Reliable Computation Using Unreliable Components

Joel O. Stevenson, Robert A. Ballance, J. P. Noe, Suzanne M. Kelly, Jon R. Stearley
Sandia National Laboratories*
Mike Davis, Cray Inc.
SAND-2013-3309C
Unclassified, Unlimited Release

April 23, 2013

Abstract

Based on our experiences over the last year running
32K—64K core simulations on Cielo, a Cray XE6, we
present strategies that we are using to enable large,
long-running simulations to make predictable progress
despite platform component failures. From an appli-
cation perspective, complex systems like Cielo have
multiple sources of failures or interrupts that combine
to make the system appear unstable to users (file sys-
tem issues, node dropouts, transient network errors,
system time, etc.).

As the system experts continue to drive toward the
resolution of the root causes of component failures,
the application developers and users of the system
can mitigate some of the issues by employing scripting
mechanisms that trap and identify failures and then
recover where possible. We will discuss the component
failures that we have experienced and identify those
where recovery has been possible. We will also dis-
cuss the scripting mechanisms for error trapping and
identification, recovery, and re-launch of applications.

1 Perspective

Researchers, engineers, and system administrators are
working actively to ensure successive generations of

*Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL85000.

large-scale HPC machines are increasingly resilient to
failures. Adopting the terminology from Snir et al [17],
we define resilience as “The collection of techniques
for keeping applications running to a correct solution
in a timely and efficient manner despite underlying
system faults.”

This paper focuses on user-level resilience tech-
niques that build atop system and application level
resilience mechanisms. In our experience, most users
need to submit, run, and successfully complete M > 1
jobs in order to gather the data needed for their study.
Within this paper, we treat a job as the unit of batch
queue submission. Each job may include multiple in-
dividual runs (e.g. ‘apruns’, in the case of CLE). Let
us adopt the term study for the set of jobs that require
completion. Each study consists of multiple jobs, and
each job consists of at least one run, as depicted in
Figure [l (We will define 7, 6, and R in Section [5).
Some users manage a long-duration study, managed
as a train of submissions, having many checkpoints
and many restarts. Others need to complete a large
collection of jobs (or trains of jobs) running indepen-
dently. Within a single job, there will be one or more
runs.

Large systems are engineered artifacts, subject to
engineering failures both internal and external. Henry
Petroski [16] argues that the engineering that goes
into a Cray (or other HPC) can usefully be treated
as a “hypothesis” to be tested in the real world. In
that real world, events that kill a job can arise from
many sources: hardware, software, system reboots,

_ < run-killing walit in
runi: T 5 T 9 '(_fj failure batch queue
immediate re-launch run 2: T 8 T I job 2 I
via shock absorber
restart rework run 3: [R T o)
time |
study 1 |

Figure 1: Jobs, runs, and studies

file system glitches, and even user errors. Section 2]
outlines a taxonomy of these sources.

Since runs have a propensity to fail, Section [3]intro-
duces the “shock absorber” pattern of job submission
scripts. This useful design pattern [I1] shields a single
job execution from perturbing events. The purpose of
the shock absorber script is to maximize the produc-
tivity within each job, by handling run terminations
properly. A shock absorber can be crafted to han-
dle failures arising both from the run (e.g. aprun)
and from the environment (e.g. moab). Sandia has
been successfully using this pattern since the early
days of Red Storm, and aspects have recently been
incorporated into the “resilience” feature of aprun.
Section |4] discusses one user’s (Joel’s) experience in
using the shock absorber pattern to run jobs on Cielo,
a 1.33 PF Cray XEG6 located at Los Alamos National
Laboratory (LANL) and operated jointly by LANL
and Sandia National Laboratories under the Alliance
for Computing at Extreme Scale (ACES) partnership
on behalf of the DOE NNSA/ASC program.

What happens when the shock absorber doesn’t
work? Section [f] presents some work done by ACES
and at Sandia to understand rework after a job is
killed, and to minimize the work lost. Section [f] pro-
vides an introduction to using “grace” signals that
warn applications of impending terminations. Sec-
tion [7] briefly discusses the tools at your disposal to
try to figure out what went wrong. This is an im-
portant step, since it may lead to your making the
“shock absorber” smarter and more resilient. Finally
Section [8] provides some high-level recommendations
for your consideration.

2 Resilience and Error

The demands of large scale, and exascale, computing
are leading to renewed interest in resilience techniques.
The frequency of workshops[8} [0} [I7] attests to the
interest in making HPC systems and applications more
resilient to failures. John Daly and his collaborators|T}
3] have investigated application resilience, largely
from the perspective of checkpointing behavior and
rework.

However, as systems grow in size, the applications
grow in size and time as well. Barney Maccabe[I5] of
Oak Ridge National Laboratory once characterized
these as “constant-time applications:” make a ma-
chine 16 times faster, and the user will double the
resolution in 3 dimensions, double the run time, and
the same problem will take just as long to complete as
before. This is why the notion of a study is key: it is
the entire study that has to be efficiently completed,
and no matter how resilient the system, the appetite
for cycles will likely outstrip the resilience mechanism.

There are four different sources of job execution-
killing errors: two in the engineering domain, and two
in the human domain.

In the engineering domain, runs (and jobs) may
succumb due to (i) a localized problem (such as a
sync-flood CPU error) or (ii) due to a system-wide
event. In either case, there are several contributing
factors.

First, individual runs may fail due to a localized
fault, such as a hardware, software, or application
issue. If p; is the probability of an isolated run fail-
ure, we know that p; is a function of three factors:

Djhw the probability of a hardware com-
ponent fault given the job size

Dj,ssw the probability of node-level sys-
tem software fault given the job
size

Dj,app the probability of application fault

given the job size and input pa-
rameters
Second, there’s always the possibility that as your
job is running, the entire system fails. Let p, be
the probability of system reboot when your job is
running. Then p, is a function of four components:

Dr,huw the probability of a system-level
hardware fault

Dr.ssw the probability of a system-level
software fault

Drext the probability of an external fault
(e.g file system, power) that kills
the system, and

Dr.sched the probability that your job is

killed by scheduled system timeﬂ

In the human domain, runs (and jobs) may succumb
due to (i) user error, or (ii) operator error. Let pyser
denote the probability of a user error (including errors
in complicated inputs such as mesh and materials
specifications) and let pygmin denote the probability
of system operator error.

Assuming that your study of M batch submissions
is always running, then, the probability of failure-free
workload during M job runs is given by

= ((1 —pj)(l _pT)(l _puser>(1 _padmin))M

As M increases, this becomes a (vanishingly) small
number.

The engineering numbers and the system adminis-
tration numbers can be empirically estimated given
the right data from the system. However, correlat-
ing job failures back to root (or near-root) causes
continues to be difficult and time-consuming. Error
messages can, and should, be designed with eventual
consumption by automated processes in mind.

psuccess

1 Sites use various scheduling strategies to deal with system
reservations. On Cielo, rather allowing nodes to go idle prior
to a system time reservation, we prefer to let them run as long
as possible. This means that not all jobs will receive their full
increment of time. In addition, jobs may hang, or may be killed
due to preemption.

This observation ties back to Petroski’s argument
— if any complex engineering artifact is actually a
hypothesis about how to build a system, then the
system designers need to include sufficient information
about how the system is performing to assess whether
or not the hypothesis holds! In our case, we know
that CLE is wise enough to kill jobs when components
fail, but the system analysts task of mapping from
the component fault to the job actually killed is non-
trivial. NERSC and Sandia have reported on tools to
accomplish this task via scripting or Splunk[12; [1§],
but better reporting from CLE would make it easier
to estimate p; and its contributing factors. Section
presents an idea for measuring the total overhead of
checkpoint /restart on a study, and some work done
by ACES to minimize rework

3 The Shock-Absorber Pattern

Better designs, better software, better hardware — all
will reduce the numerical value of these probabilities,
but not to zero immediately. The shock absorber
pattern evolved to add resilience at many levels (site,
admin, and user) to whatever resilient job execution
mechanism is present.

The basic idea in the shock absorber pattern is
to wrap the execution launch command (e.g. aprun,
mpirun, or mpiezec) inside a script that can both
catch and handle system signals (if necessary) and
also trap, assess, and handle execution errors. Fig-
ure [2] shows a conceptual view. Note that the pattern

System Events.

Shock Absorber

S8 1

p. o <
d execution launcher Job on mesh
D o) o)

a’ Y

Figure 2: Shock Absorber

tries to manage events coming from both the system
to the script, and events arising from the execution
command.

set_signal_handlers ();

outcome = UNKNOWN;

while (nodes_available (...
try (run_job (...)) {

) && time_left (...) &&

outcome == UNKNOWN) {

catch (all_done()) { outcome = SUCCESS; break; }
catch (fatal_error()) { outcome = FATAL; break; }

catch (restartable_error ()) {

// set up for restart & continue loop

}

switch (outcome) {
SUCCESS: declare_victory (); break;
FATAL: bad-things_happened (); break;
GOTSIGNAL: signal_happened (); break;
UNKNOWN: ran_out_of_nodes (); break;

}

Figure 3: Pseudo-code for shock absorber

A more detailed, but still schematic, version of the
code appears in Figure 8] Converting this code to a
maintainable script can be messy, but it is straight-
forward. A more difficult problem is to define and
encapsulate the recoverable errors in an extensible
and sharable format, so that as new errors appear,
they can be automatically propagated into the user’s
environment.

3.1 History of the pattern

Sandia has been successfully using this pattern since
the early days of Red Storm (2005). The code even-
tually evolved into ryod.

ryod was designed as a wrapper around yod to
address issues of resilience. With Release 1.2 of XT3
software, users experienced a high failure rate (10—
20%) for yod launches. Reasons for failure varied, but
the most commonly observed were:

e Load error: an individual node became unrespon-
sive as yod tried to load an app onto it. In some
cases, a subsequent yod on the same set of nodes,
excepting the failed node, would succeed;

e Node failed event: an individual node failed, and
an app was running on it at the time. In some

cases, a subsequent launch of the app on the same
set of nodes, excepting the failed node, would
permit the app to progress further.

The duties of ryod were to:

e Detect the most common errors in loading,
launching, and execution prevalent on the system,;

e Execute recovery measures where possible, with
the objective of achieving a successful load,
launch, and execution;

e Log errors to a system-wide database, in a format
for easily generating summary reports;

e Be flexible enough to accommodate tuning by the
user and administrator in the face of changing
system conditions.

The fourth requirement continues to be important
moving forward; local interpretation and handling of
errors needs to be extensible and customizable, on
both a site and per-application, job, or study basis.

3.2 Job Submission with the Shock
Absorber

Jobs submitted using the shock absorber typically
reserve several extra nodes so that if a node or blade
falls out, the shock absorber can relaunch a new run
without going back through the scheduler queue. Siz-
ing the number of extra nodes is heuristic: smaller
jobs may need to lock down fewer nodes for a given
runtime. However, if every job reserves extra nodes,
the overhead can add up. In addition, the shock ab-
sorber itself needs to maintain state concerning the
number of extra nodes reserved, and the number used,
so that it can detect when it runs out of nodes.

A feature that would be highly useful in the batch
management system would be a call, executed from
a service node, to request that additional nodes be
added to the current partition. Such a call would
enable the shock absorber to request new nodes as
needed, rather than reserving them ahead of time.
One could even envision ALPS doing this for us; when
a node is failed in a partition, a new one could be
added!

The shock absorber also needs a notion of the time
remaining in the batch job, since it might not make
sense to attempt a restart when there is little time
remaining. Lawrence Livermore National Laboratory
supports a library[d] that enables any application to
query its time limits.

Finally, we recommend configuring (in the sched-
uler) and handling (in the script or the application) a
grace signal that is sent to the job in order to warn
of impending wallclock limits or system shutdowns.
The signal is can be used to gracefully terminate the
application after writing a restart file. This technique
minimizes rework when a job has to be restarted.
Section [6] provides further details.

3.3 What gets handled?

On Cielo, the generic shock absorber (writ-
ten as a bash script) handles three key cases:
(i) ec_node_failed (ii) ec_node_halted, and
(iii) nem_gni_error_handler. If not on a failed
node, we manually tie up the node (to take it out of
the partition). This error can be detected when the

failed node has reported a Gemini error; by trial and
error we have found that it is best to avoid relaunch
on the node that reported the Gemini error.

3.4 Resilient Aprun

CLE 4.1 introduced “resilience features” to the aprun
command[I4]. The features allow aprun, when called
with the —R option, to retry a run if the job receives
either a node failed (ec_node_failed) or a node
halted event (ec_node_halted). In either case, the
user is able to specify the number of nodes that are
consumed from the partition in each cycle.

The resilience aspect of aprun is an important step,
but the initial deployment has two limitations that are
problematic. First, the two errors to be handled seem
to be built in. To handle local errors, like the Gemini
errors on Cielo, one will still need to run the shock
absorber. Second, the initial deployment of resilient
aprun does not provide (internally) for any job cleanup
following a failure. So if cleanup/restart actions are
needed, it will be necessary either to perform that
work from within the application based on the value of
the environment variable ALPS_APP_RELAUNCH, or
to resort to a shock-absorber. There are also potential
file system and application relaunch interactions with
the node health checker[14].

4 Experience with the Shock
Absorber

From an application perspective, complex systems
like Cielo provide multiple sources of slowdowns, in-
terrupts, and failures that combine to make the sys-
tem appear unpredictable and unstable to users. It
is very difficult to get good application throughput
on a large simulation that requires months on the
mesh without an effective strategy to combat node
dropouts, transient network events, etc. One needs a
purposeful strategy to achieve reliable computation
using unreliable components. It won’t just happen
on its own. When wait times in the scheduling queue
can typically be several days or longer, fully utiliz-
ing your turn by maximizing application time on the
mesh is very important. You will not make simulation

progress if you go to the end of the queue line every
time your large job is ejected from the mesh due to a
failure or interrupt.

The shock absorber is a strategy that maximizes
application availability and efficiency by trapping and
identifying system failures and then recovering where
possible (i.e. re-launch the run within your job). The
shock absorber scripting mechanism provides a finer
level of job control that improves app availability and
work throughput and moves the simulation forward
despite external interrupts. We will discuss our expe-
rience using the shock absorber to harness a 64K core
long-duration (970 hours) single study, managed as
a train of job submissions, having many checkpoints
and many restarts.

As shown in Figure[d], it required 70 jobs to achieve
970 hours wall-time for our 64K core job. In a per-
fect world it would take 40 jobs (24 hours/run). In
fact, 40% of the jobs completed without error in 24
hours; 43% of the jobs experienced a preventable or
recoverable error; and 17% of the jobs experienced
an unrecoverable error. It is notable that almost half
(43%) of the jobs experienced a preventable or recov-
erable error. If you do not employ a shock absorber to
re-launch the application within your allocation, you
will give up a tremendous amount of “mesh time”,
significantly slowing the progress of your job.

The notable metric in Figure [4is the average run
time before and after deploying the shock absorber.
The first 48 jobs were performed without the shock
absorber; the remaining 22 jobs were performed using
the shock absorber. The average run time before
deploying the shock absorber was 11 hours, 42 minutes;
the average run time increases by almost 2z to 21
hours, 41 minutes after deploying the shock absorber.

Alternatively, consider the average daily runtime
accumulated by the top 3 users on Cielo during a
recent Capability Campaign as shown in Figure [f
Can you tell which user was using a shock absorber?

5 Rework

Periodic checkpoint /restart is the most widely used
failure mitigation technique. Given a series of runs in
a study using checkpoint/restart (via shock absorber

or chained job submissions), some amount of rework
is performed each time a job starts from checkpoint,
corresponding to computations which were not saved
due to an intervening failure. Although there is much
in the literature on how to compute the checkpoint
interval that minimizes rework (and time to solution)
[3; 6], there is very little in the literature about what
checkpoint intervals are are used in practice, and the
corresponding efficiency of the technique[7]. Note
again Figure [1| which illustrates the relationship be-
tween runs, runs, and studies. Within a given run,
the amount of time between checkpoints is 7, the time
to write a checkpoint is §, and the time to restart
from a checkpoint is denoted by R[6].

Although users know their run-specific checkpoint
intervals, the information is not collected across users;
keeping such a list up to date would be burdensome
and provide limited value. It is possible that check-
points are being written too frequently, resulting in
longer time to solutions due first to non-optimal inter-
vals, but secondly due to filesystem contention leading
to system outages. In the worst case, users respond
by writing checkpoints more frequently, leading to a
vicious cycle with those responsible for filesystems
holding the bag.

The fact that many jobs write checkpoints at regu-
lar intervals provides an opportunity. Now suppose
that applications emitted a syslog () message at the
start and end of writing checkpoints. A simple way
to expose this information would be for rank 0 of syn-
chronous checkpoint applications to syslog () a mes-
sage indicating when they begin writing a checkpoint,
and again when they stop writing the checkpoint.

Administrators could easily identify which runs
were checkpointing at any time (which is often cru-
cial information during filesystem problems!), and
actual checkpointing practice could be studied in-
cluding total I/O time, estimated rework time, and
checkpoint-interval efficiency on both a per-run and
system-aggregate basis.

Communicating via syslog () may not be the
optimal mechanism, but they are simple, available
today, and can be exposed to system-wide log-analysis
tools. The resulting syslog load should be small (if it
is not, that itself will indicate a problem that should
be addressed), and it should provide a signal that

CTH Shock Physics Code
64K cores, ~970 hours total wall time, 62M core-hrs, 19 Cielo Days

U Length of Job (hrs:min)

24:00:00

2500

21:36:00

19:12:00

16:48:00

}'Shock Absorber [2000

14:24:00

1500

2:00:00

9:36:00

1000

7:12:00

Length of Job (hrs:min:sec)

Simulation Time (usec)

4:48:00

ﬂﬂﬂ o H

o *.\'l‘;‘;"‘bé’@i és’&"é‘

ok
S

2 &sﬁf@@e KA

Figure 4: Progress of 64K processing element job

system administrators can use to more proactively
and confidently identify runs that may be hung. For
example, a run that writes hourly checkpoints for 15
hours and then writes nothing for 5 hours is suspect.
Regardless of the mechanism used, a log of check-
point start and stops for all runs on the system would
provide significant operational and research value.

6 Signals and Grace

One goal of high-performance computing is to maxi-
mize simulation throughput. One aspect of this is to
increase the efficiency of the simulation job workflow.
Analysts typically are constrained by a maximum wall
clock time policy associated with their HPC machines.
Allocated time slots are typically 24 to 96 hours in
length and a full study, which can be many hundreds
of hours, is therefore comprised of many aggregate
jobs and runs. Each job writes checkpoint /restart sets
to the file system during the simulation and depen-
dent jobs read the checkpoint /restart sets to resume

calculations. In many cases, the amount of wall clock
time needed for a job is dependent upon its character-
istics and is not easily quantifiable, e.g., if the user(s)
require adaptive mesh refinement or for each iteration
to have a specific residual, then the simulation time
can fluctuate greatly. If the simulation environment
contains the ability to process grace signals, which are
used at Sandia and Los Alamos National Laboratory
(LANL) to communicate that the wall clock limit will
soon be reached, then the analyst can maximize sim-
ulation progress by saving the state of the simulation
just prior to wall clock time and utilize all available
compute cycles. Another benefit with signal handling
is that it provides the HPC machine administrators a
mechanism to gracefully shut down the machine while
minimizing collateral damage on running simulations.

During the 3" quarter of 2012, Sandia standardized
on sending a signal to running simulations with the
purpose of notifying them that their available run time
will end shortly. This follows the LANL standard for
signaling the end of application time. The POSIX

~

N

o
1

TJosn

=
E
o U
-g o0 e o ..ll - an o ®e a» -...- L] oe o (1] 90 000 00 0000 [) (1] 00 .. o0 o []
c O ° : C
E 720 - . a. . . = su.:
—> A o o O J N
.‘g 0- P . o . 2 —.
c
o
C
E 720 - o
w
O - 1 1 1
Jul Oct Jan

Figure 5: Top 3 users, average daily run time. User2 was using a shock absorber

Signal 23, also known as SIGURG, is the default signal
to sent for this notification[I].

For the majority of cases, this notification will be
used to warn the simulation that its wall clock limit
is near. For some cases, however, this signal can be
used by the administrators to nicely stop running
simulations in the event of a system emergency. This
notification will be automatically sent 10 minutes
prior to the wall clock limit being reached. All of the
Sandia-supported queue managers allow overriding
this default setting within the job submission script
or on the command line for cases where 10 minutes
is not sufficient warning. It is also possible to specify
an alternate signal.

Lawrence Livermore National Laboratory (LLNL)
provides a related, but alternative mechanism by way
of their “get remaining time” facility. This library
call allows the application or shell programmer to
query the amount of time remaining in the applica-
tion’s time box, and to take defensive actions such as
checkpointing as appropriate[d].

In a rich environment, both methods can coexist,
and each has specific use-cases distinct from the other.
LLNL is successfully using both on its clusters.

7 When All Else Fails

Not all failures have an obvious signature. Job hangs
may be difficult to distinguish from long computa-
tional times. Application-provided periodic status
messages throughout a computational cycle can pro-
vide assurance that forward progress is being made.
But the question then arises as to what to do next.
Should the job be restarted? Was it perhaps a hung
I/0 operation or transient network congestion? Or
was it an application hang that must be corrected
manually before the job can continue?

Identifying hung runs can be challenging and vari-
ous strategies have been proposed to ease the task[4].
In practice, users have a good sense of which files
should be written when — whether they be applica-

tion logs or checkpoints. The regularity of file op-
erations provides a hint by which to identify hung
runs. Shock absorbers can be programmed to look
for these periodic update messages. For example, the
job submitter can identify the name of a log file to
monitor, along with an expected update interval. If
the “dead man” timer expires, the application can be
terminated.

Once the potential hang is detected, various tools
can be used to capture the job state before a signal
is sent to kill it. On Red Storm, the tool was called
fast_where. It was a simple shell script that could
gather the results of traditional debuggers’ “where”
command and coalesce them quickly (i.e. fast). The
results were text-based which theoretically allowed
scripts to look for outlier /rogue MPI ranks in different
libraries (e.g. MPT or I/O) than the remaining ranks.
In practice, human eyes were necessary to review the
output to determine whether the job needed manual
intervention or could be restarted. In CLE systems,
the comparable tool is STAT (Stack Trace Analysis
Tool)[2]. STAT is very similar to fast_where in that it
coalesces stack traces from all processes in a running
job and places them in a file for later viewing with
STATView. Once collected, the job can be resumed.
If it was a transient error, the job will make progress
and the STAT output can be ignored. If a hang
has occured, STAT can be used a second time which
might help determine if the same signature is found.
At this point the job should not be resumed. The
submitter can review the STAT graphical output and
decide upon the next course of action.

CLE systems also provide the Abnormal Termina-
tion Processing tool (ATP)[5]. Rather than setting
a dead man timer, an environment variable can be
set to trigger a stack trace, a la STAT, from all MPI
ranks when the job terminates abnormally. When the
job’s time allocation is about to expire, perhaps with
a hang in progress, the workload manager will send a
signal. This signal is considered an abnormal termi-
nation and the stack traces will be collected. There is
a risk that the application will trap the signal and the
stack traces will not provide the true location of the
hang. Of course, ATP can always be enabled to cap-
ture traces of any failure. Due to some compatibility
concerns, Cray does not enable ATP by default.

8 Conclusions

Human anticipation and imagination will always out-
run the capabilities of our HPC systems. No matter
how robust and resilient, errors will happen, and de-
sign constraints will be exceeded. The wise user, then,
will adapt and employ techniques like the ones de-
scribed here to their own application, system, and
circumstance. However, we’ll close by summing up our
recommendations for user, for system administrators,
and for the system developers.

8.1 Recommendations for Users

e Plan for failures right from the start. Use shock
absorbers! They work.

e Keep meticulous records. Knowing the errors
that affect your application, their timing and
their frequency, will help you to adjust your shock
absorber.

e Insist that your application team provide you
with good diagnostics. Without clear messages,
including well-documented exit codes, you can’t
improve your response.

e Enjoy life when the system handles the failures
for you. As resilience techniques improve, your
“real” job should get easier.

8.2 Recommendations for System Ad-
mins

e Implement grace signaling. It takes extra effort
to send a grace signal to each job, especially when
the grace period can be job-specific. However,
this is a matter of scripting.

e Find the root cause for all errors, and maintain a
library of recoverable errors with their app-level
signature.

e Be wary of system changes that affect job submis-
sion scripts. Users employ complicated scripts, so
changes to the user environment may have deep
ramifications.

8.3 Recommendations for System

9

Builders

Ensure that improvements like aprun -R are ex-
tensible with local knowledge.Adding local knowl-
edge is the essential growth path for making
smarter systems.

Work to reduce component and system-level out-
ages

Assess logging data and make sure that job-level
failures (and their cause) can be easily identified
and tracked. For example, in this paper, we’d like
to find all the job-killing events, and which job
they killed. That data takes multiple joins over
the data in the current deployment, but we're
pretty sure that there’s a place where system
software knows both the error, and the job to be
killed.

Keep building bigger, smarter, and more robust
systems!

Acknowledgements

The authors want to thank Anthony Agelastos (SNL)
for his work supporting grace signals at SNL, the
Cray/ACES team at LANL and Sandia, and many
coworkers for their contributions to this work.

References

[1]

Anthony M. Agelastos, Robert A. Ballance, and
Mike E. Davis. Sandia signal handling primer.
In preparation., May 2013.

Dorion C. Arnold, Dong H. Ahn, Bronis R.
de Supinski, Gregory L. Lee, Barton P. Miller,
and Martin Schulz. Stack trace analysis for large
scale applications. In Proceedings of the Interna-
tional Parallel and Distributed Processing Sym-

posium, Long Beach, CA, March 2007.

Sarala Arunagiri, John T. Daly, Patricia J. Teller,
Seetharami Seelam, Ron A. Oldfield, Maria Ruiz,

10

and Varela Rolf Riesen. Opportunistic check-
point intervals to improve system performance.

Technical Report UTEP-CS-08-24, 2008.

Robert A. Ballance and Nathan A. DeBardelen.
Non-invasive job progress monitoring: The MoJo
application monitoring tool suite. In LCIT Confer-
ence on High-Performance Clustered Computing,

Pittsburgh, PA, March 2010.

Cray, Inc. Atp 1.6 man pages.
http://docs.cray.com/cgi—-bin/
craydoc.cgi?mode=View; id=sw_
releases—-0fxsp770-1351629007;
idx=man_search;this_sort=title;

g=; type=man; tit1le=ATP%$201.6%20Man%
20Pages, November 2012.

J. T. Daly. A higher order estimate of the opti-
mum checkpoint interval for restart dumps. Fu-
ture Gener. Comput. Syst., 22(3):303-312, 2006.

J. T. Daly, L. A. Pritchett Sheets, and S. E.
Michalak. Application MTTFEvs. platform
MTBF: A fresh perspective on system reliabil-
ity and application throughput for computations
at scale. In Fighth IEEFE International Sympo-
stum on Cluster Computing and the Grid, pages
795-800, 2008.

John Daly, Bob Adolf, Shekhar Borkar, Hathan
DeBardeleben, Mootaz Elnozahy, Mike Heroux,
David Rogers, Vivek Sarkar, Martin Schulz, Marc
Snir, and Paul Woodward. Inter-agency work-
shop on HPC resilience at extreme scale, 2012.

Christopher J. Morrone Donald A. Lipari. Op-
tions for retrieving remaining time under moab.
Technical Report UCRL-SM-228839, Lawrence
Livermore National Laboratory, 2012. Updated,
March 19,2012.

E. N. M. Elnozahy, R. Bianchini, T. ElGhaz-
awi, A.Fox, F. Godfrey, A.Hoisie, K. McKinley,
R. Melhem, J. S. Plank, P. Ranganathan, and
J. Simons. System resilience at extreme scale.
Technical report, Technical report, Defense Ad-
vanced Research Project Agency (DARPA), 2008.

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-0fxsp770-1351629007;idx=man_search;this_sort=title;q=;type=man;title=ATP%201.6%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-0fxsp770-1351629007;idx=man_search;this_sort=title;q=;type=man;title=ATP%201.6%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-0fxsp770-1351629007;idx=man_search;this_sort=title;q=;type=man;title=ATP%201.6%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-0fxsp770-1351629007;idx=man_search;this_sort=title;q=;type=man;title=ATP%201.6%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-0fxsp770-1351629007;idx=man_search;this_sort=title;q=;type=man;title=ATP%201.6%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-0fxsp770-1351629007;idx=man_search;this_sort=title;q=;type=man;title=ATP%201.6%20Man%20Pages

[11]

[12]

[13]

Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Design. 1995.

Woo-Sun Yang Hwa-Chun Wendy Lin, Yun (He-
len) He. Franklin job completion analysis. In Pro-
ceedings of the Cray Users Group Meeting (CUG).
National Energy Research Scientific Computing
Center (NERSC), 2010.

William M. Jones, John T. Daly, and Nathan A.
DeBardeleben. Application resilience: Making
progress in spite of failure. In Eighth IEEFE Inter-
national Symposium on Cluster Computing and
the Grid, pages 789-794, 2008.

Marlys Kohnke. Alps application relaunch. Re-
vision 1.0 (modified 4/5/13), 12 2011.

Arthur B. Maccabe. Personal communication.

Henry Petroski. To Engineer is Human: The
Role of Fuilure in Successful Design. Vintage,
1992.

Marc Snir, Robert W. Wisniewski, Jacob A.
Abraham, Sarita V Adve, Saurabh Bagchi, Pa-
van Balaji, Bill Carlson, Andrew A. Chien, Pedro
Diniz, Christian Engelmann, Rinku Gupta, Fred
Johnson, Jim Belak, Pradip Bose, Franck Cap-
pello, Paul Coteus, Nathan A. Debardeleben,
Mattan Erez, Saverio Fazzari, Al Geist Sriram,
Krishnamoorthy, Sven Leyffer, Dean Liberty,
Subhasish Mitra, Todd Munson, Rob Schreiber,
Jon Stearley, and Eric Van Hensbergen. Address-
ing failures in exascale computing. In prepara-
tion.

Jon Stearley, Robert Ballance, and Lara Bauman.
A state-machine approach to disambiguating su-
percomputer event logs. In Proceedings of the
USENIX Workshop on Managing Systems Auto-
matically and Dynamically (MAD), 2012.

11

	Perspective
	Resilience and Error
	The Shock-Absorber Pattern
	History of the pattern
	Job Submission with the Shock Absorber
	What gets handled?
	Resilient Aprun

	Experience with the Shock Absorber
	Rework
	Signals and Grace
	When All Else Fails
	Conclusions
	Recommendations for Users
	Recommendations for System Admins
	Recommendations for System Builders

	Acknowledgements

