
	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

	

1	

Reliable Computation Using Unreliable
Components  

 
Cray User Group 2013 

May 6-9, 2013 
SAND2013-3311C  

 

Joel O. Stevenson, Robert A. Ballance, John P. Noe, Suzanne M.
Kelly, Jon R. Stearley 

Sandia National Laboratories  
  

Michael E. Davis  
Cray Inc.  

 

With thanks to Anthony Agelastos, Sandia National Laboratories  

Sandia National Laboratories is a multi program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-

AC04-94AL85000.

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Which User Is Using a Shock Absorber?

	

2	

●●
●
●

●●

●

●
●
●

●● ● ●

●
●
●●

●

●

●●
●●●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●●
●
●●●●●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

● ●

●

●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●● ●●
●
●

●

●●●

●

●

●●

●●●● ●●●

●

●
●
●● ●● ●●

●

●●●●● ●●●●

●

●
●● ●●●

●

●●●
●
●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●
●

●

●

●●
●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

● ●

●
●
●●

●
● ●

●

●●

0

720

0

720

0

720

user1
user2

user3

Jul Oct Jan

m
ea

n
da

ily
 ru

n
tim

e
(m

in
)

Figure 4: Top 3 users, average daily run time

timer, an environment variable can be set to trigger
a stack trace, a la STAT, from all MPI ranks when
the job terminates abnormally. When the job’s time
allocation is about to expire, perhaps with a hang
in progress, the workload manager will send a signal.
This signal is considered an abnormal termination
and the stack traces will be collected. There is a
risk that the application will trap the signal and the
stack traces will not provide the true location of the
hang. Of course, ATP can always be enabled to cap-
ture traces of any failure. Due to some compatibility
concerns, Cray does not enable ATP by default.

7 Workload Progress and Re-
work

Jon: discuss work with Jon Cook, and what we need.

7.1 Rework

7.2 Signals and Grace

One goal of high-performance computing is to maxi-
mize simulation throughput. One aspect of this is to
increase the e⇤ciency of the simulation job workflow.
Analysts typically are constrained by a maximum
wall clock time policy associated with their HPC ma-
chines. Allocated time slots are typically 24 to 96
hours in length and a full simulation, which can be
many hundreds of hours, is therefore comprised of
many aggregate simulations. Each aggregate simula-
tion writes checkpoint/restart sets to the file system
during the simulation and dependent aggregate sim-
ulations read the checkpoint/restart sets to resume
calculations. In many cases, the amount of wall clock
time needed for a simulation is dependent upon its
characteristics and is not easily quantifiable, e.g., if
the user(s) require adaptive mesh refinement or for
each iteration to have a specific residual, then the
simulation time can fluctuate greatly. If the simula-

7

Top 3 users over 6 month interval on Cielo	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Perspective

• Researchers, engineers, and system administrators are working
actively to ensure successive generations of large-scale HPC
machines are increasingly resilient to failures

• Adopting the terminology from Snir et al, we define resilience as
“The collection of techniques for keeping applications running to a
correct solution in a timely and efficient manner despite underlying
system faults“

• This presentation focuses on user-level resilience techniques that
build atop system and application level resilience mechanisms

• Since jobs have a propensity to fail, we need a method to shield a
single job execution from perturbing events. The “shock absorber”
can be crafted to handle both failures arising from the run (e.g.
aprun) and from the environment (e.g. moab).

	

3	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Resilience and Error

• In the real world, events that kill a job can arise from many
sources: hardware, software, system reboots, file system
glitches, and even user error

• There are four different sources of job execution- killing
errors: two in the engineering domain, and two in the human
domain

–  pj is the probability of an isolated job failure

–  pr is the probability of system reboot when your job is running

–  puser is the probability of a user error

–  padmin is the probability of system administrator error

• Assuming that your study of M batch submissions is always
running, the probability of failure-free workload during M
job runs is given by

–  Psuccess = ((1 − pj)(1 − pr)(1 − puser)(1 − padmin))M

–  As M increases, this becomes a (vanishingly) small number

	

4	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

The Shock Absorber Pattern

• Better designs, better software, better hardware will likely
reduce many of these probabilities, but we are not there yet.

• The shock absorber evolved to add resilience, at the site,
admin, and user level

• The basic idea in the shock absorber pattern is to wrap the
execution launch command inside a script that can handle
system signals execution errors

	

5	

the right data from the system. For example, on Cielo,
To do (??)ill this in!.

These observations tie back to Petroski’s argument
— if each complex engineering artifact is a hypothesis
about how to build a system, then the system de-
signers need to include su⇤cient information about
how the system is performing to assess whether or
not the hypothesis holds! In our case, we know that
CLE is wise enough to kill jobs when components
fail, but mapping from the component fault to the
job actually killed is non-trivial. Better reporting
from CLE would make it easier to estimate pj and its
contributing factors.

4 The Shock-Absorber Pattern

4.1 Big Picture

Better designs, better software, better hardware will
likely reduce many of these probabilities, but we are
not there yet. The shock absorber pattern evolved to
add resilience, at the site, admin, and user level, to
whatever resilient job execution mechanism is present.

The basic idea in the shock absorber pattern is to
wrap the execution launch command (e.g. aprun, yod,
mpirun, or mpiexec) inside a script that can both
catch and handle system signals (if necessary) and
also trap, assess, and handle execution errors. Figure 1
shows the schematic.

execution launcher Job on mesh

System Events

Shock Absorber

Figure 1: Shock Absorber

Note that the pattern tries to manage events coming
from both the system to the script, and events arising
from the execution command.

A more detailed, but still schematic, version of the
code appears in Figure 4.4. Converting this code to a

maintainable script can be messy, but it is straight-
forward. A more di⇤cult problem is to define and
encapsulate the recoverable errors in an extensible
and sharable format, so that as new errors appear,
they can be automatically propagated into the user’s
world.

4.2 History of the pattern

Sandia has been successfully using this pattern since
the early days of Red Storm (2005). The code even-
tually evolved into ryod.

ryod was designed as a wrapper around yod to ad-
dress issues of resilience. With Release 1.2 of XT3 soft-
ware, users experienced a high failure rate (10–20%)
for yod launches. This was particularly disastrous for
yod executions under PBS. Reasons for failure varied;
the most commonly observed were:

• Load error: an individual node became unrespon-
sive as yod tried to load an app onto it. In some
cases, a subsequent yod on the same set of nodes,
excepting the failed node, would succeed;

• Node failed event: an individual node failed, and
an app was running on it at the time. In some
cases, a subsequent launch of the app on the same
set of nodes, excepting the failed node, would
permit the app to progress further.

The duties of ryod were: 1 Detect the most common
errors in loading, launching, and execution prevalent
on the system; 2 Execute recovery measures where pos-
sible, with the objective of achieving a successful load,
launch, and execution; 3 Log errors to a system-wide
database, in a format for easily generating summary
reports; 4 Be flexible enough to accommodate tuning
by the user and administrator in the face of changing
system conditions.

This latter requirement continues to be important
moving forward; local interpretation and handling of
errors needs to be extensible and customizable, on
both a site and per-application, job, or study basis.

3

s e t s i g n a l h a n d l e r s () ;
outcome = UNKNOWN;
while (n od e s ava i l a b l e (. . .) && t im e l e f t (. . .) && outcome == UNKNOWN) {

try (run job (. . .)) {
catch (a l l d on e ()) { outcome = SUCCESS; break ; }
catch (f a t a l e r r o r ()) { outcome = FATAL; break ; }
catch (r e s t a r t a b l e e r r o r ()) {

// s e t up f o r r e s t a r t & cont inue loop

}
}
switch (outcome) {

SUCCESS: d e c l a r e v i c t o r y () ; break ;
FATAL: bad things happened () ; break ;
GOT SIGNAL: s igna l happened () ; break ;
UNKNOWN: ran ou t o f node s () ; break ;

}

Figure 2: Pseudo-code for shock absorber

on its own. When wait times in the scheduling queue
can typically be several days or longer, fully utiliz-
ing your turn by maximizing application time on the
mesh is very important. You will not make simulation
progress if you go to the end of the queue line every
time your large job is ejected from the mesh due to a
failure/interrupt.
The shock absorber is a strategy/technique that

maximizes ‘application availability/e⇥ciency’ by trap-
ping/identifying system failures and recovering where
possible (i.e. re-launch the application within your
allocation). The shock absorber scripting mechanism
provides a finer level of job control that improves app
availability and work throughput and moves the sim-
ulation forward despite external interrupts. We will
discuss our experience using the shock absorber to
harness a 64K core long-duration (970 hours) single
job, managed as a train of submissions, having many
checkpoints and many restarts.

As shown in Figure 3 , it required 70 runs to achieve
970 hours wall-time for our 64K core job. In a perfect
world it would take 40 runs (24 hours/run). 40% of
the runs completed without error in 24 hours; 43%
of the runs experienced a preventable or recoverable
error; 17% of the runs experienced an unrecoverable
error. It is notable that almost half (43%) of the runs

experienced a preventable or recoverable error. If you
do not employ a shock absorber strategy/technique to
re-launch the application within your allocation, you
will give up a tremendous amount of “mesh time”,
significantly slowing the progress of your job.
The notable metric in Figure 3 is the average run

time before and after deploying the shock absorber.
The first 48 runs were performed without the shock
absorber; the remaining 22 runs were performed with
the shock absorber. The average run time before
deploying the shock absorber was 11 hours, 42 minutes;
the average run time increases by almost 2x to 21
hours, 41 minutes after deploying the shock absorber.
Alternatively, consider the average daily runtime

accumulated by the top 3 users on Cielo during a
recent Capability Campaign as shown in Figure 4.
Which user was using a shock absorber?

6 What to do when all else fails

Not all failures have an obvious signature. Job hangs
may be di⇥cult to distinguish from long computa-
tional times. Application-provided periodic status
messages throughout a computational cycle can pro-
vide assurance that forward progress is being made.

5

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Job Submission with the Shock Absorber

• Jobs submitted using the shock absorber typically
reserve several extra nodes so that if a node falls out, the
job can relaunch without going back through the
scheduler cycle

–  Sizing the number of extra nodes is by trial and error,

however, if every job reserves extra nodes, the overhead can
add up

–  A feature that would be highly useful in the batch system
would be a call, executed from a service node, to request that
additional nodes be added to the current partition. The shock
absorber could request new nodes as needed, rather than
reserving them ahead of time. One could even envision ALPS
doing this for us — when a node is failed in a partition, a new
one could be added!

• The shock absorber needs to maintain state concerning
the number of extra nodes reserved, and the number
used, so that it can detect when it runs out of nodes

	

6	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

What Errors Does the Shock Absorber Handle?

• On Cielo, the generic shock absorber (written as a
bash script) handles three key cases

–  ec_node_failed

–  ec_node_halted

–  nem_gni_error_handler

• If not on a failed node, we manually tie up the node (to
take it out of the partition)

• This error can be detected when the failed node has
reported a gemini error; by trial and error we have
found that it is best to avoid relaunch on that node

	

7	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Resilient aprun

• CLE 4.1 introduced ”resilience features” to the aprun
command. The features allow aprun, when called with the ‘-
R’ option, to retry a job if the job receives either a node
failed or node halted event.

• The resilience aspects of aprun are an important step, but
the initial deployment has two limitations that are
worrisome

–  First, the two errors to be handled seem to be built in. The rules

for relaunch would ideally be configurable in a later version.

–  Second, the initial deployment of resilient aprun does not provide

(internally) for any job cleanup following a failure

–  There are also potential interaction with the node health checker.

	

8	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Experience with the Shock Absorber

	

9	

•  It took 70 runs to
achieve 970 hours
wall-time (14h/
run)

•  In a perfect world
it would take 40
runs (24h/run)

•  40% ran without
error in 24 hours;
43% preventable or
recoverable error;
17% unrecoverable

•  Shock absorber
improves app
availability and
work throughput
(11h42m avg run
time before;
21h41m after)
 Higher blue bars are better (more time on the mesh)	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Other Interesting Topics in the Full Paper

• History of shock absorber pattern

–  SNL has been successfully using this pattern since the

early days of Red Storm (2005). The code evolved into
ryod.

• When potential job hangs are detected, other tools can
be used to capture the job state before a kill signal is
sent

–  On Red Storm, the tool was called fast_where

–  In CLE systems, the comparable tool is STAT (Stack Trace

Analysis Tool)

–  CLE systems also provide the ATP (Abnormal Termination

Processing) tool

• Progress & Rework

–  Workload Progress, Rework, Signals and Grace

	

10	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Recommendations for Users

• Plan for failures right from the start. Use shock
absorbers! They work.

• Keep meticulous records. Knowing the errors that
affect your application, their timing and their
frequency, will help you to adjust your shock absorber.

• Insist that your application team provide you with
good diagnostics. Without clear messages, including
well-documented exit codes, you can't improve your
response.

• Enjoy life when the system handles the failures for
you. As resilience techniques improve, your real" job
should get easier.

	

11	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Recommendations for System Admins

• Implement grace signaling. It takes extra effort to send
a grace signal to each job, especially when the grace
period can be job-specific. However, this is a matter of
scripting.

• Find the root cause for all errors, and maintain a
library of recoverable errors with their app-level
signature.

• Be wary of system changes that affect job submission
scripts. Users employ complicated scripts, so changes
to the user environment may have deep ramifications.

	

12	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Recommendations for System Builders

• Ensure that improvements like aprun -R are extensible
with local knowledge. Adding local knowledge is the
essential growth path for making smarter systems.

• Work to reduce component and system-level outages

• Assess logging data and make sure that job-level

failures (and their cause) can be easily identified and
tracked

–  For example, we'd like to find all the job-killing events,

and which job they killed. That data takes multiple joins
over the data in the current deployment, but we're pretty
sure that there's a place where system software knows
both the error, and the job to be killed.

• Keep building bigger, smarter, and more robust
systems!

	

13	

	

Unclassified Unlimited Release	

Unclassified Unlimited Release	

Conclusions

• Human anticipation and imagination will
always outrun the capabilities of our HPC
systems. No matter how robust and resilient,
errors will happen, and design constraints
will be exceeded.

• The wise user will adapt and employ
techniques like the ones described here to
their own application, system, and
circumstance.

	

14	

