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Abstract—I/O performance is an increasingly important factor
in the productivity of large-scale HPC systems such as Hopper,
a 153,216 core Cray XE6 system operated by the National
Energy Research Scientific Computing Center. The scientific
workload diversity of such systems presents a challenge for I/O
performance tuning, however. Applications vary in terms of data
volume, I/O strategy, and access method, making it difficult to
consistently evaluate and enhance their I/O performance.

We have adapted the Darshan I/O characterization tool for
use on Hopper in order to address this challenge. Darshan is an
I/O instrumentation library that collects I/O access pattern in-
formation from large-scale production applications with minimal
overhead. In this paper we present our experiences in deploying
Darshan on the Cray XE6 platform, including performance
evaluation of Darshan with up to 98,304 processes and a case
study of how to identify applications that can benefit most from
I/O performance tuning. Darshan was automatically enabled for
all Hopper users in November 2012 and instruments over 5,000
jobs per day as of April 2013.

I. INTRODUCTION

I/O performance is an increasingly important factor in the
productivity of large-scale HPC systems. I/O performance
is difficult to consistently quantify and understand across
applications, however. This situation is especially for systems
that are used for research in multiple disciplines, such as the
Hopper system at the National Energy Research Scientific
Computing Center (NERSC). Hopper is used by scientists
from a wide array of fields, including physics, materials,
biology, and climate. Applications from these fields vary not
only in the type of data they ingest and generate, but also in
the strategy used to access that data. Instrumenting and tuning
specific applications or benchmarks in this environment is an
important activity, but it provides limited insight across ap-
plication domains. The most effective general way to analyze
the I/O behavior of such a diverse collection of applications is
through the use of lightweight instrumentation tools that can
be deployed to automatically collect data from a wide cross-
section of production jobs.

Darshan is an application-level I/O characterization library
that has been designed to address this need [1]. Darshan in-
struments I/O function calls at the POSIX, MPI-IO, PnetCDF,
and HDF5 level in order to record concise access pattern
information for every file opened by an application. Data is
collected independently at each MPI process using a bounded
amount of memory. When the application shuts down, Darshan
aggregates the data, compresses it in parallel, and writes it to
a single binary-format output file. The resulting output file
does not contain a complete trace of I/O activity from the

job. It instead records a set of counters, cumulative timers,
and histograms for each file that summarize the application’s
access pattern. This data can describe a wide range of I/O
behavior, including the number of files opened, the amount of
data read and written, common access sizes, strided access
patterns, and time spent performing different types of I/O
operations. In previous work we have shown how this data
can be used to perform broad, ongoing analysis of system I/O
behavior [2], and the Argonne Leadership Computing Facility
has made a collection of anonymized Darshan logs available
for public analysis [3]. Darshan has been used to provide data
for automatic tuning efforts as well [4].

In this work we explore the deployment of Darshan on Hop-
per, a 1.28-petaflop Cray XE6 system operated by NERSC.
NERSC provides access to Hopper through multiple allocation
programs in order to support Department of Energy research
as well as the NERSC Initiative for Scientific Exploration
and educational programs. Hopper is used by thousands of
researchers spanning an assortment of scientific domains.
Darshan was evaluated on Cray XE6 systems in a limited
fashion in previous work [5], but that study focused a small
set of workloads without full-scale deployment, tuning, or
application case studies.

Although the Darshan library was designed for portability,
we faced a number of challenges in adapting and tuning Dar-
shan for the Cray XE6 environment on Hopper. In this work
we report on our experiences in preparing Darshan for use in
this environment. We evaluate the performance of Darshan to
confirm that it is suitable for full-time deployment on large-
scale Cray systems. We also explore how data collected with
Darshan can be used to identify candidate applications that
can benefit most from additional I/O tuning.

II. TEST ENVIRONMENT

All experiments and case studies in this work were carried
out on the Hopper Cray XE6 system. Hopper contains 153,216
compute cores and 217 TiB of memory. Multiple file systems
are available to users on Hopper, including a home file system,
two high-performance scratch file systems, a global scratch
file system (visible across multiple computer systems), and
a project data file system. Unless otherwise noted, all Dar-
shan measurements were taken on the second scratch volume
(SCRATCH2), a 1 PiB Lustre file system with 26 I/O servers
(OSSs) and 156 object storage targets (OSTs).

At the time of writing Hopper used version 5.16 of the Cray
Programming Environment (xt-asyncpe-5.16). We used
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Fig. 1. Lustre server CPU utilization and I/O throughput as reported by the Lustre Monitoring Tool (LMT) for an example application accessing large shared
files with Darshan version 2.2.3 in preliminary testing.

this environment unmodified in this study with the exception
that we elected to use cray-mpich2-5.5.5 rather than
the default cray-mpich2-5.6.0 MPI implementation. We
are currently working with Cray Inc. to evaluate and address
a potential performance regression in 5.6.0 that affects an
MPI-IO collective access pattern generated by the Darshan
library. We used version 2.2.6-pre1 of the Darshan library for
all experiments unless otherwise noted.

III. CRAY PLATFORM CHALLENGES

The Cray Programming Environment exhibits the following
notable characteristics from a Darshan instrumentation per-
spective:

• Support for PGI, Pathscale, Cray, Intel, and GNU com-
pilers

• Applications statically linked by default, though dynamic
linking is also supported

• Compilation invoked through a set of unified compiler
scripts (cc, ftn, and CC)

• Integrated support for PnetCDF and HDF5 high-level I/O
libraries

In order to ensure the most coverage, we focused on
supporting static compilation using each of the five supported
compiler suites. The static instrumentation method used by
Darshan relies on linker function wrapping options and the
MPI profiling interface (PMPI), both of which require link-
time instrumentation. We used customized compiler scripts to
insert instrumentation for the experiments performed in this
paper, but future versions of Darshan will leverage the Cray
PE_PRODUCT_LIST mechanism instead. Software modules
can use the PE_PRODUCT_LIST environment variable to
specify additional linker and library options to be used by
the standard Cray compiler scripts at compile time.

A. Lustre file system tuning

The initial integration tests of Darshan on Hopper were
carried out with Darshan version 2.2.3. Using this version
of Darshan, we discovered that a subset of applications that
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Fig. 2. Time required to stat a widely striped 1 GiB file from all processes
simultaneously. There are ten samples at each data point.

used large shared files was suffering from a performance
degradation that had not been evident in previous studies
of applications that used separate files per process [5]. We
used the Lustre Monitoring Tool [6] to further diagnose the
problem. Figure 1 shows the CPU utilization of the Hopper
Lustre servers over time during the execution of an affected
application both with and without Darshan instrumentation.
This server-side CPU utilization indicated that the problem
was not limited to the compute node environment but that
Darshan was also causing an additional workload for the file
system itself.

The source of the problem proved to be that Darshan
was issuing an extra stat() system call each time a file
was opened for the first time on each process. This system
call served three purposes in Darshan: detecting the optimal
transfer size for the file (usually the stripe size in a parallel
file system), detecting the device ID for the mounted file
system (so that the file record could be easily matched against
mounted file systems), and detecting the initial size of the
file at open time. The cost of a stat() system call varies
depending on the file system and the nature of the file being
queried, however. On Hopper, a stat() call to a widely
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Fig. 3. Time required to open and collectively write 700 bytes from
each process with MPI-IO on cray-mpich2 version 5.5.5 as the number
of MPI processes is increased. This graph shows average values over 10
runs for each case. The “with hints” experiments specified MPI-IO hints
romio_no_indep_rw=true and cb_nodes=4.

striped file requires contacting every file server in order to
calculate the current file size. If a large number of processes do
this simultaneously, it can cause a CPU spike on the file servers
and detract from application performance. Figure 2 confirms
the application-level impact of this behavior by showing the
results of a microbenchmark that measures the time required
to concurrently stat a widely striped 1 GiB file as the number
of application processes on Hopper was varied from 192 to
12,288. This experiment shows that the additional stat traffic
implicitly generated by Darshan version 2.2.3 would add up
to 1.7 seconds to the time required to open a file with 12,288
processes.

To address this problem, we modified Darshan to avoid
issuing implicit stat() system calls on newly opened files
as of Darshan version 2.2.4. File records are matched to the
appropriate mount point according to path rather than device
ID. The optimal transfer size for each file is estimated based on
either the type of file system or the results of a fstatfs()
call on the mount point. In future work we intend to investigate
the use of the Lustre library API and other file-system-specific
APIs for this purpose. The proposed xstat() system call
in Linux is also a promising solution, but it is not widely
available at this time. Darshan no longer records the size
of files at open time because there is currently no portably
scalable replacement for this functionality.

B. MPI-IO aggregation

The final component of Darshan that we tuned for use on
Hopper was the mechanism used to write Darshan logs to
disk. Darshan uses MPI-IO and collective write operations
for this purpose. Because Darshan results are typically small
(sometimes only a few hundred bytes per process, even with
unique files on each process), the collective write call benefits
considerably from the MPI-IO collective buffering optimiza-
tion [7]. The Lustre-optimized MPI-IO driver also ensures
that collectively buffered writes are stripe-aligned to further
improve performance [8]. There may still be substantial cost to
simply opening a file on a large number of processes, however,

regardless of how the data is subsequently written. To combat
this, we took advantage of a Darshan features that allows
additional hints to be specified for the collective I/O step,
either at compile time (via the --with-log-hints con-
figure option) or at run time (via the DARSHAN_LOGHINTS
environment variable). The most critical hint to specify in
this case is romio_no_indep_rw, which alerts the MPI-
IO layer that no independent I/O will be performed on the
file handle. In this scenario, MPI-IO can limit the number
of processes that will open a file to only those that will act
as aggregators for collective buffering. We further use the
cb_nodes hint to limit the total number of aggregators to
no more than 4, regardless of the number of processes in
the application. The outcome of these optimizations can be
seen the microbenchmark results shown in Figure 3. This test
measured the amount of time required to collectively open
and then collectively write 700 bytes from each process. The
additional hints reduce the combined cost of these two steps
by over 50% at 12,288 processes.

IV. PERFORMANCE EVALUATION

The preceding section described how Darshan was adapted
and tuned in order to integrate with the Cray Programming
Environment, efficiently collect data at file open time, and
efficiently write results at application exit time. In this section
we evaluate the impact of these optimizations by studying
the end-to-end performance of Darshan for representative
application workloads.

A. End-to-end overhead

Our first goal in performance evaluation was to measure the
end-to-end execution-time overhead introduced by Darshan,
including any startup costs, instrumentation costs, and log
output costs. We chose to use version 2.10.3 of the IOR
benchmark for this purpose. IOR is a synthetic benchmark
developed by Lawrence Livermore National Laboratory that
can be configured to emulate a variety of workloads [9]. We
configured IOR to write and read a total of 1.5 TiB of data
using 128 KiB MPI-IO access sizes from 12,288 processes.
Darshan instrumented both the MPI-IO and POSIX API levels
in this example. We tested two variations: a file-per-process
configuration and a shared-file configuration. The file-per-
process configuration utilized the default Lustre settings on
Hopper, which striped each file across 2 OSTs. The shared-
file configuration used interleaved collective I/O to access files
that were striped across all 156 OSTs on the system. In both
configurations we used the reordertasksconstant=1
option in IOR to force each process to read data generated
by a different process.

Previous studies have indicated that storage systems at this
scale may experience a high degree of performance variance
across runs [2], [10], [11]. Variance can stem from a variety
of sources, including hardware performance fluctuations, inter-
process contention, and interjob contention. These fluctuations
make it difficult to isolate the overhead of lightweight I/O
instrumentation tools in the context of a production system.
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Fig. 4. Execution time of IOR benchmark with 12,288 processes. IOR was configured to read and write a total of 1.5 TiB of data using MPI-IO operations
with an access size of 128 KiB in both cases. The shared-file example used an interleaved access pattern with collective I/O and file striping set to use all
156 OSTs. Each box plot summarizes 20 independent samples.

We collected multiple independent samples in an attempt to
mitigate this effect. We submitted 20 independent jobs in
each of four sample groups: IOR shared files with Darshan,
IOR shared files without Darshan, IOR file-per-process with
Darshan, and IOR file-per-process without Darshan. We al-
ternated between all four configurations to submit a total of
80 independent jobs between March 14 and March 18, 2013.
The experimental jobs never overlapped with each other, but
we had no control over the workload generated by other
users on the system. For each job we collected the run
time of the IOR executable by timing the aprun command
within the job script. This ensured that we captured the entire
benchmark execution time including startup and shutdown but
not including job scheduling or node preparation overhead.

Figure 4(a) summarizes the results of this experiment in
the IOR shared file, collective I/O case using a box plot. Each
box shows the minimum, median, maximum, and Q1 and Q3
quartiles across 20 sample measurements. In this configuration
there were no outliers, but there is a wide variation from 268
seconds to 490 seconds for the minimum and maximum times
across all data points, meaning that the slowest IOR run was
nearly 83% slower than the fastest IOR run. We observed
similar variability whether or not Darshan was used.

Figure 4(b) summarizes the IOR execution time in the file-
per-process configuration. In this case, the IOR runs that used
Darshan appear to exhibit lower Q3 and maximum values, but
there were three distinct outliers in that sample set with a
value greater than Q3 + 1.5 ∗ IQR. The fastest and slowest
runs were 148 and 379 seconds, respectively, meaning that
the slowest execution time was over 2.5 times slower than the
fastest execution time.

Variability in I/O performance makes it difficult to draw any
conclusions about overhead from the box plots themselves.

TABLE 1
95% CONFIDENCE INTERVAL FOR THE DIFFERENCE IN MEAN IOR
EXECUTION TIME BETWEEN SAMPLES THAT USED DARSHAN AND

SAMPLES THAT DID NOT

Benchmark Type Lower Range (s) Upper Range (s)
IOR shared file -42.64472 42.44177
IOR file-per-process -18.27367 57.31462

We therefore used a Welch Two Sample t-test as computed
with R [12] to evaluate the difference in means between
the Darshan and non-Darshan examples for both the IOR
shared file and IOR file-per-process configurations. The 95%
confidence interval for the difference in means in each case
is shown in Table 1. There is not sufficient evidence in either
case to conclude that Darshan caused a change in the mean
performance of IOR in this context.

We note, however, that the IOR file-per-process configura-
tion tends to perform significantly better than the IOR shared-
file configuration on Hopper at 12,288 processes. The file-per-
process configuration exhibits a higher degree of variability,
however.

B. Shutdown time

In the previous section we were unable to measure Darshan
overhead in the context of end-to-end execution time due to
I/O performance variability. We can use microbenchmarks to
investigate the performance of specific mechanisms within
the Darshan library independently, however. From previous
studies [1] we expect the overhead of instrumenting individual
I/O functions to be trivial relative to the cost of file system
access, and in Section III-A we eliminated stat() system
call overhead produced at open() time. The most significant
remaining source of potential overhead is the shutdown cost
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Fig. 5. Darshan data aggregation, compression, and output time for jobs
using shared files. Ten samples are shown for each job size.
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Fig. 6. Darshan data aggregation, compression, and output time for jobs
using unique files on each process. Ten samples are shown for each job size.

associated with Darshan.
Darshan intercepts the MPI_Finalize() function call

in order to collect characterization results from all processes.
At this time, it performs a sequence of collective operations
to reduce the volume of data (by identifying and merging
shared files), compresses remaining data in parallel using
zlib, and writes the resulting data to a single shared file
using MPI-IO. We have constructed a microbenchmark called
darshan-shutdown-bench to measure the cost of these
steps. This microbenchmark does not actually open any any
files at run time. It instead populates the Darshan instru-
mentation system with synthetic file records at each process
to simulate various file usage scenarios. It then triggers the
Darshan shutdown routine and measures the cost of each step.

Figure 5 plots the shutdown time with ten samples at each
scale for two shared file scenarios: one in which each process
simulates accessing a single shared file and one in which each
process simulates accessing a total of 1,024 shared files. Both
the x and y axes are using a log scale. Except for one outlier
at the 24,576 processes, no example took longer than 0.26
seconds to complete even with 98,304 MPI processes. Note
that for globally shared files, all data is reduced to the rank 0
process before being written to disk.

TABLE 2
AVERAGE PERCENTAGE OF TIME SPENT IN DARSHAN SHUTDOWN PHASES

FOR 98,304 PROCESS EXAMPLES

Scenario Total Time Aggregate Compress Store
1 shared file 0.17 s 3.3% 0.1% 95.3%
1,024 shared files 0.24 s 23.1% 9.4% 66.9%
1 file-per-proc 12.27 s 0.2% 0.0% 99.8%
1,024 files-per-proc 24.76 s 0.0% 0.1% 99.8%

Figure 6 shows the results of the same experiments in two
file-per-process scenarios: each process opens one unique file,
and each process opens 1,024 unique files. Unlike the shared
file examples from Figure 5, Darshan is unable to reduce the
total number of file records because they are not shared. We
therefore see that the Darshan shutdown cost grows with the
total number of files accessed. The 1,024 unique files example
at 98,304 files is simulating an application that opened a total
of over 100 million distinct files. This worst-case scenario took
an average of 24.7 seconds for Darshan to record the complete
results.

We note that Darshan shutdown is a one-time cost at the end
of job execution and does not affect performance up to that
point. Darshan will also fall back to a compact, less granular
instrumentation format that no longer distinguishes between
files if more than 1,024 unique files are opened per process,
at which point the shutdown overhead would more closely
resemble the single shared file example. This 1,024 file limit
could be lowered in order to constrain the Darshan overhead
further if applications are expected to routinely open such a
large number of files.

Table 2 summarizes the time spent in each phase of Darshan
shutdown for the 98,304 process examples. The majority of
time is generally spent actually writing data. This step includes
the time needed to create the output file, write all data to it
using collective MPI-IO operations, close the file, and rename
it. The 1,024 shared file case diverges from the others in that
it spends a larger proportion of time aggregating file records,
which is to be expected as it must aggregate all 1,024 file
records across all processes prior to writing results. Although
aggregation accounts for a significant percentage of shutdown
time in this case, it still improves overall performance by
drastically reducing the volume of data to be stored.

V. DEPLOYMENT EXPERIENCE

Darshan is deployed at NERSC on Hopper system as a
module. The Darshan module was loaded as part of the default
environment for all NERSC users starting on November 15,
2012. The initial deployment only instrumented executables
compiled using the PGI compiler. On January 7, 2013, Dar-
shan was enabled for GNU and Intel compilers, and finally on
February 1, 2013, Darshan was enabled for the Cray compiler
as well. Figure 7 shows the percentage active users and number
of jobs logged by Darshan. Figure 8 shows the percentage raw
compute hours logged by Darshan. By the end of March 2013,
the percentage of active users logged reached 60% and the
percentage of compute hours logged reached 30%. The rate



Fig. 7. Percentage of Hopper jobs and active users logged by Darshan. Each
circular marker on the plot shows the percentage of active users that have at
least one job logged by Darshan on a particular day. An active user is defined
as a Hopper user that successfully completes at least one job. Each cross
marker on the plot shows what percentage of jobs are logged by Darshan.

Fig. 8. Percentage of Hopper raw hours logged by Darshan.

of increase in coverage is limited because a large number of
NERSC users are running precompiled executables and do not
frequently recompile.

The Darshan logs are stored in a central location on the
Hopper Scratch Lustre file system. A cron job monitors the
log location and inserts the Darshan aggregate performance
data into a database every five minutes. Every morning the log
files of the previous day are archived. In order to minimize
metadata server contention on the Lustre file system, old logs
are backed up and deleted.

NERSC has a user-accessible web portal that displays in-
formation about completed jobs, which now includes Darshan
statistics when available. The Darshan report for each job
shows a subset of characterization data including the total
data read and written, estimated I/O rate, estimated percentage
of time spent in I/O, and a distribution of read and write
transaction sizes. A screenshot of the Darshan summary from
the NERSC web portal is shown in Figure 9.

We have also implemented a preliminary automatic fil-
tering mechanism to identify inefficient I/O jobs and notify
administrators so that they can proactively help users with I/O
problems.

VI. CASE STUDY

Although data collected using Darshan can be used for a
number of purposes by administrators, researchers, and end-

Fig. 9. NERSC user portal showing Darshan statistics for an example job.

users, one of the most compelling potential use cases is to au-
tomatically identify underperforming applications and provide
guidance on how they might improve their I/O behavior. This
is a daunting task, however, as applications vary considerably
across scientific domains and many factors (some beyond the
user’s control) can influence performance.

In this section we explore three example metrics that can
be used to help identify applications that exhibit suboptimal
I/O behavior. These metrics are computationally simple to
calculate and could be generated immediately following the
completion of a job for near real-time classification. They are
not guaranteed indicators of under-performing applications,
but they can be used to speed the process of identification and
tuning by identifying likely candidates for further inspection.
The example metrics shown here are also not exhaustive; they
are proofs of concept to demonstrate the type of automated
analysis that could be enabled by using production Darshan
characterization. The remainder of this section describes each
metric, applies it to a collection of production logs gathered
between January 1 and March 13, 2013, and investigates the
behavior of an example application that triggered the metric.

A. Redundant I/O traffic

One access pattern that may indicate suboptimal use of
storage resources is the practice of accessing the same data
from the file system multiple times, either by rereading the
same data or rewriting the same data. This may be a valid
access pattern in some cases (e.g., out-of-core algorithms, data
sieving optimizations, and I/O benchmarking), but in other
cases it indicates that an application is making inefficient use
of shared file system resources. Redundant I/O traffic can often
be eliminated through parallel I/O or aggregation strategies.

One category of redundant I/O traffic that can be quickly
identified by Darshan log analysis is the scenario in which an
application reads a volume of data from a file that exceeds
the size of the file. For example, if an application reads



TABLE 3
JOBS IDENTIFIED USING REDUNDANT READ METRIC

Redundant read threshold > 1 TiB
Total jobs analyzed 261,890
Jobs matching metric 671
Unique users matching metric 37
Largest single-job redundant read volume 547 TiB

16 MiB of data from a 1 MiB file, it indicates that the
application is issuing duplicate read operations that could
likely be eliminated in order to improve performance. Darshan
tracks two per-file access pattern characteristics that can help
identify this scenario: the maximum offset that was read from
a file and the total number of bytes read from a file. If the latter
is greater than the former (especially if no data was written
to the file), it indicates the presence of redundant file system
traffic.

We can therefore identify the amount of redundant read
traffic for a given log using the following equation for all
files such that bytes read exceeds max offset read .

nfiles∑
n=1

bytes read −max offset read − 1 (1)

Using this equation, we can rank all jobs instrumented with
Darshan in terms of their estimated volume of redundant read
traffic. Table 3 summarizes the collection of jobs that were
found to generate over 1 TiB of redundant read traffic.

A closer analysis of the top example in this set shows
that it was a physics application that executed on 6,138 MPI
processes for 6.5 hours. This was a read-intensive application:
each process spent an average of almost 27 minutes reading an
aggregate total of 548.6 TiB of data from a collection of files
containing a total of no more than 1.2 TiB of relevant data
according to the maximum offset read from each file. This
indicates that the application may have generated as much as
457 times as much traffic on the I/O network as was strictly
needed to transfer data from storage to compute resources.
The bulk of the redundant read traffic arose from multiple
processes reading the same file, but interestingly there was a
significant amount of duplicate read traffic at a per-process
level as well. Each process read an average of 57% more data
than was present in the file.

The bulk of the data was accessed by using approximately
73 billion 8 KiB read operations, most of which were se-
quential. Data was read from files that averaged 1.1 GiB in
size, with a maximum size of 8.0 GiB. There is no indication
that this application was using an out-of-core algorithm; each
files was accessed exclusively with read-only or write-only
operations. There is also no indication of data sieving activity;
MPI-IO was not used, and the majority of the access sizes
were only 8 KiB in size. Although this application likely ben-
efited extensively from file system caching effects (server-side
caching of frequently read data, and client-side readahead), it
likely did so at the expense of bandwidth and contention on
the I/O network.

TABLE 4
JOBS IDENTIFIED USING METADATA RATIO METRIC

Thresholds meta time / nprocs > 30 s
nprocs ≥ 192

metadata ratio ≥ 25%
Total jobs analyzed 261,890
Jobs matching metric 252
Unique users matching metric 45
Largest single-job metadata ratio > 99%

B. Metadata overhead

In previous studies we have identified that applications that
spend a high percentage of time performing metadata opera-
tions (such as open(), stat(), close(), and seek())
often correlate with low aggregate I/O performance [2]. Dar-
shan tracks the cumulative amount of time spent by each
process in metadata and I/O function calls at both the POSIX
and MPI-IO layer. We can therefore not only report the aggre-
gate amount of time spent performing metadata operations but
also estimate the percentage of total I/O time that was spent
performing metadata operations as follows (using either MPI-
IO or POSIX counters as appropriate for the access method).∑nfiles

n=1 metadata time∑nfiles
n=1 metadata time + IO time

(2)

As in the other metrics listed here, there may be valid
reasons for applications exhibiting high metadata overhead.
I/O cost can also be misreported as metadata cost if the file
system elects to flush data to storage at close() time. In
other cases, high levels of metadata overhead indicate that the
application is simply using an inefficient number of small files
to store its data. Table 4 summarizes the collection of jobs
that spent at least 25% of their I/O time performing metadata
operations, used at least 192 processes (8 compute nodes), and
spent at least an average of 30 seconds per process performing
metadata operations.

Analysis of the top example in terms of metadata ratio
shows that it was a climate application executing on 40,960
processes for about 229 seconds. The process that spent the
most time performing I/O used 103 seconds of that time
performing I/O operations. The job created and wrote to a
total of 204,803 files (5 per process) averaging 406 KiB in
size. Most files were written by using three fwrite() system
calls: two of which were 4 bytes in size (possibly a header or
trailer) and one large write operation. The stat() system
call was also issued three times per file for an aggregate
count of over 614,649 stat calls. The cost of the close()
operations was likely inflated by flushing cached data at close
time. Darshan records the cumulative time for all metadata
operations in a single counter rather than tracking stat()
and close() time separately, so there is no way to discern
the relative contribution of each call to the metadata overhead.
We expect both to be significant, however. Each process spent
an average of over 45 seconds to write less than 2 MiB of
data across five files. Performance could likely be improved by



TABLE 5
JOBS IDENTIFIED USING SMALL INDEPENDENT SHARED WRITE METRIC

Thresholds > 100 million small writes
0 collective writes

Total jobs analyzed 261,890
Jobs matching metric 220
Unique users matching metric 11
Largest single-job small write count 5.7 billion

issuing fewer stat calls and merging the output files generated
by each process if possible.

We also note that of the 252 jobs identified using this
metric, 72 also appear in the list of 671 jobs suspected to
produce significant redundant I/O traffic. The metrics are not
necessarily mutually exclusive.

C. Small independent writes to shared files

The task of identifying suboptimal write-intensive access
patterns is complicated by several factors. I/O performance
may fluctuate naturally based on interjob contention or other
sources of variance, as observed in Section IV-A. Small access
sizes often correlate with poor performance, but this can also
be misleading if the application accesses unique files on each
process and the file system can perform write-behind caching.
MPI-IO collective operations are also capable of aggregating a
large number of small write requests into more efficient access
patterns at the POSIX level.

To identify write patterns that were unlikely to be cached
effectively or benefit from MPI-IO aggregation, we looked for
patterns that involved relatively small write operations (smaller
than the default Lustre stripe size of 1 MiB), without the use
of MPI-IO collective operations, to shared files. Previous work
has shown this access pattern to be suboptimal on Lustre
because of the overhead associated with poor alignment to
stripe boundaries [8]. We found 220 examples of jobs that
issued at least 1 million independent writes smaller than 1
MiB to a shared file. A summary of the matching jobs can be
found in Table 5.

The job that generated the largest number of independent
small writes to a shared file was a turbulence application that
executed on 128 processes for 30 minutes. The slowest process
in the job spent over 12 minutes of that time performing I/O
operations. The application wrote to 7 different globally shared
files. One of them was written using 5.6 billion independent
writes between 0 and 100 bytes in size, while the other six
were written using 2.9 million independent writes between
0 and 100 bytes in size. The application also wrote to a
number of unique files using larger access sizes between 100
KiB and 1 MiB with much better results. Each process wrote
an average of 245 MiB to the unique files with large access
sizes and 280 MiB to the shared files with small access sizes.
The former took an average of of 0.55 seconds per process,
while the latter took an average of 264.67 seconds per process.
This application appears to be a candidate for collective I/O
optimizations when writing to shared files.

VII. RELATED WORK

A number of techniques have been used to analyze I/O
activity on Cray systems, including both storage and server-
side instrumentation. Kim et al. used statistics gathered from
enterprise-class storage devices to uncover characteristics such
as bandwidth distributions, interarrival time distributions, and
correlation between access size and bandwidth on the Spider
storage cluster at Oak Ridge National Laboratory [13]. Uselton
and Ushizima used server-side data for statistical analysis and
correlation to application-level events on the Franklin Cray
XT4 system at NERSC [14]. Uselton et al. have also used
server-side data collection to investigate I/O variability and the
distribution of read and write workloads across multiple file
systems on Franklin [11]. They used recurring 64-process IOR
measurements over the course of a year to gauge variability
for a known application workload.

Event tracing has also been used to analyze application-level
behavior on Cray systems. Shende et al. investigated multiple
I/O interposition techniques in the Tau framework and demon-
strated profiling of the GCRM application at NERSC [15].
Uselton et al. used the IPM-I/O tracing framework to collect
large-scale traces from applications such as MADBench and
GCRM on Franklin and then applied statistical analysis to
convert the events into performance ensembles to isolate
performance bottlenecks [16]. Roth presented the IOT event
tracing tool and used it to characterize the I/O behavior of the
POP and S3D applications on a Cray XT system [17].

Darshan bridges the gap between server-level monitoring
and application-level tracing on Cray systems by capturing
application workload statistics in a manner that is lightweight
enough for full-time production workloads yet still provides
direct insight into the behavior of individual applications.

VIII. CONCLUSIONS

In this work we reported our experiences in tuning and
adapting Darshan to the Cray XE6 environment, including
compiler script integration, avoiding system call overhead, and
optimizing collective I/O. By leveraging these optimizations,
which are now available in public Darshan releases, Darshan
can be enabled on a production Cray system with negligible
overhead relative to system variability for common access pat-
terns with at least 12,288 processes. We further demonstrated
that the fixed cost of writing characterization results from
98,304 processes ranges from 0.26 seconds for jobs that open
a single shared file up to 24.7 seconds for worst-case jobs that
open over 100 million unique files. From these experiments
we conclude that Darshan is suitable for full-time production
deployment on the Cray XE6 platform. This enables a unique
ability to transparently instrument production I/O behavior
on Cray systems with application-level granularity. We also
quantified I/O variability on Hopper for both shared-file and
file-per-process workloads with 12,288 processes as part of our
study. This is an important consideration for I/O researchers to
take into account when measuring I/O performance on large-
scale systems.



Darshan was successfully deployed for all users on the
Hopper system at NERSC in December of 2012. We used
the logs collected on Hopper from January 1 to March 13,
2013, as a case study in exploring metrics for identifying
applications that could benefit from additional I/O tuning
effort. We demonstrated the use of three example metrics to
identify jobs with redundant read patterns, excessive metadata
overhead, or suboptimal shared-file write patterns, finding
significant exemplars in all three cases.

In future work we intend to use metrics such as those
explored in this work to guide improvements in scientific
productivity for production applications. We also plan to
improve the Darshan tool itself by integrating file system-
specific APIs in order to more efficiently gather statistics
relevant to I/O characterization when possible. Darshan will
continue to be released under an open-source license as a
public, production-ready resource for the community.
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