Argonne°

NATIONAL LABORATORY

National Energy Research
Scientific Computing Center

Production I/0 Characterization
on the Cray XE6

Phil Carns!, Kevin Harms 2, Rob Latham?, Rob Ross!

IMathematics and Computer Science Division
2Argonne Leadership Computing Facility
Argonne National Laboratory

Yushu Yao, Katie Antypas

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

CUG 2013




Motivation

= |/O behavior plays a key role in productivity for large-
scale HPC systems

— Qur target: Hopper, a 153,216 core Cray XE6 at NERSC

= Challenges in understanding 1/O behavior
— Hundreds of users across a wide spectrum of science

— Applications vary in data volume, 1/O strategy, and access
methods

— How can we consistently characterize production 1/0
behavior across applications?

— How do we quickly identify applications that could most
benefit from additional tuning assistance?

CUG 2013: Production I/O Characterization on the Cray XE6

Y nensc)



Approach

1. Adapt the Darshan I/O characterization tool for use in the Cray environment
— Tune to reflect Hopper system characteristics
— Integrate transparently for maximum coverage

2. Evaluate Darshan for production deployment
— Measure overhead at scale for multiple workloads

3. Deploy Darshan
— Store characterization data for post-processing and exploration
— Provide immediate feedback to users

4. Develop tools that leverage Darshan data
— Rapid feedback to power users
— Metrics to automatically flag jobs that exhibit unusual I/O behavior for administrators

CUG 2013: Production I/O Characterization on the Cray XE6

s I nesc |



Darshan background

Darshan is an open source, application-level instrumentation library that uses link-
time instrumentation for static executables and LD_PRELOAD for dynamic
executables.

What does it record?

Counters, histograms, and strategically chosen timestamps related to I/O activity
POSIX, POSIX stream, MPI-10, and limited HDF5 and PNetCDF functions

Access patterns, access sizes, 1/0 time, alignment, datatypes, etc.

Builds on characterization ideas from Kotz and Nieuwejaar Charisma study

Does not record a complete trace of I/O operations

How does it store results?

Minimal overhead during execution
Reduction, compression, and persistent storage at MPI_Finalize() time
Produces a single, compact log for each instrumented job

CUG 2013: Production I/O Characterization on the Cray XE6

Y werec



Tuning example: shared-file instrumentation

2012-10-25 scratch2 aggregate 1/O

6000 30

LMT monitoring: example -~ ave
<000l @PPlication without Darshan j ;iaed |5s
= |nitial performance experiments with ol e e
Darshan 2.2.3 exhibited performance — 2 _
degradation for shared-file applications §3°°°' 15
=  LMT monitoring of servers revealed that 2000} 10
the raw I/O throughput was comparable, o \W—YE | 5
but CPU usage was much higher I g Al
\;5'-“5'0 ¢ _ —a,-f:“"’om _ 3~f>‘='~°° &o°°°0
= Source of overhead: issuing stat() calls on 000 20121025 scratch? aggregate 10 N
each rank to collect additional information LMT monitoring: example T g
. soool @Pplication with Darshan o las
at open() time 2.2.3 L e
» Concurrent stat() at 12,288 processes can a000] — sepuf|®
already add 2 seconds to file open time %mo 15§-
= Worked to develop alternative :m ‘ } “ ] l H " ~ .
instrumentation. .~~~ | U ‘ ’ , | “ l l ’
e | Il l’l’!“ T T O
,,*L. JWM ._ L\*l 0
CUG 2013: Production I/O Characterization on the Cray XE6 \9'3'”'0 o3 00 100 \,9'-“1"00

7. Y nersc| ’



Tuning example: writing log files efficiently

Darshan writes all results to a unified log file at shutdown after custom
reduction and gzip compression

Final results are typically quite small: hundreds of bytes per process,
sometimes even less

Regardless of how the application performed 1/O, Darshan itself uses
MPI-IO collectives internally to write results

Portable and efficient: leverages aggregation and stripe alignment

We improved MPI-IO collective 2000 e
. . | Open m===
performance even further with hints: 1o

. . 1600 |
— romio_no_indep_rw 100 |
— cb_nodes=4 1200 |

1000

Limit the number of processes that
actually open the output file

Time (ms)

800

600

Drastically reduces the cost of writing 400 |-
data at larger process counts 200 H

1 1
ey, Wy /% Wig Q. W
AWy h Hipy ts Wy % Biy ts Wy h Aing,
3072 6144 12288

CUG 2013: Production I/O Characterization on the Cray XE6 Number of processes

o :



System integration challenges

= Cray environment:
— Multiple compilers (Cray, PGI, Pathscale, Intel, GNU)
— Static linking by default
— Unified cc, ftn, and CC compiler scripts

Our requirements:
— Support as many configurations as reasonably possible
— Enable and disable via software module
— Transparent for users (no need for different compilers or link options)

=  We experimented with multiple deployment methods during this study

Our plan moving forward is to use the PE_PRODUCT_LIST mechanism

— This is a set of environment variables that can be used by software modules to specify
additional linker options for the Cray compiler scripts

CUG 2013: Production I/O Characterization on the Cray XE6

Y werec



Evaluation: end-to-end overhead

After adapting Darshan to the Cray XE6 environment, our next goal was to
evaluate the impact of Darshan on large-scale applications to verify suitability
for production deployment.

=  First experiment: measure end-to-end run time of IOR benchmark writing
and reading 1.5 TiB of data at 12,288 processes
— Includes all Darshan startup, instrumentation, and shutdown costs
— Measured by timing the “aprun” command
— Evaluate both shared-file and file-per-process examples

— |OR configured to use MPI-IO; Darshan instrumented both the MPI-10 and POSIX
API calls

= |ndividual runs are susceptible to variance

= Gathered 20 independent samples for each test case over a four day period
and analyzed the results

CUG 2013: Production I/O Characterization on the Cray XE6

o :



Evaluation: end-to-end overhead

IOR: shared files, collective 1/0, wide striping IOR: file-per-process, default striping

500
I
500
L

400
1
400
I

300
L
300
|

time (s)
time (s)

200
L
200
I

100
|
100
I

T T T T
Darshan (mean=352.07) Standard (mean=357.969) Darshan (mean=206.691) Standard (mean=219.623)

build type build type

=  Box plots of 20 samples each indicate no clear Darshan overhead at 12,288
processes relative to normal system variance

= |nsufficient evidence for difference in mean run time (t-test)

= Other observations: variance is significant, and file-per-process access
patterns perform better on Hopper at this scale

CUG 2013: Production I/O Characterization on the Cray XE6

7. Y nersc| ’



Evaluation: Darshan shutdown costs

1 +

= End-to-end Darshan overhead is obscured by e X
|/O variance, but we can measure internal 3 3
Darshan mechanisms directly using v 01 PP ¥ §
microbenchmarks £ b s
= These examples show the total time required % % % ¥ % X
by Darshan to reduce, compress, and write c oty N N
log files at MPI_Finalize() time -
= Average one-time cost for 98,304 processes: | =~~~ = =
— 1 shared file: 0.17 seconds o By By gy o Clag TRegy sz i, %,
— 1024 shared files: 0.24 seconds 100 1024umqmesperp:::mfrpl pmsses
— 1 file-per-process: 12.3 seconds ' nialeperprocess X .
— 1024 files-per-process: 24.8 seconds 2 10} e X
= Largest scenario: emulates application ; . ; X
opening 100,663,296 unique files % , . % i ) %
= Darshan falls back to less granular ; 2 % X
instrumentation if memory threshold is % o . i §
exceeded by opening too many files : X X

0.01 L I L 1 1 L |
90 S8y s T35 S0m O7q, 250 555 Y915, Fsg,

CUG 2013: Production I/O Characterization on the Cray XE6 Number of MPI processes

A 3 NeRsc b



\ |
Deployment: coverage as of March 2013

= Percentage of active users and jobs instrumented per day since initial
Hopper deployment

= Nearing an average of 60% and 30%, respectively, by end of March 2013

—~ 80

NS © %Active Users Logged i

:; 70 - =30 Day Moving Average of %Active Users Logged _
S *x % Jobs Logged . 0@
T 60 @ ==30 Day Moving Average of Ysdobs Loagged “®®q .9

(D (o] QJC (o] o O o
o ¢ S oS 0

o 50

o

40

30

20

10

0
11/10/12 12/10/12 1/10/13 2/10/13 3/10/13

CUG 2013: Production I/O Characterization on the Cray XE6

.Y ersc :



Deployment: user experience

IO Summary from Darshan
Wallclock MB MB Estimated VO Estimated Percent

(secs) Read Written Rate (MB/sec) Time Spentin /O
04-05 04-05

16:04:05|16:06:51 166/590.3| 597.6 355.52 2.01%
= The NERSC web pOrtaI allows Number of Reads Per Size Range
users to interact with their jobs W 0_100
. W 100 _1K
and allocations B 1K 10K
= This screenshot shows I/O | oo
summary information
automatically generated from
Darshan logs for completed jobs
™ PrOVides ra p|d (Wlthln a few Number of Writes Per Size Range
. e Wo 100
minutes) initial feedback on I/O 100 1K
behavior W 1K_10K
B 100K_1M

CUG 2013: Production I/O Characterization on the Cray XE6

-3 erc) :



Metrics: redundant read traffic

= Administrators can also filter logs using metrics designed to automatically
identify applications that may benefit from tuning assistance

=  We explored three example metrics that can be quickly computed from

Darshan log data

= First example is redundant read traffic: applications that read more bytes of
data from the file system than were present in the file

= Even with caching effects, this type of job can cause disruptive I/O network
traffic through redundant file system transfers

= Candidates for aggregation or collective /0

Summary of matching jobs:

Redundant read threshold

Total jobs analyzed

Jobs matching heuristic

Unique users matching heuristic

Largest single-job redundant read volume

> 1 TiB
261,890
671

37

547 TiB

CUG 2013: Production I/O Characterization on the Cray XE6

s I nesc |

Top example

Scale: 6,138 processes
Run time: 6.5 hours
Avg. /0 time per process: 27 minutes

Metric: Read 548.6 TiB of data from a 1.2
TiB collection of read-only files

Used 8 KiB read operations and
generated 457 X redundant read traffic

13



Metrics: metadata time ratio

= Percentage of cumulative I/O time spent performing metadata
operations such as open(), close(), stat(), and seek()

= Close() cost can be misleading due to write-behind cache flushing,
but metadata ratio is often a key indicator of inefficient file
organization

=  Most relevant for jobs that performed a significant amount of I/0O

= Candidates for coalescing files and eliminating extra metadata calls
like stat() where possible

Top example
Summary of matching jobs: = Scale: 40,960 processes
Thresholds meta_time /nprocs > 305 ®  Run time: 229 seconds

nprocs > 192 )
metadata_ratio > 25% =  Max. I/O time per process: 103 seconds

Total jobs analyzed 261,890 . ) .

Jobs matching heuristic 252 = Metric: 99% of I/O time in metadata
Unique users matching heuristic 45 :

Largest single-job metadata ratio > 99% operations

= Generated 200,000+ files using 600,000+
write() and 600,000+ stat() calls

CUG 2013: Production I/O Characterization on the Cray XE6

A 3 NeRsc :



Metrics: small writes to shared files

= Small writes can contribute to poor performance as a result of poor file
system stripe alignment, but there are many factors to consider:

— Writes to non-shared files may be cached aggressively
— Collective writes are normally optimized by MPI-10
— Throughput can be influenced by additional factors beyond write size

= We searched for jobs that wrote less than 1 MiB per operation to shared
files without using any collective operations

= Candidates for collective I/O or batching/buffering of write operations

Top example
Summary of matching jobs: " Scale: 128 processes
Thresholds > 100 million small writes = Run time: 30 minutes
0 collective writes ) )
Total jobs analyzed 261,890 = Max. I/O time per process: 12 minutes
Jobs matching heuristic 220 o o )
Unique users matching heuristic 11 »  Metric: issued 5.7 billion write
Largest single-job small write count 5.7 billion

operations, each less than 100 bytes in
size, to shared files

= Averaged just over 1 MiB/s per process
during shared write phase

CUG 2013: Production I/O Characterization on the Cray XE6

o mm :



Summary and conclusions

Lessons learned while adapting Darshan for the Cray environment:

= Adapting system tools to the Cray XE6 environment requires consideration of file
system characteristics and environment configuration

= “Minimal overhead” is a moving target! New platforms bring new challenges.
= |/O variance remains a significant factor in I/O performance
= Darshan performance is suitable for full-time production deployment

Deployment experience:

= |tis possible to perform application-level I/O characterization of full-scale
production workloads
= Darshan has been successfully deployed on the Hopper system at NERSC
— Rolled out in stages from November 2012 to February 2013
— 30% of jobs and compute hours instrumented by March 2013
=  Deployment impact:
— Immediate feedback to users on I/O behavior

— Ability to automatically scan jobs using simple metrics to identify applications that need
further assistance

CUG 2013: Production I/O Characterization on the Cray XE6

Y werec

16



Future work

=  Continue to improve Darshan

Use system-specific mechanisms for characterization when available
Improve Cray environment integration
Modularization

= Continue to use Darshan data to solve I/O problems

Use metrics to identify and help the users who need it most
More rigorous analysis methods

Improve feedback for users

Broader workload studies

CUG 2013: Production I/O Characterization on the Cray XE6

s I nesc |

17



This work was supported by Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of Energy,
under Contract Nos. DE-AC02-06CH11357 and
DE-AC02-05CH11231 including through the Scientific Discovery
through Advanced Computing (SciDAC) Institute for Scalable
Data Management, Analysis, and Visualization.

Thank you to the NERSC management, administrators, and
power users who helped to make this work possible.

CUG 2013: Production I/O Characterization on the Cray XE6

L ansc) .



Phil Carns

carns@mcs.anl.gov

http://www.mcs.anl.gov/darshan

CUG 2013: Production I/O Characterization on the Cray XE6

& g3

19



