
Improvement of TOMCAT-GLOMAP File Access
with User Defined MPI Datatypes

Mark Richardson, Numerical Algorithms Group

April 2013

1

What is HECToR?

 Cray XE6

• 90112 cores

• 32 cores per node (2xAMD Interlagos processor)

• 32GB RAM

 Available to UK academics under RCUK

• EPSRC, BBSRC and NERC (++)

 CSE

• Help desk – web interface (SAFE)

• HPCx , help desk staff, system administrators

• NAG, 12 FTE and some 8 DCSE FTE

 DCSE

• PI request this support through regular calls for
proposals

2

Topics covered in this talk

 The analysis of the simulation using the hi-res case

 Focus on two subroutines that have been revised to
improve the efficiency of the simulation

• GBSTAT

• SORZM

 Two I/O functions have been revised.

• PPREAD

• PPWRIT

 Potential future enhancements identified

• Examination of the NetCDF function

3

TOMCAT domain decomposition

4

NPROCI by NPROCK patches

Globally 320x160x60 cells

All atmospheric layers contained

within MPI task “patch”

i.e. MYLON by MYLAT by NIV

grid-boxes

PE80 as supplied is 5x16

 where each “patch” is 64x10x60

PE160 is 5x32; each patch is

64x5x60

PE400 is 5x80; each patch is

64x2x60

i.e. Only the number of latitudes is

reducing

The NPROCI of 5 fixed by

Courant condition near poles of

planet: Rotational speed and

maximum wind speed require 64

grid-boxes

Analysis: Higher resolution test case

 Code structure

• Examination of an iteration with no IO shows CONSOM
is a significant workload

 Improve the file interaction

• Earlier DCSE reported that IO appeared inefficient

• Higher resolution model (T106)

 Examine runtime profile with CrayPAT

• Actual file access time is low

• Time is spent around the file accesses

 Review NetCDF

• How has it been implemented

• Can it be converted to Parallel

• What is the alternative?

5

Analysis: Code Structure

 Loop index in hotspots

• I,K,L,JV indexing SM(I,K,L,JV) as RHS

• Remove conditionals

 Activate compiler options to tell you what is happening

• PGI

 -Minfo –Mneginfo

 PAT API to turn on logging for limited sections

• get fine-grained analysis

• reduced penalty of huge ap2 files

6

Analysis: File Interaction

 In profiling noticed the blips on certain time steps

• Initialisation, 2hr, 6hr, 12hr,24hr, end-of-simulation

 Rhythm partly relates to frequency of output

• 6 hourly read of ECMWF coefficients

• The PPWRIT and PPREAD of fort.79

• User specifies frequency of fort.13 GBSTAT reporting

• User specifies frequency of fort.15 SORZM reporting

 There is a 2hr additional calculation (CALFLU)

 Initial step is huge in comparison to this one day run

• might be insignificant for decade or even a month run.

• 350s initial step and 1.0 sec for subsequent 96 iterations

7

Analysis: Per iteration time for T106 on PE80

8

0

2

4

6

8

10

12

14

16

18

3
3
6

3
3
8

3
4
0

3
4
2

3
4
6

3
4
8

3
5
0

3
5
2

3
5
6

3
5
8

3
6
0

3
6
2

3
6
9

3
7
1

3
7
3

3
7
5

3
7
9

3
8
1

3
8
3

3
8
5

3
9
0

3
9
2

3
9
4

3
9
6

4
1
8

4
2
0

4
2
2

4
2
4

4
2
8

4
3
0

4
3
2

4
3
4

4
3
9

4
4
1

4
4
3

4
4
5

4
5
1

4
5
3

4
5
5

4
5
7

4
6
2

4
6
4

4
6
6

4
6
8

4
7
2

4
7
4

4
7
6

4
7
8

T106 over 24 hours 1st January 2005

Analysis: scaling to more MPI tasks

MPI OMP

N
P

R
O

C
I

N
P

R
O

C
K

M
YL

A
T

M
YL

O
N

N
IV

N
B

o
x

p
er

p

at
ch

Time
for
initial
step

Time per
interval
step

Time for
2 hour
step

Time
for 6
hour
step

Time for
12 hour
step

Time
for
final
step

80 T1 5 16 64 10 60 39040 332 1.00 3.37 5.7 15.21 13.59

T2 345 0.73 2.18 4.1 17.58 13.87

T4 359 0.55 1.42 3.6 16.08 14.50

160 T1 5 32 64 5 60 19520 327 0.60 1.82 3.2 6.57 5.64

T2 345 0.49 1.38 2.9 6.35 5.91

T4 393 0.37 1.00 2.75 6.99 6.33

400 T1 5 80 64 2 60 7808 323 0.47 0.94 2.19 7.95 7.02

T2 338 0.44 0.71 2.12 7.3 7.25

T4 388 0.36 0.72 2.19 8.3 7.99

9

Time in seconds

Time per iteration for T106 simulation of one day (1st Jan 2005)

Analysis: Examine runtime profile with CrayPAT

 First pass with a sampling experiment

 Second pass with a tracing experiment

• Generates a lot of data

• use the sampler to identify which functions to trace.

• Additional experiment for IO (-g sysio,stdio,ffio,aio)

 Further experiments done using API instrumentation

• Re-compilation is necessary, intrusive coding

• pat_record

 Selectively turn on logging of data

• pat_region

 More specific sections of code

• Use an iteration monitor to activate logging of data

• Higher resolution sampling

10

CrayPAT Report (excerpt PE400)

Overall sampling of 96 iterations

11

Restrict recording to one iteration (2,3)

% of run Num samples
100.0% 28790.9 Total
 72.0% 20717.1 MPI
 62.7% 18044.1 mpi_bcast
 6.5% 1864.3 MPI_BARRIER
 1.3% 383.2 MPI_SENDRECV
 23.0% 6619.3 USER
 8.7% 2497.8 consom_
 3.8% 1090.9 advy2_
 1.8% 513.6 pblscheme_radabs_
 1.7% 502.6 advz2_
 1.7% 487.5 advx2_
 1.5% 425.9 rdemi1x1_
 5.1% 1454.4 ETC

% of run Num samples
 100.0% 124.1 Total
 84.3% 104.6 USER
 42.6% 52.9 consom_
 17.4% 21.6 advy2_
 8.4% 10.5 advz2_
 8.0% 10.0 advx2_
 1.8% 2.2 MAIN_
 1.3% 1.7 chimie_

 13.3% 16.5 MPI
 5.9% 7.3 MPI_SENDRECV
 2.8% 3.5 MPI_BARRIER
 1.7% 2.1 mpi_recv
 1.5% 1.9 MPI_SSEND
 1.0% 1.3 mpi_bcast
 2.5% 3.1 ETC

Two specific functions investigated

 CONSOM

• Within a “standard iteration” it accounts for 45% of timing

• No clear method for improving the time

• Some improvement in structure

• Remove conditional

• Re-order loop index

 CALFLU

• Only small section where MPI used inefficiently

• Restructuring did not show significant gain

• Swamped by MPI_BCAST and an FFT feature

 Next look at two functions dedicated to reporting results

12

GBSTAT, output information at specific location

 The function extracts a profile of a field as a column of
values varying in altitude

 Existing method

• All data was collected on one MPI task (zero)

• The task then processed the data

 Determine the interpolated value at that altitude

 Each requested field

• Columns of data written to fort.13

 Revised method

• Maintains the interpolation method

 now each patch does its own job

• First have to locate the ground based stations on the patch

• Recognise need for halo data

• Reduces memory requirement

• Artificially serialise write

 so that fort.13 is as previous version

13

Reminder of domain decomposition

14

Original GBS Method: task zero does all the work

15
• Task zero has sequentialised the work, repeated for each field
• *The extra memory is statically allocated so all tasks carry it as well

1

0

2

3 Local

copying

MPI_SEND

Row 0
Extra local

memory

Extra memory on task zero*
Global field on task zero

arr3dtmp1

arr3dsp1 Serialised copying of receive buffer

GBSTAT columns

Write columns

to report file

Modified GBSTAT method: each task works
if GBS present

16

1

0

2

3

Local data interpolation

0

P3d(NIV,NGBS)

Task zero write column data to disk

MPI_Gather to task zero

Note: halo exchange before interpolation

GBSTAT interpolation remains in new method

17

Results of changes to GBSTAT

TABLE 1: PE80 timing with GBSTAT every second
iteration
Standard GBSTAT Modified GBSTAT

Time (seconds) Time (seconds) iteration

 300.451 307.404 1

 9.333 0.981 2

 0.983 0.979 3

 8.996 0.985 4

 0.978 0.986 5

 8.789 0.980 6

 0.979 0.978 7

 8.995 0.983 8

 3.362 3.371 9

18

TABLE 2: PE400 timing with GBSTAT every second
iteration

Standard GBSTAT Modified GBSTAT

Time (seconds) Time (seconds) iteration

303.692 298.904 1

39.418 0.788 2

0.331 0.424 3

39.366 0.474 4

0.401 0.411 5

39.011 0.459 6

0.391 0.428 7

39.351 0.540 8

0.865 0.889 9

(1) Estimated memory reduction after removing temporary arrays is 330MB

(3) Significant reduction in time due to work being done in parallel

(2) Reduced amount of data in communication from 265MB to 65MB

SORZM: for specific field values

 Existing method

• Collect all field data onto root MPI task

• Calculate a mean along a latitude

 store in a “meridian” plane (LATxNIV)

• Serial write to file

 Revised method

• Calculate mean onto a west most plane (MYLATxNOV)

• Sum along a row of MPI tasks (to get full longitude sum)

• stored on end task

• Divide by LON

• Gather onto root MPI task (LATxNIV)

• Serial write to file

19

Original SORZM: task zero calculates zonal mean

20
• Task zero has sequentialised the work
• *The extra memory is statically allocated so all tasks carry it as well

1

0

2

3

Local copying

MPI_SEND

Row 0
Extra local

memory

Extra memory on task zero*
Global field on task zero

arr3dtmp1

arr3dsp1

Serialised copying of receive buffer

local zm calc (PE0)

2D array of

Zonal Mean

Revised zonal mean calculation

21

• Each task stores ZM in extra local mem
• Estimated saving of 330MB by removing temporary arrays

1

0

2

3

Local summation

MPI_REDUCE

(MPI_SUM)

0

Extra local memory

On every task

Extra memory on

row master

MPI_Gather to task 0

Results of changed SORZM

Table 3: PE 80 , effect of changed SORZM

Normal

Run

Standard

SORZM

Modified

SORZM

iteration

 384.580 377.155 385.091 1

 0.531 4.643 0.545 2

 0.531 4.649 0.545 3

 0.527 4.659 0.541 4

0.525 4.659 0.546 5

 0.528 4.651 0.544 6

 0.528 4.656 0.543 7

 0.528 4.662 0.550 8

 1.496 5.602 1.509 9

 0.531 4.618 0.550 10

22

Table 4 : PE400, effect of modified SORZM

Normal

run

Standard

SORZM

Modified

SORZM
iteration

 375.762 415.400 396.894 1

 0.343 41.554 0.351 2

 0.333 41.582 0.327 3

0.322 41.728 0.346 4

 0.330 41.193 0.376 5

 0.327 41.762 0.331 6

 0.339 41.557 0.335 7

0.335 41.600 0.343 8

0.656 41.774 0.658 9

 0.335 41.738 0.332 10

Enforced activation of SORZM every step to demonstrate effect

(1) Reduced amount of memory in subroutine 330MB

(2) Reduction in communicated data by 278MB, but replace with 4MB of communication

(3) Significant reduction in time for the step

Feel good factor

 The changes to GBSTAT and SORZM have allowed
researchers to see these as less expensive and are free to
do investigations

 Developers have seen the opportunity to re-use the
GBSTAT for satellite analysis (dynamic form)

• Orbit crosses terminator twice per day indifferent locations

 Now they are asking further questions on code refactoring

23

Review PPREAD

 Existing method

• Flag to say if the data has space for halo storage

 Has a conditional test of the flag

• Subsequent serial read of a plane of global data

• Copied into a specific buffer location

 Per-process send of sub-section of 2d array

• Copy into local data structure

 Revised method

• Call a new function with a data type

 “with-halo” or “no-halo”

• Serial read of a plane of global data

• Use MPI_Scatterv; using the custom Datatype

 Let MPI do the packing and unpacking.

24

Review PPWRIT

 Existing method

• Packing a local buffer with a sub-plane of data

• Send to task zero (or nominated ROOT)

• Receiving on ROOT from each MPI task in turn

• Unpack sub-plane into global locations

• Write global plane to Fortran unformatted sequential file

 Revised method

• Call a new function with a datatype

 “with-halo” or “no-halo”

• Use custom datatypes

• Use MPI_Gatherv with appropriate datatype

• Write global plane to Fortran unformatted sequential file

25

New data structures introduced

26

• Need a picture here

Outcome

 New data structures

• Code is neater

• Easier to maintain

• Easier to extend to other areas

 Interface now looks like

27

CALL PPRD (IFRD,NIMN,NIMX,NKMN,NKMX,CLMN_WH_T,S0(NIMN,NKMN,L,JV))

CALL PPREAD(IFRD, S0 (NIMN,NKMN,L,JV), .TRUE., 0)

 Currently unclear any performance gain

 Swamped by broadcast and other work in the section of code.

Review NetCDF

 The “write_cdf” routine is actually “write fort.9”

• It does too much additional processing

 There is typically a collection of data to the root task (0)
followed by a call to

 unitom_write_var a wrapper for nf90_put_var()

 A choice is available

• Could replace “coll” with MPI_Gather

 Will use the new data types that define the data structures

• Potential to use HDF5 parallel enabled NetCDF

 Will have to remove all the “if (myproc.eq.0)” filters

28

Summary of this work

 Several hotspots have been targeted

• Seen gains from revision of

 GBSTAT

 SORZM

• Not so clear with PPREAD (yet)

• PPWRIT will be used further with NetCDF files

 Further gains could be made in “hot” routines

• If more time available

 Additional feedback in the form of advice and
observations

29

Acknowledgements

 Professor Martyn Chipperfield for weekly discussion

 University of Leeds, for the loan of office space

 RCUK the HECToR DCSE programme

 NAG

 My colleagues at NAG Manchester

 The HECToR help desk and support team in Edinburgh

Thank you for your attention!

30

