
Cray’s Implementation of

LNET Fine Grained Routing

Mark Swan
Performance Group

Cray Inc.
Saint Paul, Minnesota, USA

mswan@cray.com

Nic Henke
ClusterStor

Xyratex International Inc.
Saint Paul, Minnesota, USA

nic_henke@xyratex.com

Abstract—External Lustre file systems, as deployed on Cray
XE and XC30 systems, must coordinate the connectivity of
compute and service nodes on the Cray high speed network,
LNET router nodes that move data between the high speed
network and the external Infiniband network, and meta-data
storage servers (MDS) and object storage servers (OSS) on the
Infiniband network. While simple configuration schemes exist
for getting the file system mounted and functional, much more
complicated schemes must sometimes be used to obtain the
greatest performance from that file system.

Work by the Oak Ridge National Laboratory (ORNL)
introduced the concept of Fine Grained Routing (FGR), where
optimal pathways are used to transport data between compute
nodes and OSSs. This scheme minimizes the number of chips,
backplane hops, and Inter-Switch-Links along that path all of
which can function as bottlenecks and have a negative effect on
performance. Understanding the concepts of how to apply FGR
is relatively straightforward. Even implementing FGR on a
small external Lustre file system is manageable by a human.
However, very large installations that employ FGR can contain
thousands of compute and service nodes, hundreds of LNET
router nodes, and hundreds of Lustre servers. A human can
easily be lost in a sea of IP addresses and NID numbers.

Cray has developed tools to aid in configuring FGR
installations of all sizes, doing what computers do very well:
converting human readable and understandable configuration
information into a sea of numbers. The tool also performs live
validation of the resulting configuration, providing a
straightforward diagnosis of the inevitable mistakes during
installation and failing hardware during the lifecycle of the
machine.

This paper will provide a brief history of FGR, why Cray uses
FGR, tools Cray has developed to aid in FGR configurations,
analysis of FGR schemes, performance characteristics, and some
interesting visual analysis.

I. LNET PRIMER

A. Background

LNET, by definition, is the Lustre Networking layer. It is
responsible for transporting data between Lustre clients and
Lustre servers. LNET router nodes, when used in Cray
systems, are responsible for routing Lustre messages between

the Cray High Speed Network (HSN) (where the compute node
Lustre clients exist) and the Infiniband (IB) network (where the
Lustre servers exist). LNET router nodes are then a pool of
available resources that provide data connectivity between the
two different physical networks.

B. Flat LNET

In a traditional implementation of an external Lustre file
system, all LNET router nodes have connectivity to every
Lustre server. Therefore, when a compute node needs to
communicate with a server, the LNET layer simply chooses an
LNET router to use from the entire pool based on a simple
round-robin based algorithm. The same type of choice is made
when a server needs to communicate with a compute node.
We have been using the term “flat LNET” to describe this
generic approach since all LNET routers have equal priority for
each LNET message.

Fig. 1 is a simple depiction of the concept of a “flat
LNET”. There are many LNET router nodes that can transport
data between many compute nodes and many file system
servers.

Fig. 2 is a simple depiction of one possible path that a
compute node might use when communicating with an OSS.
In this case, the router node’s IB connection is in the same IB
switch as the OSS and, therefore, has the least amount of
latency.

Fig. 3 is a simple depiction of another possible path that a
compute node might use when communicating with an OSS.
In this case, the router node’s IB connection is not on the same
IB switch as the OSS and, therefore, has a much greater
amount of latency and will be restricted to the available
bandwidth on the small number of links between switches. In
fact, as the system size grows, this suboptimal path will be
chosen more often than not which prevents the applications
from realizing the full performance available.

Fig. 1. Flat LNET layout

Fig. 2. Flat LNET optimal communication path

Fig. 3. Flat LNET nonoptimal communication path

C. LNET Fine Grained Routing (FGR)

This added [and unpredictable] latency as communication
hops through the IB fabric was the focus of ORNL’s research
papers on LNET FGR [1][2]. The goal of FGR is to reduce
this latency and remove the unpredictability of data movement
between compute nodes and Lustre servers. Rather than every
LNET router node being able to communicate with every
Lustre server (as in a flat LNET), FGR defines a subset of
LNET router nodes that can communicate only with a subset of
Lustre servers.

Fig. 4 is a simple depiction of LNET FGR. The key feature
to notice is that when a compute node needs to communicate
with the yellow OSS, it only has a narrow list of yellow LNET
router nodes from which to choose. Likewise when needing to
communicate with the green OSS. The yellow LNET router
node does not even know how to communicate with the green
OSS. Therefore, communication from compute node to OSS
will always take the lowest latency path (assuming correct
cabling, of course).

Fig. 4. LNET Fine Grained Routing

Figure 5 depicts a LNET FGR implementation for a Cray
system connected to small Cray Sonexion-1600 with 2
Scalable Storage Units (SSUs). In this implementation, we
form the following LNET groups:

• MGS and MDS (purple)

• OSS0 and OSS2 (green) which are connected to
the “even” IB switch

• OSS1 and OSS3 (red) which are connected to the
“odd” IB switch

The Cray system has a limited supply of LNET router
nodes and we have assigned them as follows:

• All four will handle metadata traffic.

• Two will handle traffic to and from the “even”
OSSs

• Two will handle traffic to and from the “odd”
OSSs

The entries in the LNET router node’s
“/etc/modprobe.conf.local” file might look like this:

As you can see, the entries are easy to understand and easy
to get correct when entering the values with a text editor.
However, let’s look at a more complicated implementation.

Fig. 5. LNET FGR for a small Cray Sonexion-1600

Figure 6 is a depiction of LNET FGR as implemented for
the “home” and “projects” file systems on the Blue Waters
system at NCSA. There are:

• 18 SSUs across 3 racks of Cray Sonexion-1600

• MGS and MDS in one LNET group

• Sets of 3 OSSs form an LNET group (12 LNET
groups)

• 50 LNET router nodes

o Two for the MGS/MDS LNET group

o Four for every OSS LNET group

As you can imagine, entering the contents of the LNET
router node’s “/etc/modprobe.conf.local” file involves dozens
of IB IP addresses and NID numbers. For the Blue Waters
“scratch” file system, this example becomes 10 times more
complex.

Fig. 6. LNET FGR representation for 18 SSU Cray Sonexion

options lnet ip2nets="gni0 10.128.*.*;\
 o2ib1000 10.10.100.[60,61,62,63];\
 o2ib1002 10.10.100.[60,61];\
 o2ib1003 10.10.100.[62,63]"
options lnet routes="o2ib1000 1 [68,69,90,91]@gni0;\
 o2ib1002 1 [68,69]@gni0;\
 o2ib1003 1 [90,91]@gni0"

18
 P

or
t T

oR
S

w
itc

h 18 P
ort T

oR
S

w
itch 18

 P
or

t T
oR

S
w

itc
h 18 P

ort T
oR

S
w

itch

OSS 0

OSS 2

OSS 4

OSS 6

OSS 8

OSS 10

MGS MDS

OSS 11

OSS 9

OSS 7

OSS 5

OSS 3

OSS 1 OSS 12

OSS 14

OSS 16

OSS 18

OSS 20

OSS 22 OSS 23

OSS 21

OSS 19

OSS 13

OSS 15

OSS 17

External many-port switches

18
 P

or
t T

oR
S

w
itc

h 18 P
ort T

oR
S

w
itch

OSS 24

OSS 26

OSS 28

OSS 30

OSS 32

OSS 34 OSS 35

OSS 33

OSS 31

OSS 25

OSS 27

OSS 29

D. Bandwidth matching

How does one decide how many LNET router nodes and

OSSs should be in each LNET group? The answer is
“bandwidth matching”.

Table 1 shows the maximum bandwidth capabilities of the
Cray Sonexion-1600 OSS and the various Cray LNET router
nodes.

Either because of luck or good, clean living, a full Cray
Sonexion-1600 rack consists of 6 SSUs and Cray XE LNET
router nodes are four per blade. Therefore, assigning four
LNET router nodes for every three Sonexion-1600 OSSs gives
us slightly more LNET bandwidth and the peak bandwidth
needs of those OSSs. In general, it is simply a matter of
assigning enough LNET router nodes to a group of OSSs such
that you have more LNET bandwidth than the peak amount of
disk I/O for those OSSs.

TABLE I. BANDWIDTH CAPABILITIES IN GIGABYTES PER SECOND

 1 2 3 4 5 6

Sonexion-1600
OSS 3.0 6.0 9.0 12.0 15.0 18.0

Cray XE LNET
Router 2.6 5.2 7.8 10.4 13.0 15.6

Cray XC30
LNET Router,
single HCA

5.5 11.0 16.5 22.0 27.5 33.0

Cray XC30
LNET Router,

dual HCA
4.2 8.4 12.6 16.8 21.0 25.2

II. THE COMPLEXITY ISSUE

As we can see from the description of Figure 6, as the
numbers and sizes of the file systems and clients grow,
manually configuring a robust FGR implementation can tax
even the most patient system administrator. There can be
dozens to hundreds of LNET router NID numbers, LNET
router IB IP addresses, and Lustre server IB IP addresses, all
combined with hundreds to thousands of network cables.

Most often, systems are described in terms of hostname or
physical location, not the IP address or NIDs that LNET
requires. The need to translate from this upper level
nomenclature to the addresses needed in LNET is a tricky and
time consuming process. Moreover, the nature of IP addresses
and NID numbers is that they are sequences of similar integer
numbers provides ample room for blurred vision and mistaken
typing to inject errors that are easily missed by the human eye.

Once an error is introduced into the configuration, large
configurations are equally complicated to analyze and debug.

• Must cross-reference NID values and IB IP
addresses with hostnames.

• Must trace the endpoints of every IB cable in
every IB switch.

• Must visually parse output from utilities such as
“ibnetdiscover”.

• Must cross-check what was intended with what is
actual.

All of this discovery must be done within multiple sets of
disjoint text files that often reach to kilobyte sizes, and are all
of course formatted and described differently. Often the tools
used to debug physical network hardware talk in realms of
Globally Unique Identifiers (GUIDs) or World Wide Names
(WWNs), providing another step of required transmogrification
before becoming usable to resolve issues best described in the
normal naming of hosts and nodes. Once all of these
opportunities for error injection are combined, it is difficult to
envision even moderately sized FGR LNET configurations
being implemented without significant difficulty.

III. COMPLEXITY REDUCTION

By applying FGR to an LNET configuration we add a
nontrivial amount of difficulty. In order to productize these
schemes and make them usable without domain expertise, we
must find ways to reduce the complexity to the point where a
human can look at a simple description of the system and
understand it while utilizing software to remove human error.
As we looked at how to implement FGR on the Blue Waters
system, we saw the necessary building blocks in the Cray
Sonexion.

As you can see in figure 6, each Cray Sonexion-1600 rack
is composed of the following elements.

• There are 6 SSUs per rack.

“Obscurity is the realm of error” - Luc de Clapiers

• An SSU is made up of two OSSs.

o One on the left side.

o One on the right side.

• All OSSs on the left side are given even numbered
node names.

• All OSSs on the right side are given odd
numbered node names.

• There is a separate IB switch for the left and right
sides.

• All OSSs on the left are plugged into the IB
switch on the left.

• All OSSs on the right are plugged into the IB
switch on the right.

Furthermore, due to bandwidth matching, we can create
other building blocks using LNET router groups.

• The MGS and MDS are placed in their own LNET
group.

• OSS LNET groups are formed on the left and right
sides.

• Two groups of three OSSs on the left.

• Two groups of three OSSs on the right.

• Four LNET routers assigned to each group.

To complete our consistent approach to LNET groups, we
employed a simple and consistent naming scheme.

• The MGS and MDS are in a group with suffix
“000”.

• The OSS LNET groups are given suffixes “002”,
“003”, and so on.

• Even numbered LNET groups contain even
numbered OSS hostnames.

• Odd numbered LNET groups contain odd
numbered OSS hostnames.

Referring back to figure 6 once again, you will notice that
there are two LNET groups associated with every Cray
Sonexion top-of-rack (TOR) IB switch. Therefore, it is easy to
see that the LNET router nodes that are assigned to one of
those LNET groups has access to the other LNET group’s
OSSs while still avoiding any inter-switch-links (ISLs). In
addition to the high availability features of the SSU (i.e., Lustre
level failover between the two OSSs), this IB connectivity
feature allows us to implement another level of resiliency. By
configuring the eight LNET routers (that are plugged into the
same IB TOR switch) to be each other’s secondary paths, we
could lose up to seven of the eight LNET routers and still have
connectivity to the LNET groups on that side of the rack.

All of these independently operating building blocks not
only create building blocks of performance, but also create
building blocks of problem isolation. Failed IB cables, failed

LNET routers, failed IB switch ports, failed XIO blades in the
mainframe, and even failed OSSs in the file system merely
create local (not global) issues.

In a flat LNET implementation, for instance, losing a
LNET router connection would mean that there is some
percentage of bandwidth no longer available to the entire file
system. I/O jobs that measure performance would potentially
notice a slight decrease in overall performance but there would
be no obvious indication of where the problem exists. Any
overall LNET bandwidth decrease would likewise decrease
each OSSs perceived performance. However, an
implementation of LNET FGR, the decrease of LNET
bandwidth caused by the loss of a LNET router is confined to
the LNET group to which it belongs. No other LNET group
would be affected. Tools that measure I/O performance would
clearly see a performance decrease in that LNET group alone
and this greatly aids in problem isolation.

The LNET naming scheme also tricks Lustre into helping
us through its logging abilities. When connectivity problems
occur, Lustre will output a volume of information, including
the LNET NID of the problematic Lustre client or server. With
the addition of distinct LNET number for each group, this
information can be quickly parsed out to find the small group
of hardware that needs further investigation.

Figure 8 shows an interpretation of per-OSS write and read
completion times. OSSs 6, 8, and 10 are part of the same
LNET group and we can see that their read times are all
abnormally high. This was due to the loss of one of the four
LNET router nodes for that group.

Fig. 7. Localized performance effects

A. Cray LNET Configuration and Validation Tool (CLCVT)

When we set out to design CLCVT, we had the following

goals in mind.

• Simple and descriptive input file format

• Understands Cray Sonexion IB switch
configuration

• Handles multiple Cray clients connected to
multiple Sonexion file systems

• Generates secondary routes for LNET groups

• Generates appropriate “lnet.conf” file contents for
each system

• Generates a cable table

• Performs live validation of IB connectivity

• Performs live validation of LNET group
membership

• Performs live validation of LNET destinations
(i.e., cable check)

As an example, the following is the CLCVT input file for a
Cray XE connected to a 6 SSU Cray Sonexion-1600.

One of the inherent beauties of this configuration file
format is that the majority of its contents can actually be
software generated by simply knowing some key aspects of the
file system, such as:

• Number of SSUs

• File system “cluster name”

• Intended “o2ib” base name

The resulting “/etc/modprobe.conf.local” file information
that is generated for LNET router nodes.

B. Other Live Validation

The LNET Selftest (LST) tool can be used to perform
LNET bandwidth testing of the resulting LNET groups. LST
allows testing of each OSS independently, all OSSs
simultaneously, each LNET group independently, and all
LNET groups simultaneously. Due to the building block
nature of FGR, this is yet another tool to help easily spot
performance issues that are localized to a LNET group.

Figure 7 shows the LST results when running two LNET
groups simultaneously on a Cray XE connected to a 2 SSU
Sonexion-1600.

Fig. 8. LNET Selftest Results

[info]
clustername = snx11029n
SSU_count = 6
clients = hera

[hera]
lnet_network_wildcard = gni1:10.128.*.*

o2ib6000: c0-0c2s2n0, c0-0c2s2n2 ; MGS and MDS
o2ib6002: c1-0c0s7n0, c1-0c0s7n1, c1-0c0s7n2, c1-0c0s7n3 ; OSSs 2/4/6
o2ib6003: c3-0c1s5n0, c3-0c1s5n1, c3-0c1s5n2, c3-0c1s5n3 ; OSSs 3/5/7
o2ib6004: c3-0c1s0n0, c3-0c1s0n1, c3-0c1s0n2, c3-0c1s0n3 ; OSSs 8/10/12
o2ib6005: c3-0c2s4n0, c3-0c2s4n1, c3-0c2s4n2, c3-0c2s4n3 ; OSSs 9/11/13

[snx11029n]
lnet_network_wildcard = o2ib6:10.10.100.*

o2ib6000: snx11029n002, snx11029n003 ; MGS and MDS
o2ib6002: snx11029n004, snx11029n006, snx11029n008 ; OSSs 2/4/6
o2ib6003: snx11029n005, snx11029n007, snx11029n009 ; OSSs 3/5/7
o2ib6004: snx11029n010, snx11029n012, snx11029n014 ; OSSs 8/10/12
o2ib6005: snx11029n011, snx11029n013, snx11029n015 ; OSSs 9/11/13

options lnet ip2nets="gni1 10.128.*.*;\
 o2ib6000
10.10.100.[101,102,103,104,105,106,107,108,109,110,111,112,113,114,11
5,116,117,118];\
 o2ib6002 10.10.100.[103,104,105,106,107,108,109,110];\
 o2ib6003 10.10.100.[111,112,113,114,115,116,117,118];\
 o2ib6004 10.10.100.[103,104,105,106,107,108,109,110];\
 o2ib6005 10.10.100.[111,112,113,114,115,116,117,118]"
options lnet routes="o2ib6000 1 [68,90]@gni1;\
 o2ib6002 1 [750,751,752,753]@gni1;\
 o2ib6003 1 [618,619,628,629]@gni1;\
 o2ib6004 1 [608,609,638,639]@gni1;\
 o2ib6005 1 [648,649,662,663]@gni1;\
 o2ib6000 2
[608,609,618,619,628,629,638,639,648,649,662,663,750,751,752,753]@gn
i1;\
 o2ib6002 2 [608,609,638,639]@gni1;\
 o2ib6003 2 [648,649,662,663]@gni1;\
 o2ib6004 2 [750,751,752,753]@gni1;\
 o2ib6005 2 [618,619,628,629]@gni1"

IV. FUTURE WORK

A. Helping an application understand where LNET routers
are

There can be significant I/O performance improvements by
placing certain ranks of an application (e.g., those performing
I/O) near the LNET routers they will be using. This could
potentially help take advantage of the six links into and out of
each Gemini associated with the LNET routers. Areas of
exploration are:

• Providing FGR information to the mainframe.

• Which OSTs belong to which LNET groups

• Which LNET routers service which LNET groups

• Providing directives to the application placement tool
for how to place ranks in the system.

B. CLCVT becoming topology aware

Clearly, not every customer has the same IB connectivity as
imposed by an implementation such as that in Figure 6. The
use of large external IB switches is not detected and could be
handled more gracefully. In general, making CLCVT aware of
the IB topology is desirable.

C. CLCVT validation on the server side

In the same manner that CLCVT performs live validation
of LNET group membership and IB connectivity on the Cray
mainframe, it could also validate the Luster server side.

D. CLCVT understanding other external Lustre
implementations

CLCVT contains built-in knowledge of the architectural
nuances of the Cray Sonexion-1600. Other external Lustre
implementations, such as esFS, will have their own unique
characteristics. While some support for alternative
implementations exist in CLCVT, including flat LNET,
enhancements to the tool would make these alternatives easier
to configure and validate.

V. CONCLUSION

For a large LNET configuration, there is a fixed amount of
complexity; fixed number of LNET routers, OSSs, IB cables,
switches, etc. A flat LNET configuration is easy to configure
but leaves the difficult tasks of optimization and debugging to
run-time. LNET FGR, on the other hand, increases the level of
difficulty related to how all these components are configured
and used but greatly reduces the run-time challenges associated
with debugging.

CLCVT, in concert with LNET FGR, gives us the best of
both worlds. Ease of configuration and with all the benefits of
reduced run-time complexity.

VI. REFERENCES
[1] D. Dillow, J. Hill, D. Leverman, D. Maxwell, R. Miller, S. Oral, G.

Shipman, J. Simmons, and F. Wang, “Lessons Learned in Deploying the
World’s Largest Scale Lustre File System,” Proceedings of the Cray
User Group Conference, May 2010.

[2] G. Shipman, D. Dillow, S. Oral, and F. Wang, “The Spider Center Wide
File System; From Concept to Reality,” Proceedings of the Cray User
Group Conference, May 2009.

