
Optimizing GPU to GPU

Communication on Cray XK7

Jeff Larkin

What Amdahl says about GPU communication

If you make your GPU computation infinitely fast, performance

will be bound by your communication.

GPU-2-GPU communication has

Higher latency (additional hop over PCIe)

Lower bandwidth (limited by lowest bandwidth link)

G2G communication cannot be an afterthought when running at

scale.

CPU0

MPI_Send ()

GPU0

CPU1

MPI_Recv()

GPU1

How do GPUs communicate?

MPI

But what

really

happens

here?

cudaMemcpy()

CPU0
MPI_Send()

GPU0

cudaMemcpy()

CPU1
MPI_Recv()

GPU1

Until recently…

Unified Virtual Addressing

No UVA: Multiple Memory Spaces UVA : Single Address Space

System

Memory

CPU GPU

GPU

Memory

PCI-e

0x0000

0xFFFF

0x0000

0xFFFF

System

Memory

CPU GPU

GPU

Memory

PCI-e

0x0000

0xFFFF

Unified Virtual Addressing

One address space for all CPU and GPU memory

Determine physical memory location from a pointer value

Enable libraries to simplify their interfaces (e.g. MPI and

cudaMemcpy)

Supported on Tesla starting with Fermi 64-bit applications on

Linux and Windows TCC

Pinned fabric Buffer

Host Buffer memcpy

GPU Buffer
cudaMemcpy

Pinned fabric Buffer Pinned fabric Buffer

MPI+CUDA

//MPI rank 0

MPI_Send(s_buf_d,size,…);

//MPI rank n-1

MPI_Recv(r_buf_d,size,…);

With UVA and CUDA-aware MPI

//MPI rank 0

cudaMemcpy(s_buf_h,s_buf_d,size,…);

MPI_Send(s_buf_h,size,…);

//MPI rank n-1

MPI_Recv(r_buf_h,size,…);

cudaMemcpy(r_buf_d,r_buf_h,size,…);

No UVA and regular MPI

CUDA-aware MPI makes MPI+CUDA easier.

CUDA-Aware MPI Libraries May

Use RDMA to completely remove CPU from the picture.

Stage GPU buffers through CPU memory automatically

Pipeline messages

All the programmer needs to know is they’ve passed a GPU

pointer to MPI, the library developer can optimize the rest

GPU

0

GPU

1

GPU

0

GPU

1

CPU

0

CPU

1

GPU

0

GPU

1

GPU-Awareness in Cray MPI

Cray began supporting GPU-awareness in 5.6.3

Functions on XK7, but not optimally performing

Expected to work very well on XC30

Must be explicitly enabled via run-time environment variable

MPICH_RDMA_ENABLED_CUDA

Works with both CUDA and OpenACC

Version 5.6.4 adds a pipelining feature that should help large

messages

Enabled with MPICH_G2G_PIPELINE

OMB Latency

Host-to-Host will always

have the lowest latency

(fewest hops)

Staging through host

memory explicitly adds

significant latency

GPU-aware library is able

to fall in the middle.

Note: 2 nodes on separate

blades.

OMB Bandwidth

Once again, H2H wins out

(probably by a difference of

latency)

Direct RDMA suffers badly

with this benchmark.

Setting

MPICH_G2G_PIPELINE=64

pipelines messages and

opens up more concurrency.

Hand-

Pipelining

Came ~Here

OMB Bandwidth, Varying Pipelines

OMB sends messages in a

window of 64, so that is

naturally optimal.

Counter-intuitive that no

intermediate values seemed

to help.

Additionally tried varying

chunk sizes with no benefit.

Optimizing Performance of a Message

MPI vendors know how to optimize performance for an

interconnect

Different approaches for different message sizes

Multiple algorithms

Unfortunately, on the XK7, this may not be the optimal approach.

MPI Lacks the Ability to Express

Dependencies
One way to negate the cost of

G2G communication is to

overlap with something

computation.

Restructuring order of

computation may allow such

overlapping

Some communication patterns

have a natural concurrency

that isn’t easily exploited.

N

W E

Exchange

Cells With

N,S,E,W

Neighbors.

S

Exploiting Communication Concurrency

This cannot be expressed in GPU-aware MPI today.

Pack

North

D2H

North

Transfer

North

H2D

North

Unpack

North

Pack

East

D2H

East

Transfer

East

H2D

East

Unpack

East

Pack

South

D2H

South

Transfer

South

H2D

South

Unpack

South

Pack

West

D2H

West

Transfer

West

H2D

West

Unpack

West

Concurrent Messaging Pseudocode

do i=N,W

 MPI_Irecv(i)

enddo

do i=N,W

 packBufferAsync(i)

 copyBufferD2HAsync(i)

enddo

while(more to send/recv)

 if Irecv completed

 copyBufferH2DAsync

 unpackBufferAsync()

 endif

 if D2H completed

 MPI_Isend()

 endif

done

Talks Related to this Optimization

HOMME - Matt Norman – CUG2012 S3D - John Levesque – CUG2013

Summary

Optimizing kernels will only take you so far as you scale,

communication cannot be an afterthought.

GPU-aware MPI libraries are becoming available

Easier to program

Can optimize performance of individual message transfers

Some communication patterns have a natural concurrency that

can be exploited to make communication “free”, but this takes

additional effort.

