

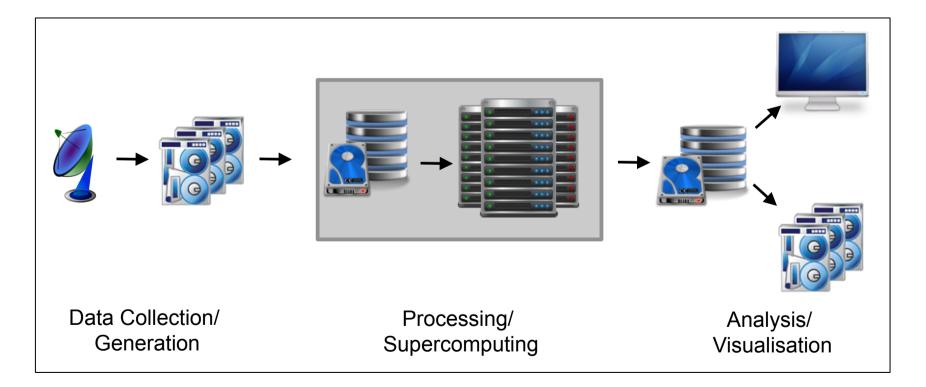
iVEC & Pawsey Centre Infrastructure and Resources

Charles Schwartz iVEC Technical Operations Director 7th May 2013

Outline

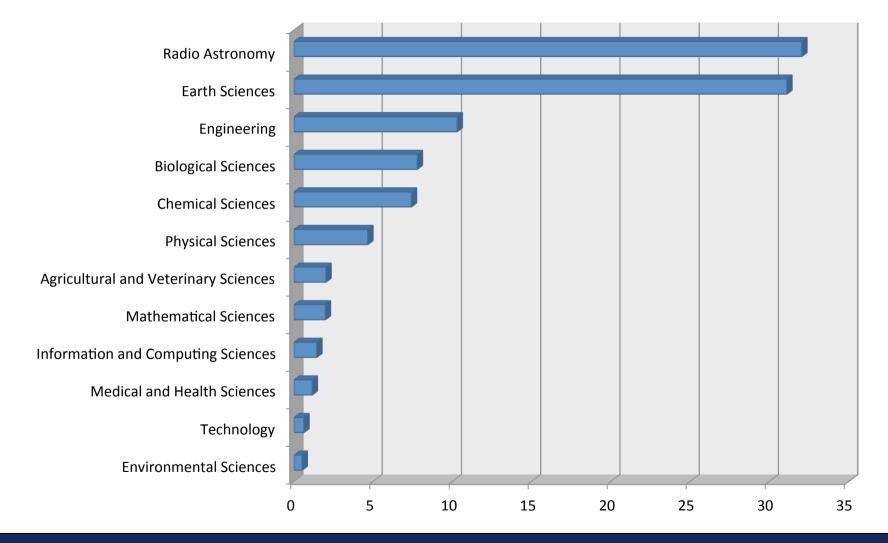
- iVEC Mission
- Overview of the Pawsey Centre in Western Australia
- Pawsey system deployment schedule
- iVEC & Pawsey supercomputing infrastructure

iVEC Overview


- Unincorporated joint venture
 - CSIRO
 - Curtin University
 - Edith Cowan University
 - Murdoch University
 - The University of Western Australia
- CSIRO as centre agent

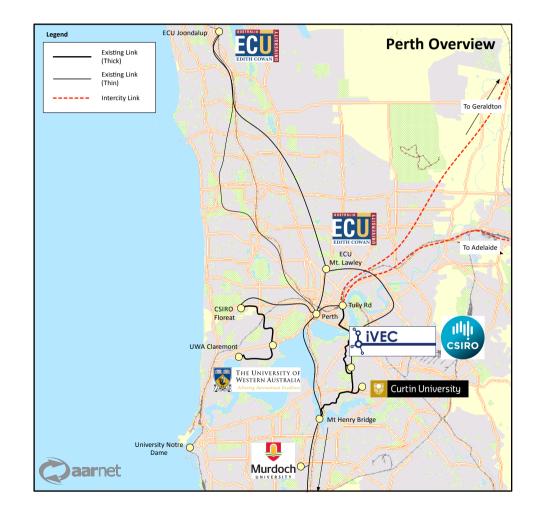
iVEC Mission: Building a Science Engine

 iVEC strives to build useful computing environments that accommodate the researcher's workflow(s)


Uptake Programs

- Alongside leading-edge facilities, we need to support researchers
- Five uptake programs help researchers to upscale their computing and their ambitions
 - Education
 - Supercomputing Technology and Applications (STAP)
 - Industry and Government Uptake (IGUP)
 - eResearch
 - Visualisation

iVEC Community



iVEC Timeline

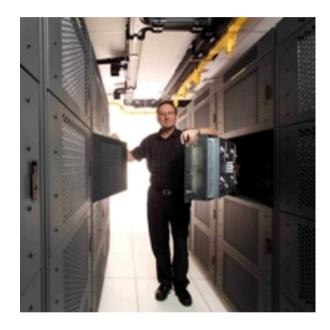
- Pawsey Project officially launched Aug 2009
- Stage 1 composed of two systems
 - Epic operational mid 2011
 - Fornax operational early 2012
- Stage 2 composed of systems in Pawsey Centre
 - Magnus anticipated online by July 2013
 - RTC anticipated in production by Nov 2013
 - Magnus 2 anticipated online by June 2014

iVEC Network

%iVEC

Stage 1A – Epic @ Murdoch

- HP Performance Optimised Datacentre
 - 87 TFLOPs peak
 - Debuted at #88 in Top500
 12 cores/node
 - 9600 cores @ 2.8 GHz


- 800 total nodes
- 24 GB/node
- **QDR IB connectivity** •

<u>β</u>iVEC

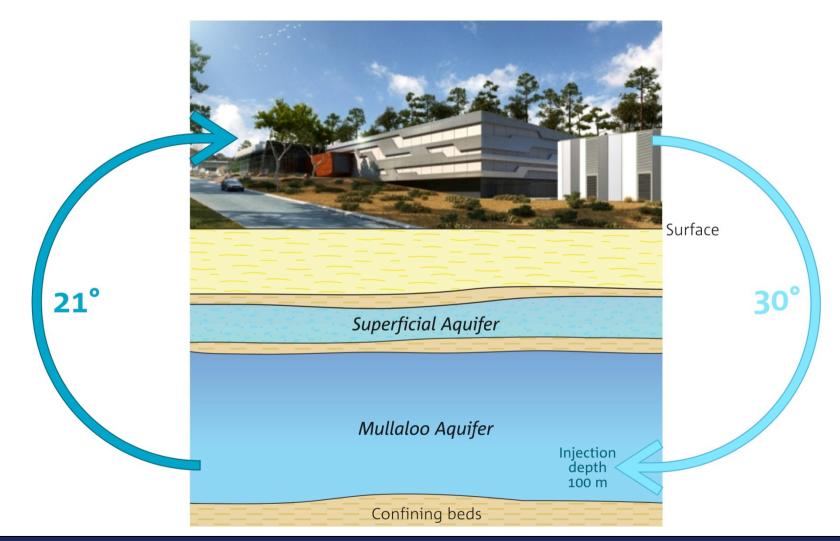
Stage 1B – Fornax @ UWA

- SGI GPU cluster
 - 62 TFLOPs peak
 - 1152 cores @ 2.66 GHz
 - 96 nodes
 - 12 cores/node, 72 GB/node
 - 96 NVIDIA Tesla C2075 GPUs
 - >500 TB Lustre file system
 - 7 TB local storage per node

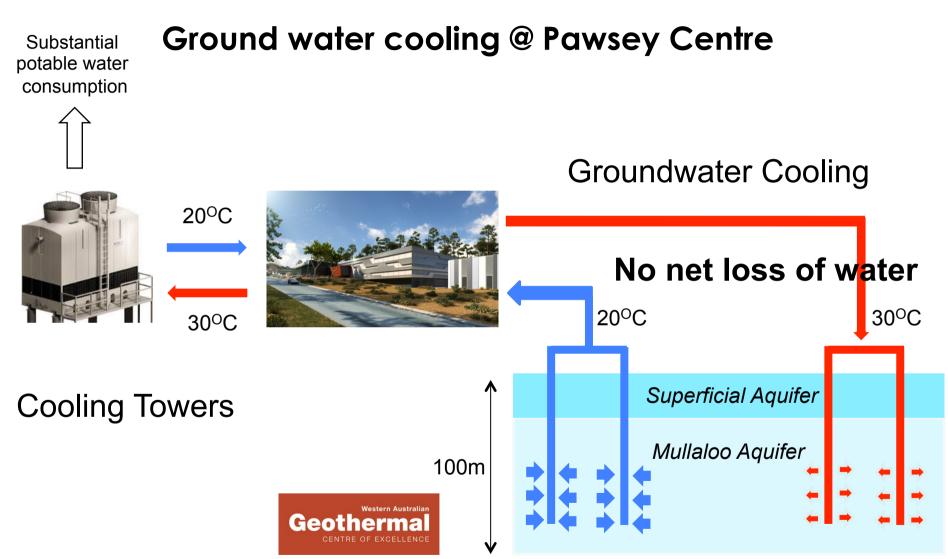
• Dual-rail IB interconnect for high throughput

Pawsey Centre

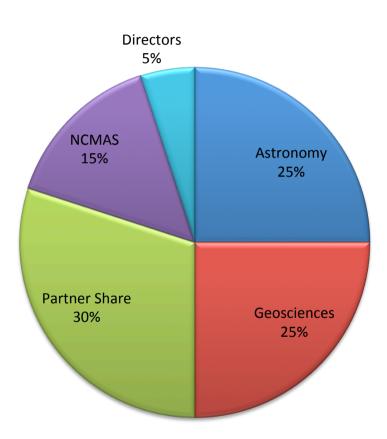
- Purpose-built supercomputing centre collocated at ARRC in WA
- Announced in May 2009 under Super Science Initiative
- Built by CSIRO, operated by iVEC



Pawsey Centre



Ground water cooling @ Pawsey Centre


Pawsey Centre - Green Initiatives

- Use of 22°C water for supercomputer cooling
- Pioneering research into groundwater cooling for data centre
- Use of photovoltaic cells on front of building
 - Approximately 5-10 kW of power generation
- Installation of photovoltaic cells on roof
 - Approximately 140 kW of power generation
- Total high watermark power draw: ~ 1.9 MW for phase 1 system

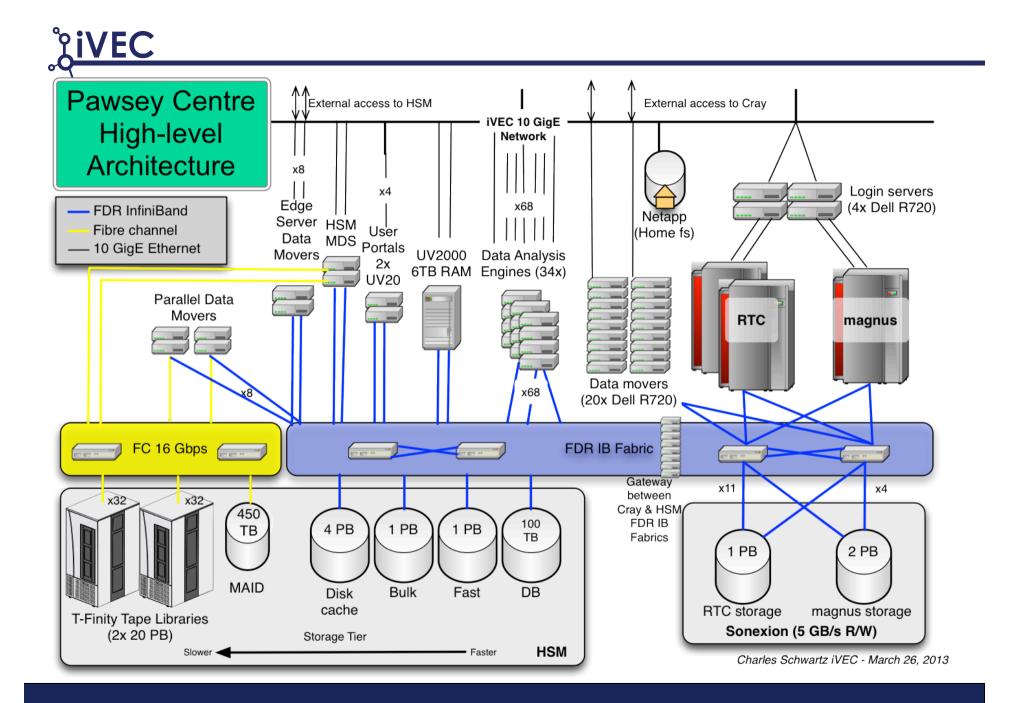
<u>'</u>įVEC

Pawsey Centre

- System allocations
 - 25% Radio-astronomy
 - 25% Geosciences
 - 30% iVEC Partner Share
 - 15% National Merit Share
 - aka NCMAS
 - 5% iVEC Director

Pawsey Centre – Radio-astronomy

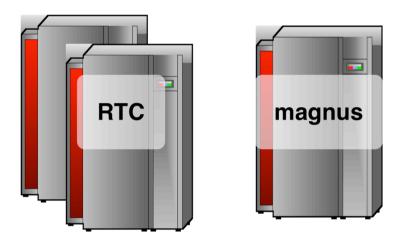
- Two primary radio-astronomy projects
 - Australian Square Kilometre Array Pathfinder (ASKAP) Project
 - High-frequency
 - 36 antennae in Murchison Radio Observatory (MRO)
 - ~800 km north of Perth
 - 4× 10 GigE links into Pawsey from MRO
 - 5 PB/year
 - Murchison Widefield Array (MWA)
 - Low-frequency
 - 1× 10 GigE link into Pawsey from MRO
 - 3 PB/year


Pawsey Centre – Radio-astronomy – ASKAP

- Real-time data processing in radio-astronomy has not been done before
- Raw observation data is too large to archive or transfer...
 - ~ 220 TB/day of measurement data
 - Only around 10% is transferred to Pawsey
- ...and even the data products are large
 - Spectral line image cube ~ 1 TB
 - 12-hour observation full polarisation continuum visibility data set 2+ TB

Pawsey Centre – Radio-astronomy – MWA

- Data correlated at MRO in local facility
 - Powered by solar and diesel fuel no grid infrastructure!
- Approximately 2 TB/hour in observation data
- Data sharing via NGAS



Supercomputers

• 2 Cray XC30 supercomputers

- Magnus
 - 69 TFLOP system for general science
- RTC real-time computer
 - 200 TFLOP system for ASKAP and MWA production science

Magnus

- 69 TFLOP Sandy Bridge system
- 3,328 cores on 208 compute nodes
- 64 GB/node
- 2 PB Sonexion 1600 storage
 - 1 MMU, 9 SSUs
- Delivery staring May 20, 2013
- Operations anticipated ~ July 2013



RTC (Real Time Computer)

- 200 TFLOP Ivy Bridge system
- 9,440 cores on 472 compute nodes
- 64 GB/node
- 1 PB Sonexion 1600 storage
 - 1 MMU, 6 SSUs

Supercomputers

Data Analysis Engines & Visualisation

- 6 TB shared-memory UV2000 for visualisation
 - 4× NVIDIA Quadro

iVEC

- 34 SGI Rackable 2U servers
 - Virtualisation and visualisation
 - 128 GB RAM
 - NVIDIA Quadros & Keplers
 - 2× 10 GigE, 2× FDR IB

Data Analysis Engines & Visualisation

- Powered up already
- Commissioning in progress

 Also great for drying footwear (until the water cooling is connected)

<u>'</u>įVEC

High Performance Storage

- 3 PB of Lustre Sonexion storage
 - 2 PB for magnus
 - 1 PB for RTC
- > 6 PB of disk in HSM IS5600 arrays
 - 5 PB disk cache
 - 1 PB of 10k SAS
 - > 4 PB of 7200 rpm SAS
 - 800 GB SSD storage (*metadata*)
 - DMF

<u>'</u>įivec

Archives (or Not High Performance Storage)

- SpectraLogic T-Finity library
 - 40 PB raw capacity, 20 PB usable capacity
 - 64 TS1140 tape drives
 - 4 TB tapes today
- Capacity for up to 100 PB raw
 - 50 PB usable
- 450 TB MAID

High Performance Network

- Nearly end-to-end FDR IB fabric internally
 - Up to 56 Gbps
 - Mellanox hardware
- 10 GigE Ethernet connection to iVEC network
- Fibre channel connectivity to and from tape library and tape drives
 - 2 Gbps

Software

- Resource management and batch system will be PBS Pro
- Libraries, compilers, system software...
 - Intel & Cray compilers
 - Allinea DDT debugger
 - Cray Linux Environment (CLE) 5

Magnus – Phase 2

- Phase 2 of Pawsey Centre compute infrastructure expected mid-2014
- Increase total compute capacity to \geq 1 PFLOP
 - More XC30 cabinets, more Lustre storage
 - Power draw expected to go up to ~2.25 MW
- Accelerator & CPU balance
 - Xeon Phi, NVIDIA Kepler or Atlas?
 - Intel Haswell CPU?

Magnus – Phase 2

- ≥ 1 PFLOP Ivy Bridge system
- \geq 14,560 cores on 728 compute nodes
- Accelerators to be determined!
- 64 GB/node
- 6 PB Sonexion 1600 storage total
 - 1 MMU, 9 SSUs, 18 EXPs
- Delivery starting April 2014
- Operations to begin \leq June 2014

Thank you!

- For further information...
 - <u>www.ivec.org</u>