
Cray’s Implementation of
LNET Fine Grained Routing

CUG 2013

Mark Swan, Cray Inc.

Nic Henke, Xyratex International Inc.

Introduction

• LNET Primer

• Background

• Flat LNET

• LNET Fine Grained Routing

• Bandwidth matching

• The Complexity Issue

• Complexity Reduction

• Cray LNET Configuration and Validation Tool (CLCVT)

• Other live validation

• Future Work

• My LNET routers are where?

• My LNET IB network looks like what?

• There is something other than Cray Sonexion?

2

LNET Primer
Background

• LNET is the Lustre NETworking layer

• LNET routers are the bridge between Cray’s high speed network (SeaStar,

Gemini, Aries) and external Lustre servers (Infiniband).

• LNETs define what pool of LNET routers can be used to communicate

with a given MGS, MDS, or OSS.

3

LNET Primer
Flat LNET

• All external Lustre servers (MGS, MDS, OSSs) are assigned to the same

LNET.

• Flat LNET is used by esLogin and “whitebox” clients.

• All LNET routers are used round-robin to access any of the Lustre servers.

• No preferred pathways.

• Works just as good as Fine Grained Routing at very small scale.

• Some paths are high performance (when the LNET routers are plugged

into the same Infiniband leaf as the server).

• Some paths are horrible (multiple hops across Inter-Switch-Links (ISLs)

between Infiniband switches).

• For large numbers of routers and servers, you will never achieve maximal

performance.

4

LNET Primer
Flat LNET (cont’d)

5

LNET Primer
Flat LNET (cont’d)

6

LNET Primer
Flat LNET (cont’d)

7

LNET Primer
LNET Fine Grained Routing (FGR)

• More narrowly defines the highest performance pathway from a client

(compute node) to a server (MGS, MDS, OSS).

• Maximizes bandwidth between a set of LNET routers to a set of OSSs so

I/O is driven at highest rates.

• Avoid Inter-Switch-Links (ISLs).

• Scales perfectly (as far as we can tell).

• Not a Sonexion-only solution.

8

LNET Primer
LNET FGR (cont’d)

9

LNET Primer
LNET FGR (cont’d)

10

18
 P

or
t T

oR
S

w
itc

h 18 P
ort T

oR
S

w
itch 18

 P
or

t T
oR

S
w

itc
h 18 P

ort T
oR

S
w

itch

OSS 0

OSS 2

OSS 4

OSS 6

OSS 8

OSS 10

MGS MDS

OSS 11

OSS 9

OSS 7

OSS 5

OSS 3

OSS 1 OSS 12

OSS 14

OSS 16

OSS 18

OSS 20

OSS 22 OSS 23

OSS 21

OSS 19

OSS 13

OSS 15

OSS 17

External many-port switches

18
 P

or
t T

oR
S

w
itc

h 18 P
ort T

oR
S

w
itch

OSS 24

OSS 26

OSS 28

OSS 30

OSS 32

OSS 34 OSS 35

OSS 33

OSS 31

OSS 25

OSS 27

OSS 29

Meta data LNET router nodes

User data LNET router nodes User data LNET router nodes User data LNET router nodes

LNET Primer
Bandwidth matching

11

1 2 3 4 5 6

Sonexion-

1600 OSS
3.0 6.0 9.0 12.0 15.0 18.0

Cray XE LNET

Router
2.6 5.2 7.8 10.4 13.0 15.6

Cray XC30

LNET Router,

single HCA

5.5 11.0 16.5 22.0 27.5 33.0

Cray XC30

LNET Router,

dual HCA

4.2 8.4 12.6 16.8 21.0 25.2

* Rates are in GigaBytes per second (GB/s)

The Complexity Issue

• Scale

• 10s to 100s of hosts, at least 2x that for cable endpoints

• For each host we need multiple pieces of information

• Numbers Are Confusing

• 172.16.4.3, 172.16.4.4, 172.16.4.5, 172.16.4.6

• 172.16.4.3, 172.15.4.4, 172.16.5.4, 172.16.4.5

• Formats

• ibnetdiscover

• [4] "H-0002c9030052bc2c"[1](2c9030052bc2d) # "yellow04 HCA-1" lid

71 4xQDR

• When Things Go Wrong

• Actual vs Intended vs Recorded Intentions

12

Complexity Reduction
Cray LNET Configuration and Validation Tool (CLCVT)

• Simple and descriptive input file format

• Understands Cray Sonexion IB switch configuration

• Handles multiple Cray clients connected to multiple Sonexion file systems

• Generates secondary routes for LNET groups

• Generates appropriate “lnet.conf” file contents for each system

• Generates a cable table

• Performs live validation of IB connectivity

• Performs live validation of LNET group membership

• Performs live validation of LNET destinations (i.e., cable check)

13

Complexity Reduction
CLCVT (cont’d)

[info]

clustername = snx99999n

SSU_count = 2

clients = mark

[mark]

lnet_network_wildcard = gni0:10.128.*.*

o2ib1000: c0-0c2s2n0, c0-0c2s2n1, c0-0c2s2n2, c0-0c2s2n3

o2ib1002: c0-0c2s2n0, c0-0c2s2n1

o2ib1003: c0-0c2s2n2, c0-0c2s2n3

[snx99999n]

lnet_network_wildcard = o2ib0:10.10.100.*

o2ib1000: snx99999n002, snx99999n003 ; MGS and MDS

o2ib1002: snx99999n004, snx99999n006 ; OSSs 2/4

o2ib1003: snx99999n005, snx99999n007 ; OSSs 3/5

14

Future Work

• Application I/O could potentially benefit from knowing where [in the file

system] their data exists and which LNET routers service those OSTs. The

application placement tool would need to understand this information

and place the application (or pieces of it) near the appropriate LNET

router nodes.

• CLCVT could provide better live validation if it understood the IB

topology.

• CLCVT could do live validation on the server side too.

• CLCVT is mainly used for FGR implementations for Cray Sonexion and

could benefit from understanding other Lustre implementations such as

Cray esFS.

15

Thank you

