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Abstract

A high performance computing (HPC) platform today
typically contains a scratch high-performance parallel
file system for data storage. Today, such file systems
encompass 10-20% of the purchase price of a HPC
resource. Looking forward, it is apparent that the rate
of increase of hard drive performance will not keep up
with the expected gains in processing, and therefore any
effort to keep I/O performance at the same relative level
will require a larger and larger fraction of the overall
budget. Therefore, it will become increasingly important
to understand the I/O usage and needs of HPC workloads
in great detail in order to ensure resources are adequately
provisioned. Although it is relatively straightforward to-
day to measure the total amount of I/O to and from a file
system, and the bandwidths achieved, these metrics reveal
only part of the overall file system load, because the
size of individual I/O requests and their relation to one
another can strongly affect how much data a file system
can move in a given interval. In this work we introduce a
new metric for file system utilization (FSU) that accounts
for both the volume of data moved and the number of disk
I/O operations required to move that data. We present a
description of our model in which we idealize an I/O
transaction to disk (on the server) as requiring time t
that includes a small, fixed amount of time (the latency,
a0) and an amount of time proportional to the size of the
I/O: t = a0 + a1 ∗ b. A series of calibration experiments
using transactions of various sizes allows us to establish
a0 and a1, which we do separately for reads and writes.
We collect data on the number and size, N(b), of all I/O
transactions, which allows us to calculate the File System
Utilization (FSU). The FSU metric provides a view of
the I/O workload on the file system. We present early
results showing that the Hopper Cray XE6 /scratch
file system is about four times as busy as we would
estimate from a bandwidth metric alone.

I. Introduction

In a high performance computing (HPC) system there
is a strong motivation to achieve the best performance
possible [16] and to measure that performance as ac-
curately and honestly as possible [7]. The same holds
for the I/O capability of the HPC system, and for its
scratch file system, in particular. The scratch resource
of an HPC system is usually constructed from a parallel
file system such as Lustre [8], PVFS [13], or GPFS [14].
This discussion will focus on Lustre, but all parallel file
systems are notoriously complex and difficult to fully
characterize. The insights and techniques are general and
can be applied to any of the file systems.

The I/O and file system infrastructure of an HPC
system is often a significant fraction of its total expense
[11], and understanding both its workload and how well
it handles that workload allows us to gauge how well
balanced the I/O resources are to the needs of the system
as a whole.

Accurately measuring the peak performance of a file
system is not a trivial task. The most common measure
of performance is its peak bandwidth, which leaves out
any consideration of its metadata performance or other
architectural limitations∗. The peak write bandwidth can
be very high when the data is only delivered to an inter-
vening cache, so a fair measure of the peak bandwidth
should be for writes that make it all the way to disk.
Similarly, the peak read bandwidth can be very high when
the data is actually being read from the previously written
cache. Again, the fair measure of peak read bandwidth
should be for reads that are coming all the way from
disk.

Similarly, the most common metric for file system load
is the ratio of observed bandwidth to peak bandwidth.
Using the observed bandwidth as a metric for the load
on the file system can easily under-report the actual
load. Poorly organized I/O can lead to an observed

∗For example, on a BlueGene system each I/O node serves a distinct
set of compute nodes, so the full bandwidth is only available to an
application running at sufficient scale to drive all its I/O nodes.



Fig. 1. Hopper compute nodes (CMP) com-
municate across the Gemini network to
LNET Routers and from there by infiniband
to the external OSS nodes. Each OSS has
six OSTs, and each OST is the service by
which the OSS serves a RAID array (LUN) of
actual disks. Not shown in this diagram is
a controller between the Fibre Channel and
the disks. Each controller is responsible for
six LUNs, and the six OSTs on an OSS map
to six different controllers.

bandwidth well below the peak even when there is no
additional bandwidth available. One way this can happen
is if I/O transactions to disk occur in small fragments
with a significant disk seek between each fragment. The
achievable bandwidth is the peak bandwidth for a given,
specific pattern of I/O.

In this paper we will exploit a data source in the
/proc file system that tells us what the pattern of disk
I/O is. That extra information will allow us to create an
improved metric, the File System Utilization (FSU), that
better characterizes the load on the file system. With that
metric on the Hopper Cray XE6, we will see that the load
on the file system is, in fact, much higher than would
have otherwise been apparent. In addition to how busy
the file system is, this new data source reveals how well
the file system is being used. We will conclude with a
comparison of the workload on Hopper’s /scratch and
/scratch2 file systems.

A. The Hopper Cray XE6

The Hopper Cray XE6 [2] at the National En-
ergy Research Scientific Computing (NERSC) center at
Lawrence Berkeley National Laboratory consists of 6384
nodes (153,216 cores) and 212TB of memory. Hopper
has a peak performance of 1.28 Petaflops. The nodes
are connected in a 3D torus by the “Gemini Network”.
There is an external storage cluster employing the Lustre

Fig. 2. A graduated sequence of IOR bench-
mark tests seeks to establish the peak read
and write bandwidth. The values (y-axis) for
writes (blue) are relatively consistent over
the range of file sizes (x-axis), so write
caching was not distorting the results. The
read rates (red) drop precipitously when the
file size exceeds cache (on the server in this
case). The fair value is the lower asymptotic
limit, not the very large values for smaller
files.

parallel file system to provide scratch space. Figure 1
shows I/O Nodes on the “edge” of the torus acting
as Lustre network (LNET) routers and connecting the
compute nodes to the Object Storage Servers (OSSs) via
an Infinband network.

The Hopper /scratch and /scratch2 resources
are built from LSI RAID units. Each RAID unit has a
controller, and the controller is responsible for providing
six block devices or Logical Units (LUNs) from the
disks in its RAID unit. Each LUN is mounted on one
of the OSSs via a Fibre Channel link. The LUNs on
one controller are distributed to six different OSSs. A
LUN is served by an OSS via an Object Storage Target
(OST). That is, the OST is a service running on the
OSS. The /scratch file system is constructed from
156 LUNs/OSTs on 26 servers and 13 controller pairs
for a total of 1.1PB of storage. The peak bandwidth of
/scratch is 35GB/s. The /scratch2 file system
is identically constructed. There is also an arrangement
for fail-over between controllers and servers. Finally,
a separate RAID array and MetaData Server (MDS)
combination are responsible for the Lustre name space
and the mapping of Lustre objects to their OSSs.

B. The IOR Benchmark

The IOR [12] parallel file system benchmark is com-
monly employed to document peak file system band-
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Fig. 3. The Lustre Monitoring Tool (LMT)
observes the bandwidth on the Hopper XE6
/scratch file system every five seconds. 24
hours of data on October 22, 2012, show the
bandwidth is not very high until after about
7:00 PM. Prior to that, was the bandwidth
low because there was little demand for I/O,
or was there a pattern of I/O reducing the
achievable bandwidth?

width. In doing so, it is important to recognize pitfalls
in measuring peak bandwidth and account for details of
the system architecture. Figure 2 shows one example of
documenting such a feature. In these experiments, an
IOR benchmark test writes to, and reads from, files on a
single OST via a single OSS. The aggregate file size for
the test is increased (x-axis) from 8GB to 512GB. The
observed bandwidth (y-axis) is fairly consistently around
400MB/s for writes, but falls from over 4000MB/s to
around 450MB/s for reads when the aggregate file size
is larger than 32GB, which happens to be the size of
the OSS’s memory. The value for read bandwidth that is
more representative of what happens with many users is
the asymptotic value of around 450MB/s reached for
large files, not the larger value for smaller target files.
All of the results in the rest of this paper are for the
asymptotic behavior at large scale.

C. The Lustre Monitoring Tool (LMT)

Each Lustre server (OSS or MDS) maintains a set of
/proc entries giving information about the internal state
and recent performance of the file system. The Cerebro
[9], [17] data transfer daemon runs on each server and
communicates with an external (to the storage cluster)
database server. The Lustre Monitoring Tool [10], [17]
(LMT) is a collection of plug-in modules for Cerebro
that will harvest /proc entries on the servers and
save them in the database. Of particular interest is the
/proc/fs/lustre/obdfilter/<OST>/stats

Fig. 4. IOR benchmark tests with varying
transfer sizes show a penalty, especially
for writes, with smaller transfers. The tests
were constructed to have a random seek
between each transfer.

file. In that file are two counters, READ BYTES and
WRITE BYTES. As counters, the values of these
two 64-bit quantities only increase. They measure the
number of bytes written (respectively read) on a given
OST since the OSS was booted (when they are set to
zero). LMT reads these values every five seconds. The
differential of those observations produces a time series
of observed bandwidth for reads and writes. These time
series are a high resolution view of the behavior and
performance of the file system components. There is a
similar set of counters collected on the MDS and the
LNET routers, though this paper will not discuss them
further. There are other sources of data on the OSSs
not collected by LMT, and that will be the subject of
Section IV.

Figure 3 shows 24 hours of data collected by LMT
on the Hopper /scratch file system. The time series
of the read and write observations over the 156 OSTs
are summed up and plotted with time on the x-axis. The
observed bandwidth (red for reads and blue for writes)
is plotted on the y-axis. Each dot is one of the obser-
vations taken every five seconds, so there are 17, 280
observations of read bandwidth and 17, 280 observations
of write bandwidth in a 24 hour period.

II. I/O Bandwidth as a Proxy for File System
Load

There are other factors besides the aggregate amount
of data being read or written that determine the deliv-
ered performance from an HPC file system. Figure 4
presents a series of IOR benchmark tests that establish
the bandwidth, in the asymptotic limit, for a range of
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transfer sizes. In this case special attention was given to
using IOR options that arrange for each transfer to be
followed by a random seek within the file. Two effects
have been widely documented (see for example [15]), and
are shown in this series of tests. First, that sequential I/O
- that is, I/O without random seeks - will perform better,
and second, the performance penalty for random seeks is
most pronounced for very small transfer sizes. It is this
effect we will examine closely in the rest of this paper.

The considerations in running the tests include:
• Do enough I/O so that we are sure that we are not

measuring the bandwidth to or from an intervening
cache.

• Use enough compute nodes so that we are sure the
limit is not on the compute node or network before
getting to the server.

• Induce reads from a different compute node from
the one(s) that did the corresponding writes, again
so we can avoid cache effects.

It is important to understand that when I/O with small
transaction sizes and random seeks has a sub-optimal
achievable bandwidth, the file system is nevertheless fully
engaged. That is, there is no more bandwidth available.
Another IOR run during an experiment like those in
Figure 4 will compete for file system bandwidth and each
will be delayed by the interference from the other.

There is a limit to the maximum rate that data can
be moved to disk under ideal circumstances. That is its
peak bandwidth. There is also a limit on the frequency
of disk transactions that can be carried out. This is the
peak I/O Operations per Second (IOPS [3]) rate. The
series of experiments in Figure 2 provide an estimate for
the former, and the sequence of experiments in Figure 4
provide an estimate for the latter. These experiments, and
others like them, will be the basis for our new File System
Utilization metric (FSU).

Figure 5 shows the LMT data collected during a
sequence of tests like those in Figure 4. The sequence of
tests is for five IOR runs. In each run 128GB is written
via a sequence of transfers of a given size, and each trans-
fer is followed by a random seek. Once the write phase
completes the data is read back in using the same transfer
size and with each read followed by a random seek. This
repeats for five IOR tests. In each test the transfer size is
half what it was in the previous test. The tests shown are
for {4MB, 2MB, 1MB, 512kB, 256kB, 128kB}. Ad-
ditional tests with smaller transfers continued to show
the same pattern: Write performance decreases in direct
proportion to the transfer size, and read performance
decreases, but not quite as badly. We’ll return to a
discussion of this pattern in Section IV.

The foregoing experiments were all run on a small
test system (Grace) and targeted one file system resource
(OST/OSS). Similar experiments run on the full Hopper

Fig. 5. A time series of observations from
the LMT DB show the observed bandwidth,
at five second intervals, on the y-axis.
Time is on the x- axis. The tests corre-
spond to some of those reported in Fig-
ure 4. As the transfer size becomes progres-
sively smaller, the achievable performance
decreases.

system [1], [6] documented a peak bandwidth in the
vicinity of 35GB/s. Figure 3 shows LMT data collected
on Hopper for the 24 hour period on October 22, 2012.
If we use observed bandwidth as a proxy for file system
load then we conclude that the file system was relatively
idle until around 7:00 PM. On the other hand, if the I/O
prior to 7:00 PM had small transfers then the load might
actually be high. In order to better measure the actual
load on the file system we developed the FSU metric to
account for the the pattern of the I/O’s activity as well
as its volume.

III. An I/O Transaction Model

The simplest way to understand the influence of
I/O load on achievable bandwidth is with a model for
how I/O transactions take place. Imagine that each I/O
transaction requires a small fixed latency time as well as
a communication time that is proportional to the size of
the I/O:

t = a0 + a1b (1)

where:
• t is the time to complete the I/O
• a0 is the latency
• a1 is the communication time, per byte
• b is the size of the transaction, in bytes

This very simple model hides many complexities: the
small fixed cost is itself going to be a composite of disk
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rotational latency, and how often the disk head must
seek to a new track. The I/O queuing algorithm (eg.
“elevator” [4]) will influence how far the new track is
from the current one, from one transaction to the next.
Furthermore, an actual disk I/O subsystem will generally
post many I/O transactions and have many “in flight” at
once. Thus any value for a0 we may derive is, at best,
an “average” value over a range of scenarios. We can
rearrange Equation 1 to exhibit the achievable bandwidth
B:

B(b) = b/t =
b

a0 + a1b

B̂ = B(b→inf) = 1/a1

IOPS =

(
1

t

)
(b→0)

= 1/a0

(2)

Thus Equation 1 not only gives us the dependence of
achievable bandwidth on the transaction size in Equa-
tion 2, but also tells us how the coefficients a0 and a1
relate to the disk channel bandwidth B̂ and the IOPS.

The constant and linear coefficients may be different
for reads than for writes, so we separate them into
Equations 3.

TW (b) = NW (b) (w0 + w1b)

TR(b) = NR(b) (r0 + r1b)
(3)

where:

• b ∈

(
4k, 8k, 16k, 32k, 64k, 128k,

256k, 512k, 1M, 2M, 4M

)
• TW (b) is the observed time to completion for the test

using transfers of size b, and similarly for TR(b).
• NW (b) is the number of I/Os of size b in the test,

and similarly for NR(b).
• w0 and w1 are the constant and linear coefficients

for write I/Os, and r0 and r1 are for read I/Os.
The set of Equations 3 over-determines the coefficients

in question and we can perform a simple regression to
get best estimates for the individual coefficients: The re-
gression works as follows (for writes): Each combination
of TW (b)

NW (b) is an estimate for w0 + w1b, or equivalently,

we have eleven equations: NW (b)
TW (b) (w0 + w1b) = 1. That

system of equations can be organized as a single matrix
equation:

XW ~w = ~1 (4)

where:
• XW

b,0 = NW (b)
TW (b) , the IOPS observed for writes of size

b
• XW

b,1 = NW (b)
TW (b) b, the transfer rate observed for writes

of size b

• ~w = [wo, w1], the vector of coefficients for writes
• ~1 = [1, . . . , 1], a vector of ones.

We have the values for XW , so we solve for ~w. The same
procedure applies for reads.

Using those coefficients in Equations 3 we could
calculate the time our simple model predicts for each
test. Doing so produces a poor match, though, because
the foregoing values for NW (b) and NR(b) may not
correspond to what actually takes place between the
server and the disk.

The Figures 4 and 5 show a definite effect on achiev-
able bandwidth from using smaller transaction sizes, but
we need an accurate count of the number of I/Os of each
size between server and disk. In the next section we show
how to get that information.

IV. Extended Monitoring

The IOR experiments in the previous section were
designed to interleave I/O operations with random seeks,
so that each experiment would be a distinct combination
of w0+w1b (respectively for reads). The IOR write()
system calls communicate with Lustre on the client
nodes, Lustre gathers together small writes into larger
communications from the client to the server (so called
RPCs) when it can, and sends those to the servers.
Those RPCs may contain multiple actual writes, and
those writes are then sent to the disk scheduler, which
implements an “elevator” algorithm in this case. Thus
there isn’t a strong guarantee that strict interleaving
of, say, 4k of I/O with a random seek will be what
actually happens. In the case of reads, a 4k request will
commonly result in a much larger disk I/O operation,
as the controller and server both try to anticipate future
requests and maintain cached values. If the backlog of
writes in the disk scheduler is large enough then small
writes can also be combined, though in practice that is
unusual. The IOR write test results from Figure 4 do
seem to follow the expected pattern, especially for the
smaller transfers.

Since the server and controller are actively attempting
to read more than the small amount requested in the IOR
read test, there can be two effects. First, the server can
get lucky, reading a full 1MB when, say, only 4kB was
requested, but then having the remaining 1MB − 4kB
already in memory when later 4kB requests for that data
arrive. This improves performance by skipping the disk
interaction entirely for the cached 4kB. Second, memory
pressure on the server may cause the 1MB read to be
evicted before it gets used so that the same 1MB has to
be read yet again when a nearby 4kB is requested. This
decreases performance because some disk activity reads
bytes that are never sent to the client. From the results
of Figure 4 it is evident that the first case dominates.
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Without knowing the precise activity taking place
on the server to disk communication channel it is
difficult to infer precisely what is happening or
make any claims about the values of the coefficients,
especially r0 and r1. Luckily, the details of the
disk I/Os are available in the /proc entries
maintained by Lustre. In particular, the OSS file
/proc/fs/lustre/obdfilter/<OST>/brw_stats

for a given OST has seven histograms governing the
“back-end read/write statistics”. The histogram called
IOSIZE maintains a count of the number of transactions
from server to disk in each of the nine size bins
~b = {4k, 8k, 16k, 32k, 64k, 128k, 256k, 512k, 1M}
bytes.

A new Cerebro module, written by one of the authors
[5], gathers the brw_stats histograms into the LMT
database. That module has been on Grace since August,
2012, and on Hopper since October. Thus, we have a
direct observation, at five second intervals, of the values
for NW and NR from Equation 3.

What we find for the IOR write tests† from Figure 4
is that the number and size of the I/Os to disk are exactly
what we expect for the first nine tests. For the tests
with 2MB or 4MB I/O the brw_stats histogram also
shows 1MB disk transactions. There are no histogram
bins for larger disk I/Os, and that leads to an ambiguity.
The 1MB bin could stand for “I/Os 1MB and larger”. If
so, one would expect the count for the 2MB IOR write
test to be half that for the 1MB test, and similarly for the
4MB test. In fact, we find is that the counts are the same,
thus the larger writes from the client have been broken
into 1MB writes by the server. There are no I/Os larger
than 1MB at the disk.

The case for the IOR read tests is very different.
Figure 6 shows the histogram of read I/Os from the
disk. In the IOR run shown, the test read 8GB in 4kB
read() calls with random seeks between. About 5000
of those calls resulted in 4kB reads from disk, but most
of the disk traffic was for larger sizes, as the server and
controller tried to read ahead and or read nearby data
in the hopes of having the requested data in memory
when subsequent reads arrived. Overall, this worked well
and the read test ran about 30 times faster than the
corresponding write test. On the other hand, there was
actually about 9.5GB of disk reads during the test, so
almost 20% of the bytes were discarded unused. This
effect happened for every read test at every transfer size.
The only difference is that request sizes larger than 4kB
never got subdivided. I.e. the 8kB test looks like Figure 6
except with an empty 4kB bin, and so on.

With the correct values for NW (b) and NR(b) we can

†Detailed results for the seven brw_stats histograms
from all of the IOR tests on Grace are available at
http://portal.nersc.gov/project/pma/grace/ior test/brw stats survey.html

Fig. 6. This histogram shows the relative
counts (y-axis) of server-disk read transac-
tions during the IOR test with 4kB reads.
The x-axis shows the nine bin sizes for
which data is collected. The IOR test was
supposed to read 8GB, but the actual
amount read was 9.5GB. Nevertheless, the
test ran 30 times faster than the write test.
There were no writes during the read test,
and the corresponding write test for 4kB
I/Os did exactly the number of 4kB I/Os to
disk that would be expected.

latency (sec) rate−1 (sec/byte) rate (MB/sec)
write 1.04e−03 1.73e−09 551
read 8.02e−04 1.23e−09 775

TABLE I. IOR experiments at each of eleven
transfer sizes give us estimates for the two
coefficients for write transaction time, and
similarly for read transaction time.

then return to Equation 4 to get a better estimate of the
coefficients. Table I lists the result of this regression.
Since there may actually be a I/Os of many different
sizes, both read and writes, during an interval, we gen-
eralize Equations 3 to give Equation 5 for the estimated
time to completion of an arbitrary pattern of I/O:

T (~N) =
∑
b∈~b

(
NW

b (w0 + w1b)

+NR
b (r0 + r1b)

)
(5)

where:
• ~N is all of the NW (b), b ∈ ~b and NR(b)

Similarly the achievable bandwidth, given a pattern of
I/Os described by ~N, is:

Bachievable =
Bytes(~N)

T (~N)
(6)
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Fig. 7. Solving the regression in Equation 4
gives us estimates for the coefficients w0,
w1, r0 and r1. Using those results, and the
observed pattern of I/O for each experiment,
in Equation 6 allows us to compare the
experimental and estimated values for the
achievable bandwidths.

Fig. 8. A histogram of the calculated percent
utilization of the targeted OST during the
IOR test writing 4kB transfers. Note that the
peak is a little below 100%. The calibration at
this point is still a little imprecise due to the
simplicity of the model and the many other
factors affecting performance.

where:
• Bytes(~N) is just the total number of bytes in ~N.
Figure 7 presents the experiments from Figure 4 and

the corresponding estimates for achievable bandwidth
we calculate using Equation 6 and the patterns of I/Os
observed during the tests.

With the coefficients in Table I and the time series we
have collected during these tests we can solve Equation 4

in the forward direction ŷW = XW ~w (respectively ŷR =
XR~r). Now, ŷW is a series of estimates of how busy we
expect the file system to be based on the size and quantity
of observed I/Os. This sequence of values should be a
noisy distribution around the value 1 during a test that
we know was running the OST as fast as it could go.
For example, ŷW for the IOR write test with 4kB I/Os
is in Figure 8. We scale the ŷW value to 100 so that it
resembles a “percent utilization” number and define the
File System Utilization (FSU) as:

FSU(~N, T ) =
100

T
∗
∑
b∈~b

(
NW

b (w0 + w1b)

+NR
b (r0 + r1b)

)
(7)

where:
• ~N gives NW

b , the number of write I/Os of size b
over an interval, respectively NR

b for reads.
• T is the length of the observation interval in seconds.
Anecdotal evidence suggests that any time the the FSU

value hovers for any length of time at a value well above
zero, the file system (or resource) is fully engaged. Thus
the presence of a narrow distribution as in Figure 8 is
an indication that the file system is fully engaged despite
the value being closer to FSU = 70%.

Up to this point the discussion has been centered on
presenting and calibrating the FSU metric on a single
OST of the Grace test system. In the next section we
carry this work to the Hopper system and its two large
Lustre file systems.

V. Application of the Model

We ran a similar set of calibration experiments on
Hopper OSTs and got a similar set of coefficients. The
largest difference was in the 1

w1
bandwidth parameter,

which was closer to 220MB/s (for one OST). This is
not too surprising considering Hopper file purge policy
tends to be keep OSTs almost always almost full, and
full disks have to work harder for write I/O.

The utilization metric for the file system as a whole
is the average of the value across the individual OSTS.
The resulting FSU underestimates the actual load on the
file system since it does not account for contention for
resources between OSTs.

Over the six months from October 2012 to March
2013, the Hopper /scratch file system averaged about
140TB of reads and 70TB of writes a day. The median
for 24 hours of I/O was closer to 50TB/day for reads
and writes, both. We think of a median day as being
“typical”, and Figure 9(a) shows a day in October 2012
where there was a typical amount of I/O. Two days later
Figure 9(b) shows an unusually large amount of I/O,
mostly reads. Clearly, the file system was very busy that
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(a) typical (b) busy

Fig. 9. The long term median for I/O during a 24 hour period on the Hopper /scratch file system is
a about 100TB/day (600MB/s averaged over the day for writes and reads each), and the 24 hours
of LMT data on the left is consistent with that “typical” value. The 24 hours on the right shows
/scratch running at close to its peak bandwidth all day. The graph on the right certainly shows
a very busy day, and we might be tempted to conclude that the day on the left was relatively idle.

(a) typical (b) busy

Fig. 10. The same two days are shown here with the FSU values superimposed in black. We were
obviously correct that the day on the right was very busy, it turns out the day on the left was also
very busy. Considering the way that the FSU value stays consistently high and near a consistent
value over the course of the day we may speculate that it shows a file system that had no more
bandwidth available.

day, and it would be tempting to conclude that the day
on the left shows a relatively idle file system.

In Figure 10 the FSU value for the /scratch file
system is superimposed in black. Unsurprisingly, the
FSU is near 100% all day in Figure 10(b). Figure 10(a)
shows the file system was very busy despite the low
observed bandwidth. The fact that the FSU both stayed
high and stayed near a consistent level suggests that
the /scratch file system was actually fully utilized
during the day. That is, there was no additional bandwidth

available.

The two days in Figures 9 and 10 were chosen to
illustrate a point, and one may wonder how often is the
FSU value high. We have 240 days of data on Hopper, at
five second intervals. Figure 11 presents a histogram of
all the FSU observations made to date on the /scratch
file system. Recall that the FSU is intended to gauge the
extent to which the file system is fully loaded, but that it
can show values well above 100%, and more critically,
values well below 100% can still indicate a fully engaged
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Fig. 11. About a quarter of all FSU observa-
tions are in the first bin (< 2%), and about
10% of all observations are high enough to
suggest a fully engaged file system. The
roughly two thirds of remaining observa-
tions fall in between.

Fig. 12. In the 240 days observation on Hop-
per /scratch the distribution of I/O sizes
is nearly evenly split between the optimum
1MB transfers to disk and all the other
sizes, and those I/Os are dominated by the
worst case 4kB I/Os.

file system. Each bin in Figure 11 covers 2% of FSU
and there are 100 bins from 0 to 200%. The leftmost
bin (< 2%) has about a quarter of all the observations.
The flat part of the distribution (values above about
30%) accounts for about 10% of all observations, and
the remaining 2/3 of observations fall in between. It is
our experience that when the FSU is above around 30%
the file system is busy.

Each observation of disk I/O sizes is a histogram over
the nine bins from 4kB up to 1MB by powers of two.

FSU values % obs % opt % sub
idle 0 < F < 2 26 45 55

moderate 2 < F < 30 65 70 30
busy 30 < F 9 23 77

TABLE II. Divide the FSU observations into
the categories idle, moderate, and busy. In
each category count how many of the I/Os
are optimal versus sub-optimal. /scratch
is busy about 9% of the time and when it is
busy about three fourths of the I/Os are sub-
optimal.

Those observations have been taken every five seconds
for 240 days, and the composite histogram for that period
is in Figure 12, with the count of read I/Os in red and
write I/Os in blue. There is a 60/40 split between I/Os
of the optimum 1MB size and all other I/Os. Of the sub-
optimal I/Os, most are 4kB, which is the worst case size
for performance. As reflected in Figure 7, any I/O below
1MB is sub-optimal.

Table II further breaks down the relative impact of
sub-optimal I/Os on file system utilization. It presents the
count of optimal versus sub-optimal I/Os in each of the
previous categories, where idle is FSU < 2%, moderate
is for FSU up to about 30%, and busy is anything above
that. When the Hopper /scratch file system is busy
about three-quarters of its I/Os are sub-optimal. Thus
the impact of sub-optimal I/O is especially acute exactly
when a simple bandwidth metric would not show it.

A. Compare /scratch with /scratch2

The Hopper scratch I/O resources were designed to
have two similarly sized file systems, /scratch and
/scratch2. This was in part to increase the metadata
performance, since two file systems would have two
metadata servers (MDSs) splitting the load. Another
reason for this split was to create a separate resource
that was not the default I/O target. It was hoped that
applications with especially stringent I/O needs might
get better performance in an environment with fewer
competing applications. The notion was that heroic I/O
was uncommon, so it would be likely that such a job
would have nearly the entire resource to itself.

The average read I/O traffic to /scratch2 is about
half that to /scratch and the average write traffic is
about three-quarters. Table III shows the corresponding
breakdown of I/O on /scratch2 for idle, moderate,
and busy times. In this case the I/Os tend to be optimum
1MB transactions in every category and that is especially
the case when the file system is busy. This reflects the
deliberate effort to have heroic I/O jobs use /scratch2
where they are less likely to interfere with each other. It
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FSU values % obs % opt % sub
idle 0 < F < 2 62 78 22

moderate 2 < F < 30 34 85 15
busy 30 < F 4 95 5

TABLE III. For /scratch2, a breakdown of
the I/O sizes along the lines in Table II shows
that it is busy about half as often and idle
twice as often. For every category, but es-
pecially when it is busy, the I/O is dominated
by optimum 1MB I/Os.

also shows that for applications where I/O is important
the developers have taken some effort to ensure optimum
behavior.

In addition to the file system utilization metric, the
histogram of disk I/O sizes provides another dimension
for characterizing workload. The LMT observations re-
veal the volume of data created by a workload, and the
LMT extension allows us to see when the work load uses
the file system well, as on /scratch2.

VI. Conclusions and Future Work

In this paper we have used the IOR benchmark and the
LMT data source in a traditional way to establish the peak
bandwidth of the scratch file system resources on Grace
and Hopper. With those tools we also documented the
effect of I/O transfer size on the achievable bandwidth.
Those experiments demonstrate that observed bandwidth
is not a proxy for file system load. We calibrated a
simple model for I/O transactions using the IOR results
and saw that effort fail for the same reason we can not
use bandwidth alone to characterize workload. We must
account for the smaller transactions at the disk.

With an extension to LMT of our own design we
began collecting detailed data on the sizes of the I/Os
from server to disk. With that new data source we were
able to improve the calibration of the model from the
experiments. This gave us a detailed view of how disk
transaction size actually relates to achievable bandwidth.
That lead us directly to a new File System Utilization
metric, FSU. With the FSU metric we can then better
characterize the workload on the Hopper scratch file
system resources. We find that Hopper’s /scratch file
system is busy about 10% of the time, but three quarters
of that time the load is from sub-optimal I/Os. The
traditional view of system load, based only on observed
bandwidth, would underestimate the load by a factor
of four. This result has consequences for our ability to
properly balance the file system in comparison to the rest
of the HPC system (memory, node count, flops, etc).

We also find that the additional detail on the file sys-
tem workload allows us to better quantify the difference

in the workload between /scratch and /scratch2,
which has less total I/O and much less sub-optimal I/O.

There are many ways this work can be extended
and improved. A more systematic and thorough set of
experiments would improve our estimates of the model’s
coefficients. A series of such experiments could also
document variance between OSTs, and variance over the
life time of the OST, especially as it fills. The model
itself could be refined to include resource contention at
the servers and controllers as well as including additional
data sources. Finally we’d like to integrate this work with
a similar model for load on the metadata server.
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