
1

Improvement of TOMCAT-GLOMAP File Access with User

Defined MPI Datatypes

Mark Richardson

HECToR CSE Team

Numerical Algorithms Group Ltd.

Manchester, United Kingdom, M1 5AN
mark.richardson@nag.co.uk

Martyn Chipperfield

School of Earth and Environment

University of Leeds

Leeds, United Kingdom
martyn.chipperfield@env.leeds.ac.uk

Abstract

TOMCAT-GLOMAP is software that is used to model

global atmospheric chemistry and aerosol processes in

three dimensions. The model is written in FORTRAN

and has evolved from originally running on vector

machines to the current parallel code. It is widely used

by the UK atmospheric science community on the Cray

XE6 UK national computing resource (HECToR).

HECToR uses a LUSTRE file system to support its

90112 computational cores. Recent developments in

TOMCAT-GLOMAP include moving to a higher

resolution atmosphere and more detailed chemistry

processes making the file access more significant.

This paper describes the modification of the file access

patterns that occur throughout the simulation. The

analysis identified subroutines where the workload was

not actually the accessing of the data but the processing

of data either before writing it or after reading it. The

main gains in the project have been achieved by

reducing the load on MPI task zero.

The replacement methods include properly distributing

the work such that local data is processed before any

gather and subsequent writing. Also, after reading data,

it is distributed out to other MPI tasks before it is

processed.

The overheads of some of the gathering category of

subroutines have been reduced. For example, reporting

on altitude data at specific locations. In the case using

80 MPI tasks, for the original coding the time per

iteration is 8.9s on the writer iteration compared to

0.98s of a non-writing iteration. The time per writing

iteration for the new method is 0.99s. When more MPI

tasks were applied the overhead for the original method

became more significant (e.g. with 400 MPI tasks the

time per writing iteration is 38s compared to the time of

0.42s per non-writing iteration). In this case the time

per iteration for the new method is 0.47s.

These changes allow the higher resolution to be

simulated more efficiently and to be more flexible

within research work. Researchers can now choose to

do more within an experiment without the overhead

previously incurred when activating the functions that

have been modified by this project.

Keywords – TOMCAT; Atmospheric Chemistry, MPI

Datatypes; File access; Global Chemical Advection;

I. INTRODUCTION

A. The Cray XE6 “HECToR”

HECToR is a Cray XE6 of 2816 nodes with AMD
Magny-Cours processors i.e. 32 cores per node
(90112 cores).

This project was funded under the HECToR
Distributed Computational Science and Engineering
(CSE) Service operated by NAG Ltd. HECToR – A
Research Councils UK High End Computing Service -
is the UK's national supercomputing service, managed
by EPSRC on behalf of the participating Research
Councils. Its mission is to support capability science
and engineering in UK academia. The HECToR
supercomputers are managed by University of
Edinburgh, HPCx Ltd and the CSE Support Service is
provided by NAG Ltd. http://www.hector.ac.uk

B. The software

The TOMCAT software is a chemical advection
transport code. It processes chemical aerosol data to
provide the time evolution and distribution of
chemical species around the whole earth atmosphere.

It is being used to simulate the atmospheric
processes at higher resolution of T106 (1.2° x 1.2°).
This is more than twice the resolution of the widely
used T42 (2.8° x 2.8°) case, also used in previous
DCSE work [1,2]. That effort improved the
performance of TOMCAT by some restructuring of
the key routines and modifying some of the functions
that prepare data for MPI communication. This project
is to examine the use of TOMCAT/GloMAP with the
computational model set to the high resolution as it is
anticipated that the file access times will become more
significant due to the increased amount of data
associated with the higher resolution.

C. Case used in the investigation

The specific computational resolution of this case
is 320x160x60with only 6 tracers and 6 species. The
simulation is for a single day (96) steps of simulation,
this being the equivalent to 24 hours of 1st January
2005. Timing and analysis has been done for three
different decompositions (80, 160 and 400 MPI tasks).
The code provides some raw timing derived from calls

http://www.hector.ac.uk/

2

to MPI_WTIME on task zero and these have guided
the research to investigate subroutines in which the
workload is highest. The Cray PAT tools have been
used to identify the high work load sections of code.
The facility in Cray PAT for file access tracing has
been used to determine the amount of data being read-
from, and written-to, various external files throughout
the simulation. This has been done for several phases
of the run.

TABLE I. MPI TOPOLOGY AND DOMAIN DECOMPOSITION

MPI tasks 80 160 400

NPROCI 5 5 5

NPROCK 16 32 80

MYLON 64 64 64

MYLAT 10 5 2

NIV 60 6 60

Number of

Grid boxes 39040 19520 7808

The NPROCI remains the same due to numerical
constraints near the north and south poles.

II. ANALYSIS OF THE EXISTING SOFTWARE.

Work on specific functions listed here is detailed
in the later sections. The topics addressed are: some
code structure review, two significant report
generators and two functions that facilitate
initialization and restart.

A. Task 1 profile of the code.

The user defined timing function provides a
reasonable guide to what is happening per iteration.
The code structure is as shown in Fig. 1 (reduced
detail for illustrative purposes).

Fig. 1. Example of a figure caption.

Table II shows a breakdown of average times per
iteration for various stages of the one day simulation.
These have been done for three MPI decompositions
80, 160 and 400 MPI tasks. The PE400 configuration
has the minimum possible number of latitudes on a

domain i.e. 2 and this is very inefficient for reasons
related to; the higher number of communications; the
FFT method and any multi-threading which usually
occurs around loops of latitude. The row labelled
“step N” in table II provides a clear indication of the
pure scalability as that step is where there is no
significant file access (other than stdout or stderr). The
values are broadly in-line with earlier work [3] where
Open MP directives were added to the TOMCAT MPI
version. This project does not deal with threading and
most of the investigations are done with
OMP_NUM_THREADS set to unity.

TABLE II. VARIATION OF TIME PER ITERATION DURING 24

HOUR SIMUALTION

MPI tasks 80 160 400

Iteration (seconds) (seconds) (seconds)

Initial 332 327 323

N 1.06 0.6 0.47

"9, 17" 3.37 1.82 0.94

"24" 5.7 3.2 2.19

“49” 15.21 6.57 7.95

“96” 13.59 5.64 7.02

There is a distinct pattern where some iterations
take longer than others. These are characterized by
whether the iteration has data access or some “house-
keeping” of the simulation; every 2 hours is the 1

st
, 9

th

and 17
th

 step of each cycle; very 6 hours is the 24
th

step (because the work is done at the end of a cycle).
The 12

th
 Hour is on step 1 of the third cycle (i.e. step

49). Similarly the final work is done within the 96
th

step because this case is simulating only 1
st
 January

2005.

Each of the six categories identified in Table II
were investigated using the Cray PAT methods
described in the next section, more detail can be found
in [3].

Cray Performance Analysis Toolset

The Cray PAT has been used to inspect the
runtime behaviour of the software. As the focus of the
project is file access the test case is limited to the
simulation of 24 hours. Sampling experiments are
used as an initial pass to confirm the routines which
will be investigated further. Trace experiments are
used with tracing focussed on those subroutines plus
any other routine that showed up in the sampling
experiment. Additional experiments were done using
the “io” group function which reports the volume and
rate of data being read from and written to external
files. The “pat_record” feature was used to enhance
the instrumentation. This function allows the user to
choose where to activate the sampling or trace
information. Using the information from Table II the
recording was activated in each of the zones

Program TOMCAT

iniexp

inichi

loop ncyclt (set in fort.94)

 inicycl

 loop nitert (set in fort.95)

 initer

!!! inner iteration work

 finiter

 end loop nitert

 fincycl

end loop ncyclt

finexp

3

TABLE III. A CRAY PAT SAMPLE EXPERIMENT

Samples Num of samples Subroutine

 100.0% 124.1 Total

 84.3% 104.6 USER

 42.6% 52.9 consom_

 17.4% 21.6 advy2_

 8.4% 10.5 advz2_

 8.0% 10.0 advx2_

 1.8% 2.2 MAIN_

 1.3% 1.7 chimie_

 13.3% 16.5 MPI

 5.9% 7.3 MPI_SENDRECV

 2.8% 3.5 MPI_BARRIER

 1.7% 2.1 mpi_recv

 1.5% 1.9 MPI_SSEND

 1.0% 1.3 mpi_bcast

 2.5% 3.1 ETC

Table III reveals that in the non-writing advection
iteration there are five subroutines of significance.
The Cray PAT analysis indicates that there is a lot of
time spent inside CONSOM function on a standard
advection step.

B. High Workload Functions

1) Calculation of convection effects

CONSOM, is a function for mixing tracers by
convection. Historically this subroutine has had access
to files and this goes some way to explain the code
structure. Usually the developers organise the loop
structures with the outer loop for the final index in the
array dimensions (the longest stride through memory).
For this subroutine the outer loop is for the latitudes
(the second index). The rationale is that the
convection terms per latitude could be stored on disk
after they had been calculated. The calculation still
adheres to that structure working in planes of altitude
and longitude for all tracers before moving on to the
next latitude. The innermost loops do cycle through
the first index (of contiguous data) for longitude.

2) Adjusting flux terms

The subroutine CALFLU is used on each CYCLE
to calculate flux components. In this case that is every
24 iterations (6 hourly). This is because every six
hours a fresh set of spectral coefficients are read from
external reference file. It is a long subroutine and in
the first 80% there is much data movement due to the
underlying FFT calculations. In the latter 20% there is
some communication at patch boundaries for the
north-to-south transfer of velocities on grid-box
interfaces. The inherent nature is for a cascade
through the latitudes with the southern latitudes
cannot receive data from their south until they have
sent their data to the north. For a configuration with
many MPI tasks in the latitude direction (NPROCK)
this could become a bottleneck.

C. Functions With File Interaction

There are several functions within TOMCAT for
reading and writing data. For the core program these
are INIEXP and FINCYCL there is also an option to
write results files at the end of each iteration
(FINITER). Additional functions are available that
provide logging specific analyses that are common
operations for the researchers of atmospheric
chemistry. There is still ongoing work to update the
NetCDF sections to use parallel NetCDF.

The four functions discussed here were considered
to be the ones that would provide greatest
improvement in the performance. They are GBSTAT,
SORZM, PPREAD and PPWRIT.

1) Reporting altitude profiles for ground based

station locations.

The GBSTAT function is used to write out data
along a specific column of atmosphere. The locations
of ground based stations are known either using the
pre-set built-in locations or supplying a set of
locations in an external file. The stations are at
locations over the Earth’s surface (including ship
borne in some cases) and thus might be non e on some
domains and multiple occurrences on other domains.
The stations might not coincide with the
computational grid so interpolation has to happen.
Many fields are accessed and written to a file for later
assessment. Fig. 2 shows an overview of the process
including that for SORZM described in the next
section as they are almost identical up to the serial
section on task zero.

2) Evaluating zonal mean for a field.

The SORZM function evaluates the average value
of a parameter along a line of latitude. This is known
as the zonal mean. It is calculated individually for
several field variables at specific simulation times.
The result is stored for each one on MPI task zero as a
plane of longitude by altitude.

There is a phase of collecting all the data for a
specific field to process zero and then evaluating the
zonal mean. Each field is dealt with in turn requiring a
large volume of data to be transferred. The inherent
serialization of the calculation causes all other nodes
to wait idle while task zero deals with the whole of the
field.

The multiple copying of data is very inefficient
and partly serializes the algorithm, particularly in the
collection onto task zero and subsequent search and
interpolate that is done only on task zero. The same
process applies to GBSTAT and the zonal mean
calculation as the summation and averaging for the
whole atmosphere volume occurs on one processor.

4

Fig. 2. Existing GBSTAT and SORZM method, collection from

row zero shown for one field. Process is repeated for as many
fields of interest to th researcher.

3) Reading the initialization file or reading the

restart file.

The experiment is initialised with a long
subroutine that does a lot of processing with the data
read from various sources. One of the sources is the
initialisation of a restart file. A header block is read
and broadcast to the other MPI tasks and then a
subroutine, PPREAD, is used to read a plane at a time,
several fields from a Fortran unformatted file. It reads
each plane into a vector that is then reshaped into a
two-dimensional plane and uses another function to
distribute parts of the plane to the other MPI tasks.
The function is DISTF. It is called with values for the
extent of the distributed plane. There is a complex
stage of packing the buffer into vectors specific to
each MPI task and then looping over the processors to
send the data to each one.

4) Writing the checkpoint or restart file.

The PPWRIT function is very similar to the
PPREAD function with the sequence of steps done in
a reverse manner. A function COLLF is used to send a
sub-plane of a field to task zero from the other MPI
processes. It is then written to a Fortran unformatted
file and will be used for any follow-on simulation.
There are other places where this function is called as
part of a restart check-pointing. Another version exists
that helps with the NetCDF file writing.

III. DATA TYPES DEVELOPED FOR THIS WORK

A. The need for bespoke data types

There are several data types intrinsic to MPI such
as MPI_INTEGER, MPI_DOUBLE_PRECISION
and they are widely used in many MPI applications. In
the TOMCAT software the use of MPI is limited to
these intrinsic data types and a small subset of
functions. The following sub-sections describe how
the new data types are defined and used.

When using a different number of MPI tasks, the
topology remains the same NPROCI by NPROCK

two-dimensional grid of processes. Therefore,
different resolutions of the model would be able to use
a set library of data types that represent the structure
of data that has to be read form file, communicated or
written to file. Many of the communications involve
accessing three-dimensional field data through 2
dimensional planes. The resolution of those can be
different to the computational space for example
reading true 1x1 data (360x180 points) into the T106
simulation (320x160 points).

Three data types have been created for use with
the MPI Gather and Scatter functions. They are
needed by the replacement subroutines for PPREAD
and PPWRIT. The data types are CLMN_NH_T,
CLMN_WH_T and BLK_NH_T. The following
diagrams are used to explain their relationships with
the regular data structures used by TOMCAT.

The “column-no-halo” data type identifies the
contiguous elements that form a row of a sub-array of
the global data that is stored on MPI task zero. The
MPI_Contiguous function is used to create a vector of
length “MYLON” which is the first dimension of the
two-dimensional array. Several of these columns are
collected together to create a new data type: “block-
no-halo”. This identifies the whole of the sub-array
that will be scattered or gathered in the new functions.

The “column-with-halo” type is a form of
CLMN_NH_T that has been resized to account for the
halo storage. The definition of the sub-array on the
distributed domain uses negative indices so the
invocation of the gather or scatter function uses a
reference to the first “internal” element.

The actual invocation of the Scatter is:

The most significant element is the DISP array. It

provides the start location in the send buffer of the
data type being distributed. In this example a “block-
no-halo” type is being distributed to every MPI task.
NSND is an array of integers indicating that one block
has to be sent to each process. NRCV is a single
integer for each receiver to understand that it will
receive MYLAT elements of LTYPE, in this case
CLMN_NH_T as it is passed through the subroutine
interface. Fig. 4 shows a vector of CLMN_NH_T as it
strides by NPROCIxMYLON through the global data.

Although conceptually a developer may think of
the array as two-dimensional shown in Fig. 4, it is
actually a line of information in memory similar to the
diagrams in Fig. 5.

Original GBS and Zonal Mean Method

2

• Task zero has sequentialised the work
• *The extra memory is statically allocated so all tasks carry it as well

1

0

2

3
Local copying

MPI_SEND

Row 0
Extra local
memory

Extra memory on task zero*
Global field on task zero

arr3dtmp1

arr3dsp1

Serialised copying of receive buffer

local zm calc (PE0)

2D array of
Zonal Mean

Gbstat columns

CALL MPI_Scatterv (&

 & PFG, NSND, DISP, BLK_NH_T, &

 & PFL(1,1), NRCV, LTYPE, &

 & ROOT, UCOMM, MPERR)

5

Fig. 3. The two-dimensional concept is in practice a vector. The
sub-array is stored at intervals with a stride of NPROCIxMYLON

elements. The case is shown where MYLAT is 4.

The large block of rectangles represents the global
plane of data. The darker shaded rectangles indicate
the data that is distributed on both cases. The lighter
shaded area surrounding the second block is the halo
storage of the local field.

Fig. 4. Scattering the sub-domain planes (without and with halo

storage).

In some circumstances data arriving from a scatter
function will have to be placed in the correct location
of an array that includes storage for halo data. The
data being read from a file has no halo information
and only the interior information is distributed to the
other MPI tasks. A data type is constructed from the
foundation CLMN_NH_T with the stride.

Starting at the top there is a representation of
CLMN_NH_T and the extended CLMN_WH_T
superimposed. Below that is a single entity
representation of CLMN_WH_T and its equivalent
storage as a local array. This is shown as four
contiguous blocks above the true data layout. It is the
darker shaded blocks that are collected during the
MPI_Gather into the global sized data structure,
shown at the bottom f the figure.

Fig. 5. the storage structure for each type for a local data structure

of the sub-array.

The invocation of the Gather is very similar
however the data types are reversed and the counts for
send and receive are also switched.

To activate the data types, a call has to be made to:

CALL INIT_PLANE_DT (MYLON, MYLAT, NPROCI, IHALO)

This function supplies the base size of the
simulation and halo in the West-East direction (I
loops). Inside this function all the new types are
defined and committed to (registered with) MPI.

IV. DETAIL OF SPECIFIC FUNCTIONS

A. Modification Of The CONSOM Function.

The general process involves several cross-
calculations between altitude layers and introduces an
additional index to the already three-dimension local
data structures.

Fig. 6. Excerpt of a build log, specific to CONSOM

The loop structure is interrupted with a conditional
test (unnecessary) but it seems the compiler is very

ftn -Mneginfo -Minfo=mp -fast -Minline -Minline=reshape -

Mextend -Mbyteswapio -mp=nonuma –r8 -c orig_consom.f
consom:

 49, Invariant assignments hoisted out of loop

 Loop not vectorized/parallelized: too deeply nested
 54, Parallel region activated

 57, Parallel loop activated with static block schedule

 Loop not vectorized/parallelized: too deeply nested
 62, Generated 4 alternate versions of the loop

 Generated vector sse code for the loop

 76, Loop interchange produces reordered loop nest:
77,76,78

 78, Generated 3 alternate versions of the loop

 Generated vector sse code for the loop
 93, Generated 4 alternate versions of the loop

 Generated vector sse code for the loop

 110, Memory zero idiom, loop replaced by call to
__c_mzero8

 115, Loop interchange produces reordered loop nest:

116,115,117
 117, Generated 3 alternate versions of the loop

 Generated vector sse code for the loop

 124, Memory copy idiom, loop replaced by call to
__c_mcopy8

 131, Parallel region terminated

6

helpful in identifying the structure. Fig. 6 shows an
extract from the build process with options for the
PGI compiler (including –Mneginfo) turned on.

The information generated by the compiler
indicates that there are a couple of loop structures that
were reordered. However, manually editing those
loops and recompiling provided a similar message
about the new loops.

Unfortunately very little improvement could be
made for CONSOM without using hardware specific
cache blocking algorithms.

B. Modification Of CALFLU Subroutine.

The section of this subroutine where
communications appear inefficient was revised.
Replacing this feature with an MPI_SENDRCV
combined function allows the MPI system to
determine the sequence of communications.
Unfortunately this feature was not a significant
percentage of the time for the subroutine and made
very little difference to the timing.

C. Function To Report Altitude Profiles, GBSTAT

The GBSTAT function has been briefly described
in the introduction. The modification of this function
has been mainly a review of the algorithm, moving the
workload from the MPI task zero out to the individual
MPI tasks.

The new method lets each MPI task that contains
one or more GBS to create the column needed for the
results and then send that to the root process for
writing in the traditional manner. The previous
method of copying the full fields back to task zero has
been replaced by a halo exchange just before the
interpolation.

Fig. 7. The revised GBSTAT interpolation

This halo exchange is a rudimentary approach to
ensure that any calculation for a GBS near the grid-
box boundary will be up-to-date. A more sophisticated
method was considered but the additional coding and
testing would outweigh any benefit.

D. Improvement To Reporting Zonal Means.

A similar algorithm for collecting field data onto
one process was used to calculate the zonal mean. The
principle is to collect all the data on to the root MPI
task and then do the work needed to process and store
the data to a file. This undermines the nature of the
parallel decomposition and effectively serializes the
job.

Fig. 8. The revised SORZM calculation.

The new method lets each MPI task evaluate the
sum of longitudinal values into an auxiliary plane (it
can be considered the west-most boundary of the
domain). The sum of the auxiliary planes is evaluated
by an MPI reduction in the MPI topology row to the
first MPI task on that row (Fig. 8). The penultimate
step is to use MPI_Gather to collect the partial arrays
onto MPI task zero before finally writing in the
established serial manner onto an unformatted Fortran
file.

The implementation of this method includes some
reuse of two-dimensional arrays; one is sized to match
the west-most plane of the local domain and one is the
same size as the final meridian plane used to store the
zonal mean that is required by the researcher.

E. File Reader PPREAD Is Replaced By PPRD

The PPRD function is a replacement for both
PPREAD and DISTF. It raises the DISTF function
from a callee to being in-line, but then the content of
DISTF is discarded in favour of the MPI_Scatterv()
function. The previous requirement for a conditional
flag and test has been removed as the choice of “with-
halo” or “no-halo” is set by the data type of the
communication. The extensive user-defined packing
and unpacking is no longer required.

A version of PPRD that confines the reading to
“row-master” MPI tasks rather than MPI task zero
was trialled. However, it was discovered that the data
file records in the INI and RST files did not correlate
exactly with the latitudes. A significant amount of
work will be required to convert existing restart and
initialisation files so that the access by record can be
used.

Revised zonal mean calculation

3

• Each task stores ZM in extra local mem
• Optional extra memory on task 0 if insist on one task opening sequential file

1

0

2

3

Local summation

MPI_REDUCE
(MPI_SUM)

0

Extra local
memory

Extra memory
on row master

MPI_Gather to task 0

Modified GBSTAT method

4

• Task zero has sequentialised the work
• *The extra memory is statically allocated so all tasks carry it as well

1

0

2

3

Local data interpolation

MPI_Gather

0

Revised local memory
(actually NGBSxNIV)

P3d(NIV,NGBS)

7

F. File Writer PPWRIT Is Replaced By PPWR

This function is like PPRD and accesses an
unformatted Fortran file. The current algorithm
follows the same theme of collecting a plane of data
onto MPI task zero and then using a reshaped vector
to send the whole plane to a file. The replacement
routine directly calls MPI_Gatherv using the bespoke
MPI data types in the same manner as PPRD:

The integer: LTYPE is supplied in the argument list

and acts as a conditional to indicate if the field has

storage for haloes or not. The calling interface has

changed slightly as now the extent of the plane is

supplied as NIMN, NIMX, NKMN and NKMX.

V. RESULTS

The immediate gains demonstrated in GBSTAT
and SORZM are clear from the timing reports (in the
four tables 2, 3, 4 and 5). The new methods become
imperceptible compared to the time for an iteration.
The similar change to the zonal-mean reporting again
frees up the researcher to collect more results from a
simulation.

TABLE IV. EFFECT OF GBSTAT FOR CONFIGURATION WITH

80 MPI TASKS

Normal run Standard

GBSTAT

Modified

GBSTAT

Time (sec.) Time (sec.) Time (sec.) iteration

 384.580 300.451 307.404 1

 0.531 9.333 0.981 2

 0.531 0.983 0.979 3

 0.527 8.996 0.985 4

0.525 0.978 0.986 5

 0.528 8.789 0.980 6

 0.528 0.979 0.978 7

 0.528 8.995 0.983 8

 1.496 3.362 3.371 9

The GBSTAT function is called on alternate
iterations to give a clear indication of its effect. With
the greater number of MPI tasks there is an increase in
the amount of communication. This is shown in Table
V with the effect of activating GBSTAT is as much as
70x the “normal” advection time step. There does
appear to be some penalty with the revised method but
it is still a great saving over the previous version.
There is a possibility of imbalance if there are many
station located in one sub-domain.

TABLE V. EFFECT OF GBSTAT FOR CONFIGURATION WITH

400 MPI TASKS

Normal run Standard

GBSTAT

Modified

GBSTAT

Time (sec.) Time (sec.) Time (sec.) iteration

375.762 303.692 298.904 1

 0.343 39.418 0.788 2

 0.333 0.331 0.424 3

0.322 39.366 0.474 4

 0.330 0.401 0.411 5

 0.327 39.011 0.459 6

 0.339 0.391 0.428 7

0.335 39.351 0.540 8

0.656 0.865 0.889 9

The SORZM function has been called every
iteration. This is to artificially amplify the effect and
demonstrate the improvement of the modified version.

TABLE VI. EFFECT OF SORZM FOR CONFIGURATION WITH 80

MPI TASKS

Normal run
Standard

SORZM

Modified

SORZM

Time (sec.) Time (sec.) Time (sec.) iteration

384.580 377.155 385.091 1

 0.531 4.643 0.545 2

 0.531 4.649 0.545 3

 0.527 4.659 0.541 4

0.525 4.659 0.546 5

 0.528 4.651 0.544 6

 0.528 4.656 0.543 7

 0.528 4.662 0.550 8

 1.496 5.602 1.509 9

 0.531 4.618 0.550 10

For 400 MPI tasks configuration the effect is an
order of magnitude greater. But again the modified
version is showing as hardly noticeable,

TABLE VII. EFFECT OF SORZM FOR CONFIGURATION WITH

400 MPI TASKS

Normal run Standard

SORZM

Modified

SORZM

Time (sec.) Time (sec.) Time (sec.) iteration

375.762 415.400 396.894 1

 0.343 41.554 0.351 2

 0.333 41.582 0.327 3

0.322 41.728 0.346 4

 0.330 41.193 0.376 5

 0.327 41.762 0.331 6

 0.339 41.557 0.335 7

0.335 41.600 0.343 8

0.656 41.774 0.658 9

0.335 41.738 0.332 10

The overall results of the work with collectives
and data-types have not yet been fully realized. Two
lines of research are currently benefitting from the
changes to GBSTAT. One of those is research using a
high number of ground-based stations; the research
can now be more extensive in coverage and request
more frequent reporting. The second is a new feature

CALL MPI_Gatherv (&

 & PFL(1,1), NSND, LTYPE, &

 & PFG, NRCV,DISP,BLK_NH_T, &

 & ROOT, UCOMM, MPERR)

8

of reporting satellite data as it crosses the terminator;
the location of a satellite varies in longitude and
latitude at that time. With the new method an MPI
task need only know that a column of data is need for
a number of longitudes, in the case of ground based
stations that can be set at the beginning of the run
whereas for the satellite data that has to be updated at
the time of the call. One benefit has been to
demonstrate to the developers that MPI has useful
features that will help make their software more
maintainable and generally easier to read and
understand. This helps newer less experienced
researchers get up and running quicker and will give
them confidence to adopt and adapt the example
functions.

VI. SUMMARY

The complexity of this software requires the
storage of three dimensional data for several
parameters. In several places there are calculations
that stride through the data in a non-optimal manner.
Attempts were made to try to reduce the
computational overhead by determining a suitable
sequence of the loops. Unfortunately no significant
improvement was found for two key functions
CONSOM and CALFLU.

An alternative version of GBSTAT did make
significant improvement and allowed a new feature to
be developed quite quickly (Satellite observation
matching).

The modified SORZM provides significant
improvement for reporting, with more fields being
reported per simulation and less sensitive to the
resolution of the simulation.

The PPRD subroutine provides a cleaner method
for distributing data and the small improvement that
was expected is lost in the timing due to the
domination of the MPI_BCAST usage.

PPWR is unlikely to provide significant gains due
to the difficulty in writing later records to a sequential
file. These functions read the INI file and write the
RST file in a serialized (although “Fortran
unformatted”) manner. A difficulty has arisen in that
the Fortran file records do not correspond directly to a
latitude set of data. This is because a sub-function is
used to write out a whole plane as a single vector
disregarding record boundaries.

However, both PPRD and PPWR have
demonstrated the usefulness of built-in features of
MPI and the data structures can be used elsewhere and
extended to cope with different resolutions of
auxiliary data. The maintainability of the code will be
improved with the data types being defined in their
own module and the simpler gathering and scattering
functions making packing and unpacking automatic.

VII. FURTHER WORK, RECOMMENDATIONS

There are further sections of the software that will
benefit from using the new data types and potentially
gains will be achieved by modifying more of the files
to be compatible with NetCDF. The existing results
file is created with a serial version of NetCDF. It is
currently being reviewed with a view to enabling the
use of parallel NetCDF.

There several places where the modifications
reported here could be further enhanced but the
benefits have to be weighed against the cost of
development.

The concept of using “per-row” writers for the
diagnostic file and checkpoint file should be
investigated along with parallel NetCDF. Discussion
is in progress with the research group to see how
much disruption would occur by changing the format
of those files.

References

[1] M.Richardson, “Improving TOMCAT/GLOMAP Mode MPI
for Use on HECToR, a Cray XT4h system”, HECToR DCSE
programme, www.hector.ac.uk , April 2009.

[2] M.Richardson, G.W.Mann, M.P.Chipperfield, K.Carslaw,
“Implementation of OpenMP within MPI-TOMCAT-
GLOMAP mode”, Cray User Group Meeting, Edinburgh,
May 2010. (also full report available on HECToR web-site)

[3] M.Richardson, M.P.Chipperfield, “Improving File Access
Characteristics Of TOMCAT For High Resolution
Simulations”, HECToR DCSE programme,
www.hector.ac.uk , April 2013

http://www.hector.ac.uk/
http://www.hector.ac.uk/

