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Abstract 

TOMCAT-GLOMAP is software that is used to model 

global atmospheric chemistry and aerosol processes in 

three dimensions. The model is written in FORTRAN 

and has evolved from originally running on vector 

machines to the current parallel code. It is widely used 

by the UK atmospheric science community on the Cray 

XE6 UK national computing resource (HECToR).  

HECToR uses a LUSTRE file system to support its 

90112 computational cores. Recent developments in 

TOMCAT-GLOMAP include moving to a higher 

resolution atmosphere and more detailed chemistry 

processes making the file access more significant.  

This paper describes the modification of the file access 

patterns that occur throughout the simulation. The 

analysis identified subroutines where the workload was 

not actually the accessing of the data but the processing 

of data either before writing it or after reading it. The 

main gains in the project have been achieved by 

reducing the load on MPI task zero. 

The replacement methods include properly distributing 

the work such that local data is processed before any 

gather and subsequent writing. Also, after reading data, 

it is distributed out to other MPI tasks before it is 

processed.  

The overheads of some of the gathering category of 

subroutines have been reduced. For example, reporting 

on altitude data at specific locations. In the case using 

80 MPI tasks, for the original coding the time per 

iteration is 8.9s on the writer iteration compared to 

0.98s of a non-writing iteration. The time per writing 

iteration for the new method is 0.99s. When more MPI 

tasks were applied the overhead for the original method 

became more significant (e.g. with 400 MPI tasks the 

time per writing iteration is 38s compared to the time of 

0.42s per non-writing iteration). In this case the time 

per iteration for the new method is 0.47s. 

These changes allow the higher resolution to be 

simulated more efficiently and to be more flexible 

within research work. Researchers can now choose to 

do more within an experiment without the overhead 

previously incurred when activating the functions that 

have been modified by this project. 
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I. INTRODUCTION 

A. The Cray XE6 “HECToR” 

HECToR is a Cray XE6 of 2816 nodes with AMD 
Magny-Cours processors i.e. 32 cores per node 
(90112 cores).  

This project was funded under the HECToR 
Distributed Computational Science and Engineering 
(CSE) Service operated by NAG Ltd. HECToR – A 
Research Councils UK High End Computing Service - 
is the UK's national supercomputing service, managed 
by EPSRC on behalf of the participating Research 
Councils. Its mission is to support capability science 
and engineering in UK academia. The HECToR 
supercomputers are managed by University of 
Edinburgh, HPCx Ltd and the CSE Support Service is 
provided by NAG Ltd. http://www.hector.ac.uk 

B. The software 

The TOMCAT software is a chemical advection 
transport code. It processes chemical aerosol data to 
provide the time evolution and distribution of 
chemical species around the whole earth atmosphere.  

It is being used to simulate the atmospheric 
processes at higher resolution of T106 (1.2° x 1.2°). 
This is more than twice the resolution of the widely 
used T42 (2.8° x 2.8°) case, also used in previous 
DCSE work [1,2]. That effort improved the 
performance of TOMCAT by some restructuring of 
the key routines and modifying some of the functions 
that prepare data for MPI communication. This project 
is to examine the use of TOMCAT/GloMAP with the 
computational model set to the high resolution as it is 
anticipated that the file access times will become more 
significant due to the increased amount of data 
associated with the higher resolution. 

C. Case used in the investigation 

The specific computational resolution of this case 
is 320x160x60with only 6 tracers and 6 species. The 
simulation is for a single day (96) steps of simulation, 
this being the equivalent to 24 hours of 1st January 
2005. Timing and analysis has been done for three 
different decompositions (80, 160 and 400 MPI tasks). 
The code provides some raw timing derived from calls 

http://www.hector.ac.uk/
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to MPI_WTIME on task zero and these have guided 
the research to investigate subroutines in which the 
workload is highest. The Cray PAT tools have been 
used to identify the high work load sections of code. 
The facility in Cray PAT for file access tracing has 
been used to determine the amount of data being read-
from, and written-to, various external files throughout 
the simulation. This has been done for several phases 
of the run. 

TABLE I.  MPI TOPOLOGY AND DOMAIN DECOMPOSITION 

MPI tasks 80 160 400 

NPROCI 5 5 5 

NPROCK 16 32 80 

MYLON 64 64 64 

MYLAT 10 5 2 

NIV 60 6 60 

Number of  

Grid boxes 39040 19520 7808 

 

The NPROCI remains the same due to numerical 
constraints near the north and south poles. 

II. ANALYSIS OF THE EXISTING SOFTWARE. 

Work on specific functions listed here is detailed 
in the later sections. The topics addressed are: some 
code structure review, two significant report 
generators and two functions that facilitate 
initialization and restart.  

A. Task 1 profile of the code. 

The user defined timing function provides a 
reasonable guide to what is happening per iteration. 
The code structure is as shown in Fig. 1 (reduced 
detail for illustrative purposes). 

 
Fig. 1. Example of a figure caption. 

Table II shows a breakdown of average times per 
iteration for various stages of the one day simulation. 
These have been done for three MPI decompositions 
80, 160 and 400 MPI tasks. The PE400 configuration 
has the minimum possible number of latitudes on a 

domain i.e. 2 and this is very inefficient for reasons 
related to; the higher number of communications; the 
FFT method and any multi-threading which usually 
occurs around loops of latitude. The row labelled 
“step N” in table II provides a clear indication of the 
pure scalability as that step is where there is no 
significant file access (other than stdout or stderr). The 
values are broadly in-line with earlier work [3] where 
Open MP directives were added to the TOMCAT MPI 
version. This project does not deal with threading and 
most of the investigations are done with 
OMP_NUM_THREADS set to unity.  

TABLE II.  VARIATION OF TIME PER ITERATION DURING 24 

HOUR SIMUALTION 

MPI tasks 80 160 400 

Iteration  (seconds) (seconds) (seconds) 

Initial 332 327 323 

N 1.06 0.6 0.47 

"9, 17" 3.37 1.82 0.94 

"24" 5.7 3.2 2.19 

“49” 15.21 6.57 7.95 

“96” 13.59 5.64 7.02 

 

There is a distinct pattern where some iterations 
take longer than others. These are characterized by 
whether the iteration has data access or some “house-
keeping” of the simulation; every 2 hours is the 1

st
, 9

th
 

and 17
th

 step of each cycle; very 6 hours is the 24
th
 

step (because the work is done at the end of a cycle). 
The 12

th
 Hour is on step 1 of the third cycle (i.e. step 

49). Similarly the final work is done within the 96
th
 

step because this case is simulating only 1
st
 January 

2005. 

Each of the six categories identified in Table II 
were investigated using the Cray PAT methods 
described in the next section, more detail can be found 
in [3]. 

Cray Performance Analysis Toolset 

The Cray PAT has been used to inspect the 
runtime behaviour of the software. As the focus of the 
project is file access the test case is limited to the 
simulation of 24 hours. Sampling experiments are 
used as an initial pass  to confirm the routines which 
will be investigated further. Trace experiments are 
used with tracing focussed on those subroutines plus 
any other routine that showed up in the sampling 
experiment. Additional experiments were done using 
the “io” group function which reports the volume and 
rate of data being read from and written to external 
files. The “pat_record” feature was used to enhance 
the instrumentation. This function allows the user to 
choose where to activate the sampling or trace 
information. Using the information from Table II the 
recording was activated in each of the zones  

Program TOMCAT 

iniexp 

inichi 

loop ncyclt (set in fort.94) 

  inicycl 

  loop nitert (set in fort.95) 

    initer 

 

!!!   inner iteration work 

 

    finiter 

  end loop nitert 

  fincycl 

end loop ncyclt 

finexp 
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TABLE III.  A CRAY PAT SAMPLE EXPERIMENT  

Samples Num of samples Subroutine  

 100.0%   124.1  Total 

  84.3%   104.6  USER 

  42.6%    52.9  consom_ 

  17.4%    21.6  advy2_ 

   8.4%    10.5  advz2_ 

   8.0%    10.0  advx2_ 

   1.8%     2.2  MAIN_ 

   1.3%     1.7  chimie_ 

  13.3%    16.5  MPI 

   5.9%     7.3  MPI_SENDRECV 

  2.8%     3.5  MPI_BARRIER 

   1.7%     2.1  mpi_recv 

   1.5%     1.9  MPI_SSEND 

   1.0%     1.3  mpi_bcast 

   2.5%     3.1  ETC 

 

Table III reveals that in the non-writing advection 
iteration   there are five subroutines of significance.  
The Cray PAT analysis indicates that there is a lot of 
time spent inside CONSOM function on a standard 
advection step. 

B. High Workload Functions 

1) Calculation of convection effects 

CONSOM, is a function for mixing tracers by 
convection. Historically this subroutine has had access 
to files and this goes some way to explain the code 
structure. Usually the developers organise the loop 
structures with the outer loop for the final index in the 
array dimensions (the longest stride through memory). 
For this subroutine the outer loop is for the latitudes 
(the second index). The rationale is that the 
convection terms per latitude could be stored on disk 
after they had been calculated. The calculation still 
adheres to that structure working in planes of altitude 
and longitude for all tracers before moving on to the 
next latitude. The innermost loops do cycle through 
the first index (of contiguous data) for longitude.  

2) Adjusting flux terms 

The subroutine CALFLU is used on each CYCLE 
to calculate flux components. In this case that is every 
24 iterations (6 hourly). This is because every six 
hours a fresh set of spectral coefficients are read from 
external reference file. It is a long subroutine and in 
the first 80% there is much data movement due to the 
underlying FFT calculations. In the latter 20% there is 
some communication at patch boundaries for the 
north-to-south transfer of velocities on grid-box 
interfaces. The inherent nature is for a cascade 
through the latitudes with the southern latitudes 
cannot receive data from their south until they have 
sent their data to the north. For a configuration with 
many MPI tasks in the latitude direction (NPROCK) 
this could become a bottleneck. 

C. Functions With File Interaction 

There are several functions within TOMCAT for 
reading and writing data. For the core program these 
are INIEXP and FINCYCL there is also an option to 
write results files at the end of each iteration 
(FINITER). Additional functions are available that 
provide logging specific analyses that are common 
operations for the researchers of atmospheric 
chemistry. There is still ongoing work to update the 
NetCDF sections to use parallel NetCDF. 

The four functions discussed here were considered 
to be the ones that would provide greatest 
improvement in the performance. They are GBSTAT, 
SORZM, PPREAD and PPWRIT. 

1) Reporting altitude profiles for ground based 

station locations. 

The GBSTAT function is used to write out data 
along a specific column of atmosphere. The locations 
of ground based stations are known either using the 
pre-set built-in locations or supplying a set of 
locations in an external file. The stations are at 
locations over the Earth’s surface (including ship 
borne in some cases) and thus might be non e on some 
domains and multiple occurrences on other domains. 
The stations might not coincide with the 
computational grid so interpolation has to happen. 
Many fields are accessed and written to a file for later 
assessment. Fig. 2 shows an overview of the process 
including that for SORZM described in the next 
section as they are almost identical up to the serial 
section on task zero. 

2) Evaluating zonal mean for a field. 

The SORZM function evaluates the average value 
of a parameter along a line of latitude. This is known 
as the zonal mean. It is calculated individually for 
several field variables at specific simulation times. 
The result is stored for each one on MPI task zero as a 
plane of longitude by altitude. 

There is a phase of collecting all the data for a 
specific field to process zero and then evaluating the 
zonal mean. Each field is dealt with in turn requiring a 
large volume of data to be transferred. The inherent 
serialization of the calculation causes all other nodes 
to wait idle while task zero deals with the whole of the 
field. 

The multiple copying of data is very inefficient 
and partly serializes the algorithm, particularly in the 
collection onto task zero and subsequent search and 
interpolate that is done only on task zero. The same 
process applies to GBSTAT and the zonal mean 
calculation as the summation and averaging for the 
whole atmosphere volume occurs on one processor. 
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Fig. 2. Existing GBSTAT and SORZM method, collection from 

row zero shown for one field. Process is repeated for as many 
fields of interest to th researcher. 

3) Reading the initialization file or reading the 

restart file. 

The experiment is initialised with a long 
subroutine that does a lot of processing with the data 
read from various sources. One of the sources is the 
initialisation of a restart file. A header block is read 
and broadcast to the other MPI tasks and then a 
subroutine, PPREAD, is used to read a plane at a time, 
several fields from a Fortran unformatted file. It reads 
each plane into a vector that is then reshaped into a 
two-dimensional plane and uses another function to 
distribute parts of the plane to the other MPI tasks. 
The function is DISTF. It is called with values for the 
extent of the distributed plane. There is a complex 
stage of packing the buffer into vectors specific to 
each MPI task and then looping over the processors to 
send the data to each one. 

4) Writing the checkpoint or restart file. 

The PPWRIT function is very similar to the 
PPREAD function with the sequence of steps done in 
a reverse manner. A function COLLF is used to send a 
sub-plane of a field to task zero from the other MPI 
processes. It is then written to a Fortran unformatted 
file and will be used for any follow-on simulation. 
There are other places where this function is called as 
part of a restart check-pointing. Another version exists 
that helps with the NetCDF file writing. 

III. DATA TYPES DEVELOPED FOR THIS WORK 

A. The need for bespoke data types 

There are several data types intrinsic to MPI such 
as MPI_INTEGER, MPI_DOUBLE_PRECISION 
and they are widely used in many MPI applications. In 
the TOMCAT software the use of MPI is limited to 
these intrinsic data types and a small subset of 
functions. The following sub-sections describe how 
the new data types are defined and used. 

When using a different number of MPI tasks, the 
topology remains the same NPROCI by NPROCK 

two-dimensional grid of processes. Therefore, 
different resolutions of the model would be able to use 
a set library of data types that represent the structure 
of data that has to be read form file, communicated or 
written to file. Many of the communications involve 
accessing three-dimensional field data through 2 
dimensional planes. The resolution of those can be 
different to the computational space for example 
reading true 1x1 data (360x180 points) into the T106 
simulation (320x160 points). 

Three data types have been created for use with 
the MPI Gather and Scatter functions. They are 
needed by the replacement subroutines for PPREAD 
and PPWRIT. The data types are CLMN_NH_T, 
CLMN_WH_T and BLK_NH_T. The following 
diagrams are used to explain their relationships with 
the regular data structures used by TOMCAT. 

The “column-no-halo” data type identifies the 
contiguous elements that form a row of a sub-array of 
the global data that is stored on MPI task zero. The 
MPI_Contiguous function is used to create a vector of 
length “MYLON” which is the first dimension of the 
two-dimensional array. Several of these columns are 
collected together to create a new data type: “block-
no-halo”. This identifies the whole of the sub-array 
that will be scattered or gathered in the new functions. 

The “column-with-halo” type is a form of 
CLMN_NH_T that has been resized to account for the 
halo storage. The definition of the sub-array on the 
distributed domain uses negative indices so the 
invocation of the gather or scatter function uses a 
reference to the first “internal” element. 

The actual invocation of the Scatter is: 

 
The most significant element is the DISP array. It 

provides the start location in the send buffer of the 
data type being distributed. In this example a “block-
no-halo” type is being distributed to every MPI task. 
NSND is an array of integers indicating that one block 
has to be sent to each process. NRCV is a single 
integer for each receiver to understand that it will 
receive MYLAT elements of LTYPE, in this case 
CLMN_NH_T as it is passed through the subroutine 
interface. Fig. 4 shows a vector of CLMN_NH_T as it 
strides by NPROCIxMYLON through the global data.  

Although conceptually a developer may think of 
the array as two-dimensional shown in Fig. 4, it is 
actually a line of information in memory similar to the 
diagrams in Fig. 5.   

 

Original GBS and Zonal Mean Method

2

• Task zero has sequentialised the work
• *The extra memory is statically allocated so all tasks carry it as well

1

0

2

3
Local copying

MPI_SEND

Row 0
Extra local 
memory

Extra memory on task zero*
Global field on task zero

arr3dtmp1 

arr3dsp1

Serialised copying of receive buffer

local zm calc (PE0)

2D array of 
Zonal Mean

Gbstat columns

 

CALL MPI_Scatterv (                                       & 

                & PFG, NSND, DISP, BLK_NH_T, & 

                & PFL(1,1), NRCV, LTYPE,            & 

                & ROOT, UCOMM, MPERR) 
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Fig. 3. The two-dimensional concept is in practice a vector. The 
sub-array is stored at intervals with a stride of NPROCIxMYLON 

elements. The case is shown where MYLAT is 4. 

The large block of rectangles represents the global 
plane of data. The darker shaded rectangles indicate 
the data that is distributed on both cases. The lighter 
shaded area surrounding the second block is the halo 
storage of the local field. 

 

Fig. 4. Scattering the sub-domain planes (without and with halo 

storage).  

In some circumstances data arriving from a scatter 
function will have to be placed in the correct location 
of an array that includes storage for halo data. The 
data being read from a file has no halo information 
and only the interior information is distributed to the 
other MPI tasks. A data type is constructed from the 
foundation CLMN_NH_T with the stride. 

Starting at the top there is a representation of 
CLMN_NH_T and the extended CLMN_WH_T 
superimposed. Below that is a single entity 
representation of CLMN_WH_T and its equivalent 
storage as a local array. This is shown as four 
contiguous blocks above the true data layout. It is the 
darker shaded blocks that are collected during the 
MPI_Gather into the global sized data structure, 
shown at the bottom f the figure. 

 
Fig. 5. the storage structure for each type for a local data structure 

of the sub-array.  

The invocation of the Gather is very similar 
however the data types are reversed and the counts for 
send and receive are also switched. 

To activate the data types, a call has to be made to:   

CALL INIT_PLANE_DT (MYLON, MYLAT, NPROCI, IHALO) 

This function supplies the base size of the 
simulation and halo in the West-East direction (I 
loops). Inside this function all the new types are 
defined and committed to (registered with) MPI. 

IV. DETAIL OF SPECIFIC FUNCTIONS 

A. Modification Of The CONSOM Function. 

The general process involves several cross-
calculations between altitude layers and introduces an 
additional index to the already three-dimension local 
data structures. 

 
Fig. 6. Excerpt of a build log, specific to CONSOM 

The loop structure is interrupted with a conditional 
test (unnecessary) but it seems the compiler is very 

ftn -Mneginfo -Minfo=mp -fast -Minline -Minline=reshape -

Mextend -Mbyteswapio -mp=nonuma –r8 -c orig_consom.f 
consom: 

     49, Invariant assignments hoisted out of loop 

         Loop not vectorized/parallelized: too deeply nested 
     54, Parallel region activated 

     57, Parallel loop activated with static block schedule 

         Loop not vectorized/parallelized: too deeply nested 
     62, Generated 4 alternate versions of the loop 

         Generated vector sse code for the loop 

     76, Loop interchange produces reordered loop nest: 
77,76,78 

     78, Generated 3 alternate versions of the loop 

         Generated vector sse code for the loop 
     93, Generated 4 alternate versions of the loop 

         Generated vector sse code for the loop 

    110, Memory zero idiom, loop replaced by call to 
__c_mzero8 

    115, Loop interchange produces reordered loop nest: 

116,115,117 
    117, Generated 3 alternate versions of the loop 

         Generated vector sse code for the loop 

    124, Memory copy idiom, loop replaced by call to 
__c_mcopy8 

    131, Parallel region terminated 
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helpful in identifying the structure. Fig. 6 shows an 
extract from the build process with options for the 
PGI compiler (including –Mneginfo) turned on. 

The information generated by the compiler 
indicates that there are a couple of loop structures that 
were reordered. However, manually editing those 
loops and recompiling provided a similar message 
about the new loops. 

Unfortunately very little improvement could be 
made for CONSOM without using hardware specific 
cache blocking algorithms. 

B. Modification Of CALFLU Subroutine. 

The section of this subroutine where 
communications appear inefficient was revised. 
Replacing this feature with an MPI_SENDRCV 
combined function allows the MPI system to 
determine the sequence of communications. 
Unfortunately this feature was not a significant 
percentage of the time for the subroutine and made 
very little difference to the timing. 

C. Function To Report Altitude Profiles, GBSTAT 

The GBSTAT function has been briefly described 
in the introduction. The modification of this function 
has been mainly a review of the algorithm, moving the 
workload from the MPI task zero out to the individual 
MPI tasks. 

The new method lets each MPI task that contains 
one or more GBS to create the column needed for the 
results and then send that to the root process for 
writing in the traditional manner. The previous 
method of copying the full fields back to task zero has 
been replaced by a halo exchange just before the 
interpolation. 

 

Fig. 7. The revised GBSTAT interpolation 

This halo exchange is a rudimentary approach to 
ensure that any calculation for a GBS near the grid-
box boundary will be up-to-date. A more sophisticated 
method was considered but the additional coding and 
testing would outweigh any benefit. 

D. Improvement To Reporting Zonal Means. 

A similar algorithm for collecting field data onto 
one process was used to calculate the zonal mean. The 
principle is to collect all the data on to the root MPI 
task and then do the work needed  to process and store 
the data to a file. This undermines the nature of the 
parallel decomposition and effectively serializes the 
job.  

 

Fig. 8. The revised SORZM calculation. 

The new method lets each MPI task evaluate the 
sum of longitudinal values into an auxiliary plane (it 
can be considered the west-most boundary of the 
domain). The sum of the auxiliary planes is evaluated 
by an MPI reduction in the MPI topology row to the 
first MPI task on that row (Fig. 8). The penultimate 
step is to use MPI_Gather to collect the partial arrays 
onto MPI task zero before finally writing in the 
established serial manner onto an unformatted Fortran 
file. 

The implementation of this method includes some 
reuse of two-dimensional arrays; one is sized to match 
the west-most plane of the local domain and one is the 
same size as the final meridian plane used to store the 
zonal mean that is required by the researcher. 

E. File Reader PPREAD Is Replaced By PPRD 

The PPRD function is a replacement for both 
PPREAD and DISTF. It raises the DISTF function 
from a callee to being in-line, but then the content of 
DISTF is discarded in favour of the MPI_Scatterv() 
function. The previous requirement for a conditional 
flag and test has been removed as the choice of “with-
halo” or “no-halo” is set by the data type of the 
communication. The extensive user-defined packing 
and unpacking is no longer required.  

A version of PPRD that confines the reading to 
“row-master” MPI tasks rather than MPI task zero 
was trialled. However, it was discovered that the data 
file records in the INI and RST files did not correlate 
exactly with the latitudes. A significant amount of 
work will be required to convert existing restart and 
initialisation files so that the access by record can be 
used. 

Revised zonal mean calculation

3

• Each task stores ZM in extra local mem
• Optional extra memory on task 0 if insist on one task opening sequential file

1

0

2

3

Local summation

MPI_REDUCE 
(MPI_SUM)

0

Extra local 
memory

Extra memory 
on row master 

MPI_Gather to task 0

 

Modified GBSTAT method

4

• Task zero has sequentialised the work
• *The extra memory is statically allocated so all tasks carry it as well

1

0

2

3

Local data interpolation

MPI_Gather

0

Revised local memory
(actually NGBSxNIV)

P3d(NIV,NGBS) 
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F. File  Writer PPWRIT  Is Replaced By PPWR 

This function is like PPRD and accesses an 
unformatted Fortran file. The current algorithm 
follows the same theme of collecting a plane of data 
onto MPI task zero and then using a reshaped vector 
to send the whole plane to a file. The replacement 
routine directly calls MPI_Gatherv using the bespoke 
MPI data types in the same manner as PPRD: 

The integer: LTYPE is supplied in the argument list 

and acts as a conditional to indicate if the field has 

storage for haloes or not. The calling interface has 

changed slightly as now the extent of the plane is 

supplied as NIMN, NIMX, NKMN and NKMX. 

V. RESULTS 

The immediate gains demonstrated in GBSTAT 
and SORZM are clear from the timing reports (in the 
four tables 2, 3, 4 and 5). The new methods become 
imperceptible compared to the time for an iteration. 
The similar change to the zonal-mean reporting again 
frees up the researcher to collect more results from a 
simulation.  

TABLE IV.  EFFECT OF GBSTAT FOR CONFIGURATION WITH 

80 MPI TASKS 

Normal run Standard 

GBSTAT 

Modified 

GBSTAT 

 

Time (sec.) Time (sec.) Time (sec.) iteration 

  384.580         300.451  307.404    1  

  0.531         9.333     0.981    2  

 0.531        0.983     0.979    3  

  0.527        8.996     0.985    4  

0.525        0.978     0.986    5  

  0.528       8.789     0.980    6  

  0.528         0.979     0.978    7  

  0.528       8.995     0.983    8  

  1.496         3.362     3.371    9  

The GBSTAT function is called on alternate 
iterations to give a clear indication of its effect. With 
the greater number of MPI tasks there is an increase in 
the amount of communication. This is shown in Table 
V with the effect of activating GBSTAT is as much as 
70x the “normal” advection time step. There does 
appear to be some penalty with the revised method but 
it is still a great saving over the previous version. 
There is a possibility of imbalance if there are many 
station located in one sub-domain. 

TABLE V.  EFFECT OF GBSTAT FOR CONFIGURATION WITH 

400 MPI TASKS 

Normal run Standard 

GBSTAT 

Modified 

GBSTAT 

 

Time (sec.) Time (sec.) Time (sec.) iteration 

375.762     303.692  298.904           1  

 0.343    39.418    0.788           2  

 0.333   0.331    0.424           3  

0.322  39.366    0.474           4  

 0.330   0.401    0.411           5  

 0.327   39.011    0.459           6  

 0.339  0.391    0.428           7  

0.335   39.351    0.540           8  

0.656   0.865    0.889           9  

 

The SORZM function has been called every 
iteration. This is to artificially amplify the effect and 
demonstrate the improvement of the modified version.  

TABLE VI.  EFFECT OF SORZM FOR CONFIGURATION WITH 80 

MPI TASKS 

Normal run 
Standard 

SORZM 

Modified 

SORZM 
 

Time (sec.) Time (sec.) Time (sec.) iteration 

384.580      377.155  385.091     1      

  0.531     4.643     0.545      2            

 0.531   4.649     0.545      3           

  0.527    4.659     0.541     4           

0.525    4.659     0.546       5           

  0.528   4.651     0.544        6           

  0.528     4.656    0.543       7           

  0.528   4.662     0.550      8           

  1.496     5.602       1.509      9           

 0.531      4.618    0.550     10  

For 400 MPI tasks configuration the effect is an 
order of magnitude greater. But again the modified 
version is showing as hardly noticeable, 

TABLE VII.  EFFECT OF SORZM FOR CONFIGURATION WITH 

400 MPI TASKS 

Normal run Standard 

SORZM 

Modified 

SORZM 

 

Time (sec.) Time (sec.) Time (sec.) iteration 

375.762     415.400      396.894         1      

 0.343     41.554      0.351        2            

 0.333    41.582    0.327             3           

0.322    41.728    0.346            4           

 0.330    41.193     0.376            5           

 0.327    41.762     0.331             6           

 0.339    41.557    0.335            7           

0.335    41.600    0.343            8           

0.656     41.774    0.658            9           

0.335     41.738   0.332          10  

The overall results of the work with collectives 
and data-types have not yet been fully realized. Two 
lines of research are currently benefitting from the 
changes to GBSTAT. One of those is research using a 
high number of ground-based stations; the research 
can now be more extensive in coverage and request 
more frequent reporting. The second is a new feature 

CALL MPI_Gatherv (                                       & 

                & PFL(1,1), NSND, LTYPE, & 

                & PFG, NRCV,DISP,BLK_NH_T,  & 

                & ROOT, UCOMM, MPERR) 
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of reporting satellite data as it crosses the terminator; 
the location of a satellite varies in longitude and 
latitude at that time. With the new method an MPI 
task need only know that a column of data is need for 
a number of longitudes, in the case of ground based 
stations that can be set at the beginning of the run 
whereas for the satellite data that has to be updated at 
the time of the call. One benefit has been to 
demonstrate to the developers that MPI has useful 
features that will help make their software more 
maintainable and generally easier to read and 
understand. This helps newer less experienced 
researchers get up and running quicker and will give 
them confidence to adopt and adapt the example 
functions.  

VI. SUMMARY 

The complexity of this software requires the 
storage of three dimensional data for several 
parameters. In several places there are calculations 
that stride through the data in a non-optimal manner. 
Attempts were made to try to reduce the 
computational overhead by determining a suitable 
sequence of the loops. Unfortunately no significant 
improvement was found for two key functions 
CONSOM and CALFLU. 

An alternative version of GBSTAT did make 
significant improvement and allowed a new feature to 
be developed quite quickly (Satellite observation 
matching). 

The modified SORZM provides significant 
improvement for reporting, with more fields being 
reported per simulation and less sensitive to the 
resolution of the simulation. 

The PPRD subroutine provides a cleaner method 
for distributing data and the small improvement that 
was expected is lost in the timing due to the 
domination of the MPI_BCAST usage. 

PPWR is unlikely to provide significant gains due 
to the difficulty in writing later records to a sequential 
file. These functions read the INI file and write the 
RST file in a serialized (although “Fortran 
unformatted”) manner. A difficulty has arisen in that 
the Fortran file records do not correspond directly to a 
latitude set of data. This is because a sub-function is 
used to write out a whole plane as a single vector 
disregarding record boundaries. 

However, both PPRD and PPWR have 
demonstrated the usefulness of built-in features of 
MPI and the data structures can be used elsewhere and 
extended to cope with different resolutions of 
auxiliary data. The maintainability of the code will be 
improved with the data types being defined in their 
own module and the simpler gathering and scattering 
functions making packing and unpacking automatic. 

VII. FURTHER WORK, RECOMMENDATIONS 

There are further sections of the software that will 
benefit from using the new data types and potentially 
gains will be achieved by modifying more of the files 
to be compatible with NetCDF. The existing results 
file is created with a serial version of NetCDF. It is 
currently being reviewed with a view to enabling the 
use of parallel NetCDF.  

There several places where the modifications 
reported here could be further enhanced but the 
benefits have to be weighed against the cost of 
development. 

The concept of using “per-row” writers for the 
diagnostic file and checkpoint file should be 
investigated along with parallel NetCDF. Discussion 
is in progress with the research group to see how 
much disruption would occur by changing the format 
of those files. 
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