
Optimizing GPU to GPU Communication on Cray XK7

Jeff M. Larkin

NVIDIA

Santa Clara, CA, USA

jlarkin@nvidia.com

Abstract—When developing an application for Cray XK7
systems, optimization of compute kernels is only a
small part of maximizing scaling and performance.
Programmers must consider the effect of the GPU’s
distinct address space and the PCIe bus on application
scalability. Without such considerations applications
rapidly become limited by transfers to and from the GPU
and fail to scale to large numbers of nodes. This paper
will demonstrate methods for optimizing GPU to GPU
communication and present XK7 results for these
methods.

KEYWORDS: MPI,GPU, CUDA, OpenACC, XK7, XK6

I. INTRODUCTION

Performance optimization of GPU kernels has been
widely discussed in numerous venues and formats. While
these optimizations are important, especially when running
on individual GPU-enhanced servers, they are only one
consideration when programming for large-scale HPC
systems, such as the Cray XK7 [1]. On such systems it is
important not only to consider the performance of GPU
computation and effective management of distinct CPU and
GPU memory address spaces on each node, but also the
effective communication between nodes using MPI. Without
such considerations, overall application performance can
quickly become dominated by the communication time,
making further GPU optimizations fruitless. This paper will
discuss multiple approaches to GPU-to-GPU (G2G)
communication via MPI and their relative strengths and
weaknesses.

II. G2G COMMUNICATION BASICS

Before discussing GPU communication strategies, it’s
important to understand what is meant by G2G
communication. A Cray XK7 node is comprised of one
AMD Interlagos CPU[2] with its associated memory, one
Nvidia K20X (Kepler) GPU [3], and a Cray Gemini network
ASIC (shared between 2 nodes). Figure 1: GPU to GPU
Communication between Cray XK7 Compute Nodes..
illustrates two XK7 nodes. It is assumed for this paper that
during the course of an MPI application’s runtime, it will be
necessary to exchange data that resides in the memory of
GPU0 with GPU1 via MPI. This is conceptually represented
by the arrow drawn between GPU0 and GPU1. While this
arrow is conceptually correct, the actual path the data takes
between these two GPU memories and how the programmer
expresses this transfer could take several forms.

Figure 1: GPU to GPU Communication between Cray XK7

Compute Nodes.

A. CUDA Unaware MPI Transfers

Traditionally, MPI libraries had no concept of distinct
CPU and GPU memory spaces and could not deal with
accessing GPU memory directly. Since the library was
ignorant to GPU memory, it was necessary for the
programmer to directly copy GPU data for transfer into a
CPU buffer, which was then passed to the MPI library. On
the receiving end of this transfer, the programmer would
provide the MPI library with a CPU memory buffer and
complete the transfer by copying the resulting data to the
GPU after it is received. Figure 2 illustrates this approach to
G2G communication.

Figure 2: GPU to GPU Communication Through CPU

Memory Buffers

While this approach is conceptually straightforward and
can be implemented with multiple GPU programming
techniques (CUDA, OpenACC, OpenCL, …), it has several
shortcomings. From a performance standpoint, it is

impossible to overlap the PCIe transfer from GPU memory
of a given buffer with its corresponding MPI transfer over
the interconnect. This introduces an inherent serialization of
these transfers. From a programming standpoint, while it’s
possible to use asynchronous PCI transfers and MPI routines,
the coordination of such a scheme is difficult and error
prone. This method for G2G transfers, while the most limited
in terms of performance and flexibility, is the most portable
method at time of publication.

B. CUDA-aware MPI Transfers

Recent MPI implementations, including Cray’s Message
Passing Toolkit (MPT) version 5.6.3 and newer, enhance the
MPI interface to be able to accept CPU or GPU pointers and
act appropriately for each. This ability was enabled by the
addition of Unified Virtual Addressing (UVA) in CUDA 4.0.
Prior to UVA, CPU and GPU memory both began at address
0x0 and could use the same integer addresses to refer to
memory in different physical locations. With UVA, the CPU
and all GPUs on a node will share a single virtual memory
space, so a given address can only point to a single memory
location. This makes it possible to determine where a
pointer’s memory resides and to act on that information.
Using UVA to make an MPI library CUDA-aware means
that it’s possible to remove the necessity for a programmer to
explicitly copy data to and from the GPU around MPI
communications, the MPI library can handle this itself.

Figure 3: Using CUDA-aware MPI, the programmer can

program as if transferring directly between GPU memories.

While one may now represent in the application code the
concept of copying data directly between two GPUs via
MPI, there is no guarantee that this is actually how the MPI
library will transfer the data between the two GPUs. The
library may still choose to use a temporary buffer in CPU
memory, or it may choose to send the data directly using a
remote DMA (RDMA) action, or it may choose to do
something else entirely, such as chunking and pipelining
large messages. Just as with the details of how CPU-to-CPU
MPI messages are sent are generally not vital to the
application programmer, it is not critical that the programmer
know how the library is transferring a given message in order
to begin using CUDA-aware MPI. Ideally, the programmer
can trust the MPI implementer to write the library to be as
efficient as possible for a given hardware configuration.

It is worth noting that there is not currently a standard
way to specify that a given MPI transfer should work on a
particular CUDA stream (or related asynchronous construct).
Cray’s implementation, for instance, uses one CUDA stream
for host to device (H2D) transfers and another for device to
host (D2H). MVAPICH [4] similarly manages its own pool
of CUDA streams for MPI transfers. Because of this, it may
be possible at times to achieve better overlapping of GPU
computation, PCIe transfers, and MPI by hand-coding these
asynchronous activities. The most straightforward way to
achieve such overlapping at time of publication is to
implement it directly, via CUDA, OpenACC, or the like.

III. BANDWIDTH AND LATENCY OF G2G MPI

For this section, I will use the OSU Micro Benchmarks
(OMB) to obtain the MPI latency and bandwidth between
two GPU nodes. For each test, I will measure the value for
transferring between CPU memories as a baseline, using
CPU memory buffers, using pinned (page-locked) CPU
memory buffers, enabling G2G communication in the
library, and using automatically pipelined G2G
communication.

A. Cray-Mpich2 GPU-Awareness

GPU-awareness for Cray’s MPICH2 library is enabled

by setting the MPICH_RDMA_ENABLED_CUDA

environment variable at runtime. Not setting this
environment variable will result in application failure when
passing GPU memory to an MPI routine. This feature is
available in cray-mpich2 version 5.6.3 and newer. Version
5.6.4 adds an additional environment variable,

MPICH_G2G_PIPELINE, which, when set, will allow large

messages to be chunked and pipelined so that transfers
between the CPU and GPU may be overlapped with network
transfers. The default number of pipelines, when enabled, is
16, but for OMB the best results are achieved with a value of
64. All tests were run between 2 nodes on separate compute
blades.

Figure 4: OMB Latency Benchmark (Lower is Better)

Figure 4 shows the measurements for MPI point to point
latency for varying message sizes. The lines from highest
(worst) to lowest (best) are copying through host memory,
copying through pinned memory, RDMA and pipelined
(overlapping), and standard host-to-host. These results are as
expected. Because standard host-to-host transfers do not
require a hop over the PCIe bus, they have the lowest
latency, which explicitly buffering through host memory has
the highest, due to the latency involved in explicitly copying
the data to the host. Both RDMA and pipelined RDMA do
not require a copy to a host memory buffer, so they are the
second best performing. Lastly, copying through pinned
memory falls between RDMA and host-buffered because of
the increased PCIe performance achieved from using pinned
memory.

Figure 5: OMB Bandwidth Benchmark (Higher is Better)

Figure 5 shows the MPI point-to-point bandwidth
performance for varying message sizes between the same
two neighbors as the above latency test. The lines from best
to worst are direct host-to-host, pipelined
(MPICH_G2G_PIPELINE=64), copied through pinned

memory, copied through pageable host memory, and direct
RDMA. The most striking thing to observe from this figure
is the poor performance of direct RDMA transfers on the
XK7 platform. This is due to hardware limitations, the
details of which are outside of the scope of this paper. By
enabling automatic pipelining, however, the library was able
to intelligently overcome this limitation and achieve
performance nearing that of cpu-to-cpu transfers. The value
of 64 was chosen because OMB issues 64 sends or receives
before waiting for all of them to complete, so 64 is the
optimal number of messages to have in flight
simultaneously. Intermediate values were also tried, as
illustrated in Figure 6. While it is not surprising that 64 is the
ideal value, it was a surprise to see that no other value
improved the performance. This result is not intuitive and
warrants further exploration.

Figure 6: OMB Bandwidth test with varying pipeline depth.

B. Manual Message Pipelining

While the pipelining of individual messages is something
that can be done by MPI library developers, application
developers may be able to do additional overlapping when
sending multiple MPI messages to different neighbors.
Taken a step farther, in the case of certain communications,
such as a stencil operation, it may be possible use the GPU to
pack a message for one neighbor, while copying data to be
sent to another, and performing the MPI transfer to yet
another. Such a scheme requires a way to expose the
dependencies between these operations, such as CUDA
streams or OpenACC asynchronous handles, which is not
currently available from MPI libraries. To establish a
baseline for such a pipeline, the OMB bandwidth benchmark
was modified to allow individual messages to be chunked
and pipelined. Unlike Cray’s automatic chunking, which
always breaks the message into 512KB chunks and keeps a
configurable number of these chunks in flight, this

implementation divides the message into equal chunks by
dividing the total length by pipeline length. While this is not
identical to how the MPI library behaves when pipelining is
enabled, it is how a user might choose to implement manual
pipelining of messages. Best performance was achieved with
a pipeline length of 4 and the performance was consistently
around 4 GB/s, which falls between staging through pinned
memory and using library pipelining. With additional tuning,
it may be possible to increase this performance further, but
such pipelining is best performed by the MPI library
implementer.

IV. EXPLOITING COMMUNICATION CONCURRENCY

As discussed above, while automatic pipelining by the
MPI library handles individual messages very well, the MPI
interface lacks a way to expose the inherent concurrency of
some communication patterns. Once such communication
pattern widely used in scientific computing, is the stencil
operation. When performing a stencil update, some number
of “outside” elements from the local data domain must be
exchanged with the same number of elements on a
neighboring process in order to keep some level of
consistency between the two processes. In fact, in certain
algorithms, these elements that are exchanged represent an
overlap in the two local domains. Since each neighbor
exchange on a particular node is independent, except
possibly in the case of corner elements, which are shared
with multiple neighbors, it is possible to setup a pipeline of
exchanges on the node in addition to simply chunking and
pipelining a particular message. In [5] the authors discusses
how such a technique is applied to the HOMME application
and in Error! Reference source not found. the authors
discuss implementing something similar in the S3D
application.

Figure 7: Example of a possible stencil-like boundary exchange

with inherent parallelism in each direction.

Figure 7 shows at a very high level how a stencil-like
operation may occur within an application, where boundary
data must be exchanged to the N, E, S, and W neighbors.
When sending the boundary data, each of the four directions
is completely independent, so one could build a pipeline
where one boundary is packing a contiguous buffer for MPI,
another is copying data to or from the GPU memory, and
meanwhile MPI messages are being sent and received. With
such a pipeline, the cost of PCIe transfers and MPI
communication can be completely hidden. Figure 8 shows
how such a pipeline may look. Please see the presentation
associated with this paper for a pseudocode implementation
of such a communication. This example is intentionally very
high level and does ignore some complexities of such an
algorithm, such as how to deal with overlapping corners and
how to efficiently handle compressing non-contiguous
boundaries into contiguous memory buffers. It was my
intention to build a sample mini-app for such an operation,
but I was unable to complete this by the conference deadline.

Figure 8: Example pipeline for N/E/S/W boundary exchange.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, careful consideration must be given for
communication on an XK7 or other distributed hybrid
architecture machines. The addition of the PCIe bus for the

attached accelerator has a negative effect on both latency and
bandwidth when communicating between two GPUs. This
performance degradation is made worse by hardware
limitations on the Cray XK7 platform. MPI library
developers have begun to support the passing of GPU
pointers to the MPI library, where they can they perform
optimizations to maximize single message performance.
When an application has additional concurrency around
communication that can be exploited to hide the cost of the
data transfers, the application developer should expose that
parallelism, effectively eliminating the performance cost of
PCIe.

Future activities for this research will include additional
optimizations to hand-pipelined messages, investigating the
non-intuitive results for varying the number of messages in
flight from Cray’s automatic pipelining, and completing the
sample mini-app for demonstrating pipelining of boundary
communications.

ACKNOWLEDGMENT

Thank you to Nick Radcliffe and Kitrick Sheets of Cray
for their help in understanding and testing Cray MPT. Thank

you also to Jiri Krauss of Nvidia for his help in gathering
data for this paper.

REFERENCES

[1] http://www.cray.com/Assets/PDF/products/xk/CrayXK7Brochure.pdf

[2] http://www.amd.com/us/products/server/processors/6000-series-
platform/6200/Pages/6200-series-processors.aspx

[3] http://www.nvidia.com/content/PDF/kepler/Tesla-KSeries-Overview-
LR.pdf

[4] http://mvapich.cse.ohio-state.edu/

[5] Norman, Matthew, et al. Porting the Community Atmosphere Model -
Spectral Element Code to Utilize GPU Accelerators. Presented at
CUG2012. Cray Users Group; 2012. 2012 April 29 – May 03;
Stuttgart Germany.

[6] John M. Levesque, Ramanan Sankaran, and Ray Grout. 2012.
Hybridizing S3D into an exascale application using OpenACC: an
approach for moving to multi-petaflops and beyond. In Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC '12). IEEE Computer Society
Press, Los Alamitos, CA, USA, , Article 15 , 11 pages.

[7] Krauss, Jiri. S3047 - Introduction to CUDA-aware MPI and NVIDIA
GPUDirect™. Presented at GTC 2013. GPU Technology Conference;
2013 March 20; San Jose, CA, USA.

http://www.cray.com/Assets/PDF/products/xk/CrayXK7Brochure.pdf
http://www.amd.com/us/products/server/processors/6000-series-platform/6200/Pages/6200-series-processors.aspx
http://www.amd.com/us/products/server/processors/6000-series-platform/6200/Pages/6200-series-processors.aspx
http://www.nvidia.com/content/PDF/kepler/Tesla-KSeries-Overview-LR.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-KSeries-Overview-LR.pdf
http://mvapich.cse.ohio-state.edu/

