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Abstract—When developing an application for Cray XK7 
systems, optimization of compute kernels is only a 
small part of maximizing scaling and performance. 
Programmers must consider the effect of the GPU’s 
distinct address space and the PCIe bus on application 
scalability. Without such considerations applications 
rapidly become limited by transfers to and from the GPU 
and fail to scale to large numbers of nodes. This paper 
will demonstrate methods for optimizing GPU to GPU 
communication and present XK7 results for these 
methods. 
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I.  INTRODUCTION 

Performance optimization of GPU kernels has been 
widely discussed in numerous venues and formats. While 
these optimizations are important, especially when running 
on individual GPU-enhanced servers, they are only one 
consideration when programming for large-scale HPC 
systems, such as the Cray XK7 [1]. On such systems it is 
important not only to consider the performance of GPU 
computation and effective management of distinct CPU and 
GPU memory address spaces on each node, but also the 
effective communication between nodes using MPI. Without 
such considerations, overall application performance can 
quickly become dominated by the communication time, 
making further GPU optimizations fruitless. This paper will 
discuss multiple approaches to GPU-to-GPU (G2G) 
communication via MPI and their relative strengths and 
weaknesses.  

II. G2G COMMUNICATION BASICS 

Before discussing GPU communication strategies, it’s 
important to understand what is meant by G2G 
communication. A Cray XK7 node is comprised of one 
AMD Interlagos CPU[2] with its associated memory, one 
Nvidia K20X (Kepler) GPU [3], and a Cray Gemini network 
ASIC (shared between 2 nodes). Figure 1: GPU to GPU 
Communication between Cray XK7 Compute Nodes.. 
illustrates two XK7 nodes. It is assumed for this paper that 
during the course of an MPI application’s runtime, it will be 
necessary to exchange data that resides in the memory of 
GPU0 with GPU1 via MPI. This is conceptually represented 
by the arrow drawn between GPU0 and GPU1. While this 
arrow is conceptually correct, the actual path the data takes 
between these two GPU memories and how the programmer 
expresses this transfer could take several forms. 

 
Figure 1: GPU to GPU Communication between Cray XK7 

Compute Nodes. 

A. CUDA Unaware MPI Transfers 

Traditionally, MPI libraries had no concept of distinct 
CPU and GPU memory spaces and could not deal with 
accessing GPU memory directly. Since the library was 
ignorant to GPU memory, it was necessary for the 
programmer to directly copy GPU data for transfer into a 
CPU buffer, which was then passed to the MPI library. On 
the receiving end of this transfer, the programmer would 
provide the MPI library with a CPU memory buffer and 
complete the transfer by copying the resulting data to the 
GPU after it is received. Figure 2 illustrates this approach to 
G2G communication. 

 

 
Figure 2: GPU to GPU Communication Through CPU 

Memory Buffers 

While this approach is conceptually straightforward and 
can be implemented with multiple GPU programming 
techniques (CUDA, OpenACC, OpenCL, …), it has several 
shortcomings. From a performance standpoint, it is 



impossible to overlap the PCIe transfer from GPU memory 
of a given buffer with its corresponding MPI transfer over 
the interconnect. This introduces an inherent serialization of 
these transfers. From a programming standpoint, while it’s 
possible to use asynchronous PCI transfers and MPI routines, 
the coordination of such a scheme is difficult and error 
prone. This method for G2G transfers, while the most limited 
in terms of performance and flexibility, is the most portable 
method at time of publication. 

B. CUDA-aware MPI Transfers 

Recent MPI implementations, including Cray’s Message 
Passing Toolkit (MPT) version 5.6.3 and newer, enhance the 
MPI interface to be able to accept CPU or GPU pointers and 
act appropriately for each. This ability was enabled by the 
addition of Unified Virtual Addressing (UVA) in CUDA 4.0. 
Prior to UVA, CPU and GPU memory both began at address 
0x0 and could use the same integer addresses to refer to 
memory in different physical locations. With UVA, the CPU 
and all GPUs on a node will share a single virtual memory 
space, so a given address can only point to a single memory 
location. This makes it possible to determine where a 
pointer’s memory resides and to act on that information. 
Using UVA to make an MPI library CUDA-aware means 
that it’s possible to remove the necessity for a programmer to 
explicitly copy data to and from the GPU around MPI 
communications, the MPI library can handle this itself. 

 

 
Figure 3: Using CUDA-aware MPI, the programmer can 

program as if transferring directly between GPU memories. 

While one may now represent in the application code the 
concept of copying data directly between two GPUs via 
MPI, there is no guarantee that this is actually how the MPI 
library will transfer the data between the two GPUs. The 
library may still choose to use a temporary buffer in CPU 
memory, or it may choose to send the data directly using a 
remote DMA (RDMA) action, or it may choose to do 
something else entirely, such as chunking and pipelining 
large messages. Just as with the details of how CPU-to-CPU 
MPI messages are sent are generally not vital to the 
application programmer, it is not critical that the programmer 
know how the library is transferring a given message in order 
to begin using CUDA-aware MPI. Ideally, the programmer 
can trust the MPI implementer to write the library to be as 
efficient as possible for a given hardware configuration. 

It is worth noting that there is not currently a standard 
way to specify that a given MPI transfer should work on a 
particular CUDA stream (or related asynchronous construct). 
Cray’s implementation, for instance, uses one CUDA stream 
for host to device (H2D) transfers and another for device to 
host (D2H). MVAPICH [4] similarly manages its own pool 
of CUDA streams for MPI transfers. Because of this, it may 
be possible at times to achieve better overlapping of GPU 
computation, PCIe transfers, and MPI by hand-coding these 
asynchronous activities. The most straightforward way to 
achieve such overlapping at time of publication is to 
implement it directly, via CUDA, OpenACC, or the like. 

III. BANDWIDTH AND LATENCY OF G2G MPI 

For this section, I will use the OSU Micro Benchmarks 
(OMB) to obtain the MPI latency and bandwidth between 
two GPU nodes. For each test, I will measure the value for 
transferring between CPU memories as a baseline, using 
CPU memory buffers, using pinned (page-locked) CPU 
memory buffers, enabling G2G communication in the 
library, and using automatically pipelined G2G 
communication. 

A. Cray-Mpich2 GPU-Awareness 

GPU-awareness for Cray’s MPICH2 library is enabled 

by setting the MPICH_RDMA_ENABLED_CUDA 

environment variable at runtime. Not setting this 
environment variable will result in application failure when 
passing GPU memory to an MPI routine. This feature is 
available in cray-mpich2 version 5.6.3 and newer. Version 
5.6.4 adds an additional environment variable, 

MPICH_G2G_PIPELINE, which, when set, will allow large 

messages to be chunked and pipelined so that transfers 
between the CPU and GPU may be overlapped with network 
transfers. The default number of pipelines, when enabled, is 
16, but for OMB the best results are achieved with a value of 
64. All tests were run between 2 nodes on separate compute 
blades. 

 

 
Figure 4: OMB Latency Benchmark (Lower is Better) 



Figure 4 shows the measurements for MPI point to point 
latency for varying message sizes. The lines from highest 
(worst) to lowest (best) are copying through host memory, 
copying through pinned memory, RDMA and pipelined 
(overlapping), and standard host-to-host. These results are as 
expected. Because standard host-to-host transfers do not 
require a hop over the PCIe bus, they have the lowest 
latency, which explicitly buffering through host memory has 
the highest, due to the latency involved in explicitly copying 
the data to the host. Both RDMA and pipelined RDMA do 
not require a copy to a host memory buffer, so they are the 
second best performing. Lastly, copying through pinned 
memory falls between RDMA and host-buffered because of 
the increased PCIe performance achieved from using pinned 
memory. 

 

 
Figure 5: OMB Bandwidth Benchmark (Higher is Better) 

Figure 5 shows the MPI point-to-point bandwidth 
performance for varying message sizes between the same 
two neighbors as the above latency test. The lines from best 
to worst are direct host-to-host, pipelined 
(MPICH_G2G_PIPELINE=64), copied through pinned 

memory, copied through pageable host memory, and direct 
RDMA. The most striking thing to observe from this figure 
is the poor performance of direct RDMA transfers on the 
XK7 platform. This is due to hardware limitations, the 
details of which are outside of the scope of this paper. By 
enabling automatic pipelining, however, the library was able 
to intelligently overcome this limitation and achieve 
performance nearing that of cpu-to-cpu transfers.  The value 
of 64 was chosen because OMB issues 64 sends or receives 
before waiting for all of them to complete, so 64 is the 
optimal number of messages to have in flight 
simultaneously. Intermediate values were also tried, as 
illustrated in Figure 6. While it is not surprising that 64 is the 
ideal value, it was a surprise to see that no other value 
improved the performance. This result is not intuitive and 
warrants further exploration. 

 

 
Figure 6: OMB Bandwidth test with varying pipeline depth. 

B. Manual Message Pipelining 

While the pipelining of individual messages is something 
that can be done by MPI library developers, application 
developers may be able to do additional overlapping when 
sending multiple MPI messages to different neighbors. 
Taken a step farther, in the case of certain communications, 
such as a stencil operation, it may be possible use the GPU to 
pack a message for one neighbor, while copying data to be 
sent to another, and performing the MPI transfer to yet 
another. Such a scheme requires a way to expose the 
dependencies between these operations, such as CUDA 
streams or OpenACC asynchronous handles, which is not 
currently available from MPI libraries. To establish a 
baseline for such a pipeline, the OMB bandwidth benchmark 
was modified to allow individual messages to be chunked 
and pipelined. Unlike Cray’s automatic chunking, which 
always breaks the message into 512KB chunks and keeps a 
configurable number of these chunks in flight, this 



implementation divides the message into equal chunks by 
dividing the total length by pipeline length. While this is not 
identical to how the MPI library behaves when pipelining is 
enabled, it is how a user might choose to implement manual 
pipelining of messages. Best performance was achieved with 
a pipeline length of 4 and the performance was consistently 
around 4 GB/s, which falls between staging through pinned 
memory and using library pipelining. With additional tuning, 
it may be possible to increase this performance further, but 
such pipelining is best performed by the MPI library 
implementer. 

IV. EXPLOITING COMMUNICATION CONCURRENCY 

As discussed above, while automatic pipelining by the 
MPI library handles individual messages very well, the MPI 
interface lacks a way to expose the inherent concurrency of 
some communication patterns. Once such communication 
pattern widely used in scientific computing, is the stencil 
operation. When performing a stencil update, some number 
of “outside” elements from the local data domain must be 
exchanged with the same number of elements on a 
neighboring process in order to keep some level of 
consistency between the two processes. In fact, in certain 
algorithms, these elements that are exchanged represent an 
overlap in the two local domains. Since each neighbor 
exchange on a particular node is independent, except 
possibly in the case of corner elements, which are shared 
with multiple neighbors, it is possible to setup a pipeline of 
exchanges on the node in addition to simply chunking and 
pipelining a particular message. In [5] the authors discusses 
how such a technique is applied to the HOMME application 
and in Error! Reference source not found. the authors 
discuss implementing something similar in the S3D 
application. 

 

 
Figure 7: Example of a possible stencil-like boundary exchange 

with inherent parallelism in each direction. 

Figure 7 shows at a very high level how a stencil-like 
operation may occur within an application, where boundary 
data must be exchanged to the N, E, S, and W neighbors. 
When sending the boundary data, each of the four directions 
is completely independent, so one could build a pipeline 
where one boundary is packing a contiguous buffer for MPI, 
another is copying data to or from the GPU memory, and 
meanwhile MPI messages are being sent and received. With 
such a pipeline, the cost of PCIe transfers and MPI 
communication can be completely hidden. Figure 8 shows 
how such a pipeline may look. Please see the presentation 
associated with this paper for a pseudocode implementation 
of such a communication. This example is intentionally very 
high level and does ignore some complexities of such an 
algorithm, such as how to deal with overlapping corners and 
how to efficiently handle compressing non-contiguous 
boundaries into contiguous memory buffers. It was my 
intention to build a sample mini-app for such an operation, 
but I was unable to complete this by the conference deadline. 

 

 
Figure 8: Example pipeline for N/E/S/W boundary exchange. 

V. CONCLUSIONS AND FUTURE WORK 

In conclusion, careful consideration must be given for 
communication on an XK7 or other distributed hybrid 
architecture machines. The addition of the PCIe bus for the 



attached accelerator has a negative effect on both latency and 
bandwidth when communicating between two GPUs. This 
performance degradation is made worse by hardware 
limitations on the Cray XK7 platform. MPI library 
developers have begun to support the passing of GPU 
pointers to the MPI library, where they can they perform 
optimizations to maximize single message performance. 
When an application has additional concurrency around 
communication that can be exploited to hide the cost of the 
data transfers, the application developer should expose that 
parallelism, effectively eliminating the performance cost of 
PCIe.  

Future activities for this research will include additional 
optimizations to hand-pipelined messages, investigating the 
non-intuitive results for varying the number of messages in 
flight from Cray’s automatic pipelining, and completing the 
sample mini-app for demonstrating pipelining of boundary 
communications. 

 

ACKNOWLEDGMENT 

Thank you to Nick Radcliffe and Kitrick Sheets of Cray 
for their help in understanding and testing Cray MPT. Thank 

you also to Jiri Krauss of Nvidia for his help in gathering 
data for this paper. 

 

REFERENCES 

[1] http://www.cray.com/Assets/PDF/products/xk/CrayXK7Brochure.pdf 

[2] http://www.amd.com/us/products/server/processors/6000-series-
platform/6200/Pages/6200-series-processors.aspx 

[3] http://www.nvidia.com/content/PDF/kepler/Tesla-KSeries-Overview-
LR.pdf 

[4] http://mvapich.cse.ohio-state.edu/ 

[5] Norman, Matthew, et al. Porting the Community Atmosphere Model - 
Spectral Element Code to Utilize GPU Accelerators. Presented at 
CUG2012. Cray Users Group; 2012. 2012 April 29 – May 03; 
Stuttgart Germany. 

[6] John M. Levesque, Ramanan Sankaran, and Ray Grout. 2012. 
Hybridizing S3D into an exascale application using OpenACC: an 
approach for moving to multi-petaflops and beyond. In Proceedings 
of the International Conference on High Performance Computing, 
Networking, Storage and Analysis (SC '12). IEEE Computer Society 
Press, Los Alamitos, CA, USA, , Article 15 , 11 pages.  

[7] Krauss, Jiri. S3047 - Introduction to CUDA-aware MPI and NVIDIA 
GPUDirect™. Presented at GTC 2013. GPU Technology Conference; 
2013 March 20; San Jose, CA, USA.  

 

http://www.cray.com/Assets/PDF/products/xk/CrayXK7Brochure.pdf
http://www.amd.com/us/products/server/processors/6000-series-platform/6200/Pages/6200-series-processors.aspx
http://www.amd.com/us/products/server/processors/6000-series-platform/6200/Pages/6200-series-processors.aspx
http://www.nvidia.com/content/PDF/kepler/Tesla-KSeries-Overview-LR.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-KSeries-Overview-LR.pdf
http://mvapich.cse.ohio-state.edu/

