
From Thousands to Millions:

Visual and System Scalability 

for Debugging and Profiling

Mark O’Connor

VP Product Management



2008 2009 2010 2011 2012

Number of Cores in 
Median Top 500 

Cluster

• Parallelism is increasing exponentially in HPC 
clusters (𝑅2~0.95)

• Performance data size and bandwidth 
requirements are increasing exponentially too

• More parallel execution contexts than lines of 
code

• Storage, networking and human visual acuity 
can no longer keep up

Introduction: Bandwidth and Complexity



Trivial 16,000 process wave equation code

Introduction: Exploding Bandwidth

Time to blast 
data through a 

graduate’s 
optic nerve:

9 years

Time to 
transfer 12 

hours of data 
over GigE:

6 days

A bandwidth 
of 133 Gbit/s

1 terabyte of 
perf trace data 

in just 60 
seconds



Record Everything
• Collect as much as 

possible and data mine it 

afterwards

• Use the cluster to analyse 

and mine large data files 

in parallel during analysis

• Implemented by trace-

based tools such as 

Vampir

Performance Analysis Approaches

Statistical Analysis
• Only record data that 

provides:

 Actionable information

 Context for the above

• Example: duration of 16k 

MPI_Sends

 Record the distribution shape

 Record ranks of min / max

• Use the cluster to create 

small report files



Record Everything
• Can sift through and 

analyse in extreme detail 
after one recording

• Shows the inner workings 
of communication 
protocols

• Extremely large trace files

• Analysis may require 
cluster time

• Care must be taken not to 
accidentally add 1000x 
overhead

Strengths and Weaknesses

Statistical Analysis
• Reliable performance 

overview with low (< 5%) 

overhead

• Small trace files (~20Mb)

• Simple to configure, run and 

interpret

• Hides the inner workings of 

communication protocols

• May not contain enough 

data to explain why a line or 

loop is slow



Attacking Visual Scalability

Common 
horizontal axis

Aggregate across 
all processes

Highlight 
imbalance visually

Always refer to 
source code



Record Everything Example

Pick one MPI call and 
view its specific data

Recorded data first, 
source code second

Can see underlying 
Send + Barrier traffic

All waiting for 
process 0?



Statistical Analysis Example

Show distributions 
and min/max ranks

Show per-line 
information

Focus on movement 
through code

Process 0 busy 
computing on line 39



 Able to see cache performance, floating-point or integer 
operations

 … and other MPI key data

Statistical CPU Analysis



Complimentary Approaches

Allinea MAP

• Quick, low-overhead way to characterize 
performance

• See which lines of code are hotspots

• Identify common problems at once

Record one 
hotspot

• Pass more obscure problems to an expert

• Now know which loop to instrument and which 
performance counters should be recorded



Surprising uses for Statistical Analysis

<5% runtime overhead

20Mb output files

No instrumentation needed

Run regularly – or in regression tests

Keep XML output files in source control



Success with Allinea MAP

“Experience with other profilers 
had left us more confused than 

informed. MAP is the opposite.”

“I found a performance problem 
that I’d been chasing for 3 weeks 
on my very first run”

“We got a 20% speed 
improvement in just 3 days”



 World-class scalability

 Shares Allinea DDT tree architecture –

proven beyond Petascale

 Data is merged on the cluster: no huge files.

Integrated with Allinea DDT



Allinea DDT at Scale

Full scale on Blue 
Waters

•Full interactive GUI at 
700,000+ processes, 30x 
faster than required

•“We can ramp up and 
down and not only pay 
for the largest possible 
case”

Full Cray Support

• “Allinea has proven a 
great partner on 
multiple installations”

• “Known for its 
scalable performance 
and interface”

Full scale on Titan

•“The transition has 
been smoother than 
previously thought 
possible”

•“DDT is tightly-
integrated into the Cray 
programming 
environment”



Use Allinea MAP to find a bottleneck

Flick to Allinea DDT to understand it

Compare variables, expressions, call paths

High memory usage? Use DDT to find out why

Common interface and settings files

Unified Products: DDT + MAP



Thank-you! Any Questions?

Try Allinea MAP and Allinea DDT for yourself: 

www.allinea.com


