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Motivation

= |/O behavior plays a key role in productivity for large-
scale HPC systems

— Qur target: Hopper, a 153,216 core Cray XE6 at NERSC

= Challenges in understanding 1/O behavior
— Hundreds of users across a wide spectrum of science

— Applications vary in data volume, 1/O strategy, and access
methods

— How can we consistently characterize production 1/0
behavior across applications?

— How do we quickly identify applications that could most
benefit from additional tuning assistance?
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Approach

1. Adapt the Darshan I/O characterization tool for use in the Cray environment
— Tune to reflect Hopper system characteristics
— Integrate transparently for maximum coverage

2. Evaluate Darshan for production deployment
— Measure overhead at scale for multiple workloads

3. Deploy Darshan
— Store characterization data for post-processing and exploration
— Provide immediate feedback to users

4. Develop tools that leverage Darshan data
— Rapid feedback to power users
— Metrics to automatically flag jobs that exhibit unusual I/O behavior for administrators
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Darshan background

Darshan is an open source, application-level instrumentation library that uses link-
time instrumentation for static executables and LD_PRELOAD for dynamic
executables.

What does it record?

Counters, histograms, and strategically chosen timestamps related to I/O activity
POSIX, POSIX stream, MPI-10, and limited HDF5 and PNetCDF functions

Access patterns, access sizes, 1/0 time, alignment, datatypes, etc.

Builds on characterization ideas from Kotz and Nieuwejaar Charisma study

Does not record a complete trace of I/O operations

How does it store results?

Minimal overhead during execution
Reduction, compression, and persistent storage at MPI_Finalize() time
Produces a single, compact log for each instrumented job
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Tuning example: shared-file instrumentation
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Tuning example: writing log files efficiently

Darshan writes all results to a unified log file at shutdown after custom
reduction and gzip compression

Final results are typically quite small: hundreds of bytes per process,
sometimes even less

Regardless of how the application performed 1/O, Darshan itself uses
MPI-IO collectives internally to write results

Portable and efficient: leverages aggregation and stripe alignment
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System integration challenges

= Cray environment:
— Multiple compilers (Cray, PGI, Pathscale, Intel, GNU)
— Static linking by default
— Unified cc, ftn, and CC compiler scripts

Our requirements:
— Support as many configurations as reasonably possible
— Enable and disable via software module
— Transparent for users (no need for different compilers or link options)

=  We experimented with multiple deployment methods during this study

Our plan moving forward is to use the PE_PRODUCT_LIST mechanism

— This is a set of environment variables that can be used by software modules to specify
additional linker options for the Cray compiler scripts
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Evaluation: end-to-end overhead

After adapting Darshan to the Cray XE6 environment, our next goal was to
evaluate the impact of Darshan on large-scale applications to verify suitability
for production deployment.

=  First experiment: measure end-to-end run time of IOR benchmark writing
and reading 1.5 TiB of data at 12,288 processes
— Includes all Darshan startup, instrumentation, and shutdown costs
— Measured by timing the “aprun” command
— Evaluate both shared-file and file-per-process examples

— |OR configured to use MPI-IO; Darshan instrumented both the MPI-10 and POSIX
API calls

= |ndividual runs are susceptible to variance

= Gathered 20 independent samples for each test case over a four day period
and analyzed the results
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Evaluation: end-to-end overhead

IOR: shared files, collective 1/0, wide striping IOR: file-per-process, default striping
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=  Box plots of 20 samples each indicate no clear Darshan overhead at 12,288
processes relative to normal system variance

= |nsufficient evidence for difference in mean run time (t-test)

= Other observations: variance is significant, and file-per-process access
patterns perform better on Hopper at this scale
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Evaluation: Darshan shutdown costs
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\ |
Deployment: coverage as of March 2013

= Percentage of active users and jobs instrumented per day since initial
Hopper deployment

= Nearing an average of 60% and 30%, respectively, by end of March 2013
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Deployment: user experience

IO Summary from Darshan
Wallclock MB MB Estimated VO Estimated Percent

(secs) Read Written Rate (MB/sec) Time Spentin /O
04-05 04-05

16:04:05|16:06:51 166/590.3| 597.6 355.52 2.01%
= The NERSC web pOrtaI allows Number of Reads Per Size Range
users to interact with their jobs W 0_100
. W 100 _1K
and allocations B 1K 10K
= This screenshot shows I/O | oo
summary information
automatically generated from
Darshan logs for completed jobs
™ PrOVides ra p|d (Wlthln a few Number of Writes Per Size Range
. e Wo 100
minutes) initial feedback on I/O 100 1K
behavior W 1K_10K
B 100K_1M
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Metrics: redundant read traffic

= Administrators can also filter logs using metrics designed to automatically
identify applications that may benefit from tuning assistance

=  We explored three example metrics that can be quickly computed from

Darshan log data

= First example is redundant read traffic: applications that read more bytes of
data from the file system than were present in the file

= Even with caching effects, this type of job can cause disruptive I/O network
traffic through redundant file system transfers

= Candidates for aggregation or collective /0

Summary of matching jobs:

Redundant read threshold

Total jobs analyzed

Jobs matching heuristic

Unique users matching heuristic

Largest single-job redundant read volume

> 1 TiB
261,890
671

37

547 TiB
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Top example

Scale: 6,138 processes
Run time: 6.5 hours
Avg. /0 time per process: 27 minutes

Metric: Read 548.6 TiB of data from a 1.2
TiB collection of read-only files

Used 8 KiB read operations and
generated 457 X redundant read traffic
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Metrics: metadata time ratio

= Percentage of cumulative I/O time spent performing metadata
operations such as open(), close(), stat(), and seek()

= Close() cost can be misleading due to write-behind cache flushing,
but metadata ratio is often a key indicator of inefficient file
organization

=  Most relevant for jobs that performed a significant amount of I/0O

= Candidates for coalescing files and eliminating extra metadata calls
like stat() where possible

Top example
Summary of matching jobs: = Scale: 40,960 processes
Thresholds meta_time /nprocs > 305 ®  Run time: 229 seconds

nprocs > 192 )
metadata_ratio > 25% =  Max. I/O time per process: 103 seconds

Total jobs analyzed 261,890 . ) .

Jobs matching heuristic 252 = Metric: 99% of I/O time in metadata
Unique users matching heuristic 45 :

Largest single-job metadata ratio > 99% operations

= Generated 200,000+ files using 600,000+
write() and 600,000+ stat() calls
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Metrics: small writes to shared files

= Small writes can contribute to poor performance as a result of poor file
system stripe alignment, but there are many factors to consider:

— Writes to non-shared files may be cached aggressively
— Collective writes are normally optimized by MPI-10
— Throughput can be influenced by additional factors beyond write size

= We searched for jobs that wrote less than 1 MiB per operation to shared
files without using any collective operations

= Candidates for collective I/O or batching/buffering of write operations

Top example
Summary of matching jobs: " Scale: 128 processes
Thresholds > 100 million small writes = Run time: 30 minutes
0 collective writes ) )
Total jobs analyzed 261,890 = Max. I/O time per process: 12 minutes
Jobs matching heuristic 220 o o )
Unique users matching heuristic 11 »  Metric: issued 5.7 billion write
Largest single-job small write count 5.7 billion

operations, each less than 100 bytes in
size, to shared files

= Averaged just over 1 MiB/s per process
during shared write phase
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Summary and conclusions

Lessons learned while adapting Darshan for the Cray environment:

= Adapting system tools to the Cray XE6 environment requires consideration of file
system characteristics and environment configuration

= “Minimal overhead” is a moving target! New platforms bring new challenges.
= |/O variance remains a significant factor in I/O performance
= Darshan performance is suitable for full-time production deployment

Deployment experience:

= |tis possible to perform application-level I/O characterization of full-scale
production workloads
= Darshan has been successfully deployed on the Hopper system at NERSC
— Rolled out in stages from November 2012 to February 2013
— 30% of jobs and compute hours instrumented by March 2013
=  Deployment impact:
— Immediate feedback to users on I/O behavior

— Ability to automatically scan jobs using simple metrics to identify applications that need
further assistance
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Future work

=  Continue to improve Darshan

Use system-specific mechanisms for characterization when available
Improve Cray environment integration
Modularization

= Continue to use Darshan data to solve I/O problems

Use metrics to identify and help the users who need it most
More rigorous analysis methods

Improve feedback for users

Broader workload studies
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