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Abstract—External Lustre file systems, as deployed on Cray
XE and XC30 systems, must coordinate the connectiyi of
compute and service nodes on the Cray high speed twerk,
LNET router nodes that move data between the high peed
network and the external Infiniband network, and mda-data
storage servers (MDS) and object storage servers §3) on the
Infiniband network. While simple configuration schemes exist
for getting the file system mounted and functionalmuch more
complicated schemes must sometimes be used to obtahe
greatest performance from that file system.

Work by the Oak Ridge National Laboratory (ORNL)
introduced the concept of Fine Grained Routing (FGR where
optimal pathways are used to transport data betweemompute
nodes and OSSs. This scheme minimizes the number dfips,
backplane hops, and Inter-Switch-Links along that jath all of
which can function as bottlenecks and have a negaé effect on
performance. Understanding the concepts of how topply FGR
is relatively straightforward. Even implementing FGR on a
small external Lustre file system is manageable by human.
However, very large installations that employ FGR an contain
thousands of compute and service nodes, hundreds @NET
router nodes, and hundreds of Lustre servers. A hman can
easily be lost in a sea of IP addresses and NID nbsrs.

Cray has developed tools to aid in configuring FGR
installations of all sizes, doing what computers doery well:
converting human readable and understandable configration
information into a sea of numbers. The tool also grforms live
validation of the resulting configuration, providing a
straightforward diagnosis of the inevitable mistake during
installation and failing hardware during the lifecycle of the
machine.

This paper will provide a brief history of FGR, why Cray uses
FGR, tools Cray has developed to aid in FGR configations,
analysis of FGR schemes, performance characterisicand some
interesting visual analysis.

I.  LNET PrRIMER

A. Background

LNET, by definition, is the Lustre Networking layett is
responsible for transporting data between Lustientd and
Lustre servers. LNET router nodes, when used iayCr
systems, are responsible for routing Lustre messhgaveen
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the Cray High Speed Network (HSN) (where the commatde
Lustre clients exist) and the Infiniband (IB) netlw@where the
Lustre servers exist). LNET router nodes are tagyool of
available resources that provide data connecthétyveen the
two different physical networks.

B. Flat LNET

In a traditional implementation of an external lrasfile
system, all LNET router nodes have connectivityetery
Lustre server. Therefore, when a compute node snéed
communicate with a server, the LNET layer simplpates an
LNET router to use from the entire pool based osinaple
round-robin based algorithm. The same type ofaghid made
when a server needs to communicate with a compode.n
We have been using the term “flat LNET” to descrihés
generic approach since all LNET routers have eguiatity for
each LNET message.

Fig. 1 is a simple depiction of the concept of &at‘f
LNET”. There are many LNET router nodes that cangport
data between many compute nodes and many file msyste
servers.

Fig. 2 is a simple depiction of one possible pdtat ta
compute node might use when communicating with &5.0
In this case, the router node’s IB connection ithim same IB
switch as the OSS and, therefore, has the leastranuf
latency.

Fig. 3 is a simple depiction of another possibléhhat a
compute node might use when communicating with 5.0
In this case, the router node’s IB connection isarothe same
IB switch as the OSS and, therefore, has a muchtere
amount of latency and will be restricted to the ilade
bandwidth on the small number of links between cvés. In
fact, as the system size grows, this suboptimah pall be
chosen more often than not which prevents the egiins
from realizing the full performance available.



C. LNET Fine Grained Routing (FGR)

This added [and unpredictable] latency as commtipita
hops through the IB fabric was the focus of ORNigsearch
papers on LNET FGR [1][2]. The goal of FGR is &mluce
this latency and remove the unpredictability ofadatovement
between compute nodes and Lustre servers. Réthercvery
LNET router node being able to communicate withreve
Lustre server (as in a flat LNET), FGR defines asst of
LNET router nodes that can communicate only wittubset of

many compute nodes

[Jeee] [Teee] [Jeee] Lustre servers.
*e [msen ] Fig. 4 is a simple depiction of LNET FGR. The Kegture
m'"i Ii'“l N"'i to notice is that when a compute node needs to aonoate

with the yellow OSS, it only has a narrow list @flpw LNET
router nodes from which to choose. Likewise wheading to
communicate with the green OSS. The yellow LNEIiiteo
node does not even know how to communicate withgteen
OSS. Therefore, communication from compute nod®%s
will always take the lowest latency path (assumaagrect
cabling, of course).
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Figure 5 depicts a LNET FGR implementation for ayCr Figure 6 is a depiction of LNET FGR as implemented
system connected to small Cray Sonexion-1600 with 2he “home” and “projects” file systems on the Bléaters
Scalable Storage Units (SSUs). In this impleméntatwe  system at NCSA. There are:
form the following LNET groups:

* MGS and MDS (purple)

e 0SS0 and OSS2 (green) which are connected to
the “even” IB switch

e« 0SS1 and OSS3 (red) which are connected to the

e 18 SSUs across 3 racks of Cray Sonexion-1600
¢ MGS and MDS in one LNET group

e Sets of 3 OSSs form an LNET group (12 LNET
groups)
50 LNET router nodes

“odd” IB switch
The Cray system has a limited supply of LNET router 0 Two for the MGS/MDS LNET group
nodes and we have assigned them as follows: o Four for every OSS LNET group
»  All four will handle metadata traffic. As you can imagine, entering the contents of theELN

< Two will handle traffic to and from the “even’ router node’s “/etc/modprobe.conf.local” file invek dozens
0SSs of IB IP agjdresses and.NID numbers. For the B!Lmem
“scratch” file system, this example becomes 10 simeore
« Two will handle traffic to and from the “odd” complex.
OSSs

The entries in the LNET router node’s
“letc/modprobe.conf.local” file might look like ti

options Inet ip2nets="gni0 10.128.*.*;\
02ib1000 10.10.100.[60,61,62,63];\
02ib1002 10.10.100.[60,61];\
02ib1003 10.10.100.[62,63]"
options Inet routes="02ib1000 1 [68,69,90,91]@gni0;
02ib1002 1 [68,69]@gni0;\
02ib1003 1 [90,91]@gni0"

As you can see, the entries are easy to underatahéasy
to get correct when entering the values with a tditor.
However, let’s look at a more complicated impleradinh.
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Fig. 5. LNET FGR for a small Cray Sonexion-1600
'9 Y X Fig. 6. LNET FGR representation for 18 SSU Cray Sonexion



D. Bandwidth matching

How does one decide how many LNET router nodes an

Il.  THE COMPLEXITY ISSUE

“Obscurity is the realm of error- Luc de Clapiet

OSSs should be in each LNET group?
“bandwidth matching”.

Table 1 shows the maximum bandwidth capabilitiethef
Cray Sonexion-1600 OSS and the various Cray LNEero
nodes.

Either because of luck or good, clean living, d fotay
Sonexion-1600 rack consists of 6 SSUs and Cray KIEET
router nodes are four per blade. Therefore, asgjgfour
LNET router nodes for every three Sonexion-1600 ©§%es
us slightly more LNET bandwidth and the peak baidhvi
needs of those OSSs. In general, it is simply dtemaf
assigning enough LNET router nodes to a group ds©8ich
that you have more LNET bandwidth than the peakuarnof
disk 1/O for those OSSs.

TABLE I. BANDWIDTH CAPABILITIES IN GIGABYTES PER SECOND
1 2 3 4 5 6
S ion-1600
°"eg'gg 3.0 6.0 9.0 12.0 15.0 18.0
C XE LNET
A oer 2.6 5.2 7.8 10.4 13.0 15.6
Cray XC30
LNET Router, 55 11.0 16.5 22.0 27.5 33.0
single HCA
Cray XC30
LNET Router, 4.2 8.4 12.6 16.8 21.0 25.2
dual HCA

The answer is

As we can see from the description of Figure 6 thes
numbers and sizes of the file systems and cliemtsv,g
manually configuring a robust FGR implementatiom d¢ax
even the most patient system administrator. Themre be
dozens to hundreds of LNET router NID numbers, LNET
router IB IP addresses, and Lustre server I1B |IResdes, all
combined with hundreds to thousands of networkesabl

Most often, systems are described in terms of aos¢énor
physical location, not the IP address or NIDs thAlET
requires. The need to translate from this upperellev
nomenclature to the addresses needed in LNETrisky &and
time consuming process. Moreover, the nature aidéresses
and NID numbers is that they are sequences ofagirniteger
numbers provides ample room for blurred vision anistaken
typing to inject errors that are easily missedtsy/ttuman eye.

Once an error is introduced into the configuratitarge
configurations are equally complicated to analyze @ebug.

Must cross-reference NID values and IB IP

addresses with hostnames.

Must trace the endpoints of every IB cable in
every IB switch.

Must visually parse output from utilities such as
“ibnetdiscover”.

Must cross-check what was intended with what is
actual.

All of this discovery must be done within multiptets of
disjoint text files that often reach to kilobytees, and are all
of course formatted and described differently. @ftiee tools
used to debug physical network hardware talk inmeaof
Globally Unique Identifiers (GUIDs) or World Widea¥xhes
(WWNSs), providing another step of required transrifmgtion
before becoming usable to resolve issues bestideddn the
normal naming of hosts and nodes. Once all of these
opportunities for error injection are combinedisidifficult to
envision even moderately sized FGR LNET configorsi
being implemented without significant difficulty.

Ill.  COMPLEXITY REDUCTION

By applying FGR to an LNET configuration we add a
nontrivial amount of difficulty. In order to prodiize these
schemes and make them usable without domain espervtie
must find ways to reduce the complexity to the peihere a
human can look at a simple description of the systnd
understand it while utilizing software to removenian error.
As we looked at how to implement FGR on the Bluetaita
system, we saw the necessary building blocks in Ghey
Sonexion.

As you can see in figure 6, each Cray Sonexion-¥&0R
is composed of the following elements.

There are 6 SSUs per rack.



An SSU is made up of two OSSs.
0 One on the left side.

0 One on the right side.

node names.

numbered node names.

There is a separate 1B switch for the left andtrig
sides.

All OSSs on the left are plugged into the IB
switch on the left.

All OSSs on the right are plugged into the IB
switch on the right.

Furthermore, due to bandwidth matching, we canterea

other building blocks using LNET router groups.

The MGS and MDS are placed in their own LNET
group.

sides.

Two groups of three OSSs on the left.

Two groups of three OSSs on the right.

Four LNET routers assigned to each group.

To complete our consistent approach to LNET growgs,
employed a simple and consistent naming scheme.

The MGS and MDS are in a group with suffix
HOOO”.

The OSS LNET groups are given suffixes “002”,
“003”, and so on.

Even numbered LNET groups contain even
numbered OSS hostnames.

Odd numbered LNET groups contain odd
numbered OSS hostnames.

Referring back to figure 6 once again, you willioetthat
there are two LNET groups associated with everyyCra
Sonexion top-of-rack (TOR) IB switch. Thereforeisieasy to
see that the LNET router nodes that are assigneshéoof
those LNET groups has access to the other LNET pJsou
OSSs while still avoiding any inter-switch-linksS(ls). In
addition to the high availability features of th&l5(i.e., Lustre
level failover between the two OSSs), this IB carivity
feature allows us to implement another level oflilsgy. By
configuring the eight LNET routers (that are pluddeto the
same IB TOR switch) to be each other’s secondatlyspave
could lose up to seven of the eight LNET routers still have
connectivity to the LNET groups on that side of thek.

All of these independently operating building blsckot

LNET routers, failed IB switch ports, failed XlOdales in the
mainframe, and even failed OSSs in the file systearely
create local (not global) issues.

In a flat LNET implementation, for instance, losirgy

All OSSs on the left side are given even numbered-NET router connection would mean that there is esom

percentage of bandwidth no longer available toehgre file
system. /O jobs that measure performance woutdnpially

All OSSs on the right side are given odd notice a slight decrease in overall performancettere would

be no obvious indication of where the problem exisAny

hoveraII LNET bandwidth decrease would likewise @ase

each OSSs perceived performance. However, an
implementation of LNET FGR, the decrease of LNET
bandwidth caused by the loss of a LNET router isfioed to

the LNET group to which it belongs. No other LNIgioup
would be affected. Tools that measure 1/0O perforweavould
clearly see a performance decrease in that LNETipgedone
and this greatly aids in problem isolation.

The LNET naming scheme also tricks Lustre into imgp
us through its logging abilities. When connectiviigoblems
occur, Lustre will output a volume of informatiomcluding
the LNET NID of the problematic Lustre client oinger. With
the addition of distinct LNET number for each grpubis

OSS LNET groups are formed on the left and rightinformation can be quickly parsed out to find timea#i group

of hardware that needs further investigation.

Figure 8 shows an interpretation of per-OSS writé wead
completion times. OSSs 6, 8, and 10 are part efséme
LNET group and we can see that their read timesadire
abnormally high. This was due to the loss of oféhe four
LNET router nodes for that group.
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only create building blocks of performance, butoatseate
building blocks of problem isolation. Failed IBbtas, failed

Fig. 7. Localized performance effects



A. Cray LNET Configuration and Validation Tool (CLCVT)

When we set out to design CLCVT, we had the follayi
goals in mind.

Simple and descriptive input file format

Understands Sonexion IB  switch

configuration

Cray

Handles multiple Cray clients connected to
multiple Sonexion file systems

Generates secondary routes for LNET groups

Generates appropriate “Inet.conf” file contents for
each system

Generates a cable table
Performs live validation of IB connectivity
LNET group

Performs live validation of

membership

Performs live validation of LNET destinations
(i.e., cable check)

As an example, the following is the CLCVT inpugfilor a
Cray XE connected to a 6 SSU Cray Sonexion-1600.

[info]
clustername = snx11029n
SSU_count =6

clients = hera

[hera]
Inet_network_wildcard = gni1:10.128.*.*

02ib6000:
02ib6002:
02ib6003:
02ib6004:
02ib6005:

¢0-0c2s2n0, c0-0c2s2n2 ; MGS and MDS

€1-0c0s7n0, c1-0c0s7nl, c1-0c0s7n2, 03708 ; OSSs 2/4/6
¢3-0c1s5n0, ¢3-0c1s5nl, ¢3-0cls5n2, £38M8 ; OSSs 3/5/7
€3-0c1s0n0, ¢3-0c1s0nl, c3-0c1s0n2, &3ahS ; OSSs 8/10/12
€3-0c2s4n0, ¢3-0c2s4n1, c3-0c2s4n2, 234,38 ; OSSs 9/11/13

[snx11029n]
Inet_network_wildcard = 02ib6:10.10.100.*

02ib6000:
02ib6002:
02ib6003:
02ib6004:
02ib6005:

snx11029n002, snx11029n003 ; MGS and MDS
snx11029n004, snx11029n006, snx11029nQ&Ss 2/4/6
snx11029n005, snx11029n007, snx11029nQ&Ss 3/5/7
snx11029n010, snx11029n012, snx11029n0BSs 8/10/12
snx11029n011, snx11029n013, snx11029nQESs 9/11/13

One of the inherent beauties of this configuratide
format is that the majority of its contents canually be
software generated by simply knowing some key asp#dhe

file system, such as:
Number of SSUs

File system “cluster name”

Intended “02ib” base name

The resulting “/etc/modprobe.conf.local” file infoation
that is generated for LNET router nodes.

options Inet ip2nets="gnil 10.128.**;\

02ib6000
10.10.100.[101,102,103,104,105,106,107,108,10911101.12,113,114,11
5,116,117,118];\

02ib6002 10.10.100.[103,105,106,107,108,109,110];\

02ib6003 10.10.100.[111,113,114,115,116,117,118];\

02ib6004 10.10.100.[103,108,106,107,108,109,110];\

02ib6005 10.10.100.[111,113,114,115,116,117,118]"
options Inet routes="02ib6000 1 [68,90]@gnil;\

02ib6002 1 [750,751,752,753]@gn

02ib6003 1 [618,619,628,629]@gn

02ib6004 1 [608,609,638,639]@gn

02ib6005 1 [648,649,662,663]@gn

02ib6000 2
[608,609,618,619,628,629,638,639,648,649,662,663/83,752,753]@gn
i1\

02ib6002 2 [608,609,638,639]@gn

02ib6003 2 [648,649,662,663]@gn

02ib6004 2 [750,751,752,753]@gn

02ib6005 2 [618,619,628,629]@Yn

B. Other Live Validation

The LNET Selftest (LST) tool can be used to perform
LNET bandwidth testing of the resulting LNET groupsST
allows testing of each OSS independently, all OSSs
simultaneously, each LNET group independently, aiid
LNET groups simultaneously. Due to the buildingpadh
nature of FGR, this is yet another tool to helpilgaspot
performance issues that are localized to a LNETmgro

Figure 7 shows the LST results when running two INE
groups simultaneously on a Cray XE connected to $SP
Sonexion-1600.

LNET Group Performance with LST
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Fig. 8. LNET Selftest Results



IV. FUTUREWORK

A. Helping an application understand where LNET routers
are

There can be significant I/O performance improveisiéy
placing certain ranks of an application (e.g., ¢hpsrforming
I/O) near the LNET routers they will be using. §hiould
potentially help take advantage of the six link® iand out of
each Gemini associated with the LNET routers. #reé
exploration are:

e Providing FGR information to the mainframe.
*  Which OSTs belong to which LNET groups
e Which LNET routers service which LNET groups

» Providing directives to the application placemeru t
for how to place ranks in the system.

B. CLCVT becoming topology aware

Clearly, not every customer has the same IB coivilgcas
imposed by an implementation such as that in Figurerhe
use of large external IB switches is not detected @uld be
handled more gracefully. In general, making CLCAWare of
the IB topology is desirable.

C. CLCVT validation on the server side

In the same manner that CLCVT performs live valahat
of LNET group membership and IB connectivity on tBey
mainframe, it could also validate the Luster seside.

D. CLCVT understanding other external Lustre
implementations

CLCVT contains built-in knowledge of the architaetu
nuances of the Cray Sonexion-1600. Other extelrnatre
implementations, such as esFS, will have their awique

characteristics. While some support for altermativ

implementations exist in CLCVT, including flat LNET
enhancements to the tool would make these altegwréasier
to configure and validate.

V. CONCLUSION

For a large LNET configuration, there is a fixedcamt of
complexity; fixed number of LNET routers, OSSs, dBbles,
switches, etc. A flat LNET configuration is easydonfigure
but leaves the difficult tasks of optimization ashebugging to
run-time. LNET FGR, on the other hand, increabedevel of
difficulty related to how all these components aomfigured
and used but greatly reduces the run-time challkeagsociated
with debugging.

CLCVT, in concert with LNET FGR, gives us the beét
both worlds. Ease of configuration and with a# tienefits of
reduced run-time complexity.
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