5e+0
Hessage Size {(Bytes)

=

OMB Bandwidth, Varying Pipelines ke

OMB sends messages in a
window of 64, so that is
naturally optimal.

* Counter-intuitive that no
intermediate values seemed
to help.

* Additionally tried varying
chunk sizes with no benefit.

Optimizing Performance of a Message f,%\

* MPI vendors know how to optimize performance for an
interconnect
* Different approaches for different message sizes
® Multiple algorithms

¢ Unfortunately, on the XK7, this may not be the optimal approach.

MPI Lacks the Ability to Express f,%

Dependencies

* One way to negate the cost of N
G2G communication is to
overlap with something
computation.

¢ Restructuring order of W
computation may allow such
overlapping

¢ Some communication patterns
have a natural concurrency
that isn’t easily exploited. S

Exploiting Communication Concurrency N>

D2H Transfer H2D
North North North
D2H Transfer H2D
East East East
D2H Transfer H2D
South South South
D2H Transfer H2D
West West West

* This cannot be expressed in GPU-aware MPI today.

Concurrent Messaging Pseudocode rf,%

do i=N,W while (more to send/recv)

MPI Irecv (i) if Irecv completed
enddo copyBufferH2DAsync
do i1=N,W unpackBufferAsync ()

packBufferAsync (i) endif

copyBufferD2HAsync (1) if D2H completed
enddo MPI Isend()

endif
done

Talks Related to this Optimization

Porting Strategy: Pack/Exchange/Unpack

= Foreach cycle
— Launch edge_pack kemel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

HOMME - Matt Norman — CUG2012

>

NVIDIA

15. Start looking at timelines showing
communication, host execution and accelerator

PR ot R — e Tt T
5

Ml il e e o T T

CNRNE s ol I W ol T |

P e e REREE o s e O i

[ttt S Bt et I |

S3D - John Levesque — CUG2013

!
Summary nviDIA

Optimizing kernels will only take you so far as you scale,
communication cannot be an afterthought.

GPU-aware MPI libraries are becoming available
Easier to program
Can optimize performance of individual message transfers

* Some communication patterns have a natural concurrency that
can be exploited to make communication “free”, but this takes
additional effort.

GOOGGIG
(A

s

S

7

<A NVIDIA.

