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Abstract—External Lustre file systems, as deployed on Cray 
XE and XC30 systems, must coordinate the connectivity of 
compute and service nodes on the Cray high speed network, 
LNET router nodes that move data between the high speed 
network and the external Infiniband network, and meta-data 
storage servers (MDS) and object storage servers (OSS) on the 
Infiniband  network.  While simple configuration schemes exist 
for getting the file system mounted and functional, much more 
complicated schemes must sometimes be used to obtain the 
greatest performance from that file system. 

Work by the Oak Ridge National Laboratory (ORNL) 
introduced the concept of Fine Grained Routing (FGR), where 
optimal pathways are used to transport data between compute 
nodes and OSSs. This scheme minimizes the number of chips, 
backplane hops, and Inter-Switch-Links along that path all of 
which can function as bottlenecks and have a negative effect on 
performance. Understanding the concepts of how to apply FGR 
is relatively straightforward.  Even implementing FGR on a 
small external Lustre file system is manageable by a human.  
However, very large installations that employ FGR can contain 
thousands of compute and service nodes, hundreds of LNET 
router nodes, and hundreds of Lustre servers.  A human can 
easily be lost in a sea of IP addresses and NID numbers. 

Cray has developed tools to aid in configuring FGR 
installations of all sizes, doing what computers do very well: 
converting human readable and understandable configuration 
information into a sea of numbers.  The tool also performs live 
validation of the resulting configuration, providing a 
straightforward diagnosis of the inevitable mistakes during 
installation and failing hardware during the lifecycle of the 
machine. 

This paper will provide a brief history of FGR, why Cray uses 
FGR, tools Cray has developed to aid in FGR configurations, 
analysis of FGR schemes, performance characteristics, and some 
interesting visual analysis. 

I. LNET PRIMER 

A. Background 

LNET, by definition, is the Lustre Networking layer.  It is 
responsible for transporting data between Lustre clients and 
Lustre servers.  LNET router nodes, when used in Cray 
systems, are responsible for routing Lustre messages between 

the Cray High Speed Network (HSN) (where the compute node 
Lustre clients exist) and the Infiniband (IB) network (where the 
Lustre servers exist).  LNET router nodes are then a pool of 
available resources that provide data connectivity between the 
two different physical networks. 

B. Flat LNET 

In a traditional implementation of an external Lustre file 
system, all LNET router nodes have connectivity to every 
Lustre server.  Therefore, when a compute node needs to 
communicate with a server, the LNET layer simply chooses an 
LNET router to use from the entire pool based on a simple 
round-robin based algorithm.  The same type of choice is made 
when a server needs to communicate with a compute node.  
We have been using the term “flat LNET” to describe this 
generic approach since all LNET routers have equal priority for 
each LNET message. 

Fig. 1 is a simple depiction of the concept of a “flat 
LNET”.  There are many LNET router nodes that can transport 
data between many compute nodes and many file system 
servers. 

Fig. 2 is a simple depiction of one possible path that a 
compute node might use when communicating with an OSS.  
In this case, the router node’s IB connection is in the same IB 
switch as the OSS and, therefore, has the least amount of 
latency. 

Fig. 3 is a simple depiction of another possible path that a 
compute node might use when communicating with an OSS.  
In this case, the router node’s IB connection is not on the same 
IB switch as the OSS and, therefore, has a much greater 
amount of latency and will be restricted to the available 
bandwidth on the small number of links between switches. In 
fact, as the system size grows, this suboptimal path will be 
chosen more often than not which prevents the applications 
from realizing the full performance available. 

 



 

Fig. 1. Flat LNET layout 

 

Fig. 2. Flat LNET optimal communication path 

 

Fig. 3. Flat LNET nonoptimal communication path 

 

C. LNET Fine Grained Routing (FGR) 

This added [and unpredictable] latency as communication 
hops through the IB fabric was the focus of ORNL’s research 
papers on LNET FGR [1][2].  The goal of FGR is to reduce 
this latency and remove the unpredictability of data movement 
between compute nodes and Lustre servers.  Rather than every 
LNET router node being able to communicate with every 
Lustre server (as in a flat LNET), FGR defines a subset of 
LNET router nodes that can communicate only with a subset of 
Lustre servers. 

Fig. 4 is a simple depiction of LNET FGR.  The key feature 
to notice is that when a compute node needs to communicate 
with the yellow OSS, it only has a narrow list of yellow LNET 
router nodes from which to choose.  Likewise when needing to 
communicate with the green OSS.  The yellow LNET router 
node does not even know how to communicate with the green 
OSS.  Therefore, communication from compute node to OSS 
will always take the lowest latency path (assuming correct 
cabling, of course). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. LNET Fine Grained Routing 

 

 

 

 



Figure 5 depicts a LNET FGR implementation for a Cray 
system connected to small Cray Sonexion-1600 with 2 
Scalable Storage Units (SSUs).  In this implementation, we 
form the following LNET groups: 

• MGS and MDS (purple) 

• OSS0 and OSS2 (green) which are connected to 
the “even” IB switch 

• OSS1 and OSS3 (red) which are connected to the 
“odd” IB switch 

The Cray system has a limited supply of LNET router 
nodes and we have assigned them as follows: 

• All four will handle metadata traffic. 

• Two will handle traffic to and from the “even” 
OSSs 

• Two will handle traffic to and from the “odd” 
OSSs 

The entries in the LNET router node’s 
“/etc/modprobe.conf.local” file might look like this: 

 

As you can see, the entries are easy to understand and easy 
to get correct when entering the values with a text editor.  
However, let’s look at a more complicated implementation. 

 

 

 

 
Fig. 5. LNET FGR for a small Cray Sonexion-1600 

Figure 6 is a depiction of LNET FGR as implemented for 
the “home” and “projects” file systems on the Blue Waters 
system at NCSA.  There are: 

• 18 SSUs across 3 racks of Cray Sonexion-1600 

• MGS and MDS in one LNET group 

• Sets of 3 OSSs form an LNET group (12 LNET 
groups) 

• 50 LNET router nodes 

o Two for the MGS/MDS LNET group 

o Four for every OSS LNET group 

As you can imagine, entering the contents of the LNET 
router node’s “/etc/modprobe.conf.local” file involves dozens 
of IB IP addresses and NID numbers.  For the Blue Waters 
“scratch” file system, this example becomes 10 times more 
complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. LNET FGR representation for 18 SSU Cray Sonexion 

 

options lnet ip2nets="gni0 10.128.*.*;\ 
  o2ib1000 10.10.100.[60,61,62,63];\ 
  o2ib1002 10.10.100.[60,61];\ 
  o2ib1003 10.10.100.[62,63]" 
options lnet routes="o2ib1000 1 [68,69,90,91]@gni0;\ 
  o2ib1002 1 [68,69]@gni0;\ 
  o2ib1003 1 [90,91]@gni0" 
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D. Bandwidth matching 

 
How does one decide how many LNET router nodes and 

OSSs should be in each LNET group?  The answer is 
“bandwidth matching”. 

Table 1 shows the maximum bandwidth capabilities of the 
Cray Sonexion-1600 OSS and the various Cray LNET router 
nodes. 

Either because of luck or good, clean living, a full Cray 
Sonexion-1600 rack consists of 6 SSUs and Cray XE LNET 
router nodes are four per blade.  Therefore, assigning four 
LNET router nodes for every three Sonexion-1600 OSSs gives 
us slightly more LNET bandwidth and the peak bandwidth 
needs of those OSSs.  In general, it is simply a matter of 
assigning enough LNET router nodes to a group of OSSs such 
that you have more LNET bandwidth than the peak amount of 
disk I/O for those OSSs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I.  BANDWIDTH CAPABILITIES IN GIGABYTES PER SECOND 

 1 2 3 4 5 6 

Sonexion-1600 
OSS 3.0 6.0 9.0 12.0 15.0 18.0 

Cray XE LNET 
Router 2.6 5.2 7.8 10.4 13.0 15.6 

Cray XC30 
LNET Router, 
single HCA 

5.5 11.0 16.5 22.0 27.5 33.0 

Cray XC30 
LNET Router, 

dual HCA 
4.2 8.4 12.6 16.8 21.0 25.2 

II. THE COMPLEXITY ISSUE 

 

As we can see from the description of Figure 6, as the 
numbers and sizes of the file systems and clients grow, 
manually configuring a robust FGR implementation can tax 
even the most patient system administrator.  There can be 
dozens to hundreds of LNET router NID numbers, LNET 
router IB IP addresses, and Lustre server IB IP addresses, all 
combined with hundreds to thousands of network cables. 

Most often, systems are described in terms of hostname or 
physical location, not the IP address or NIDs that LNET 
requires. The need to translate from this upper level 
nomenclature to the addresses needed in LNET is a tricky and 
time consuming process. Moreover, the nature of IP addresses 
and NID numbers is that they are sequences of similar integer 
numbers provides ample room for blurred vision and mistaken 
typing to inject errors that are easily missed by the human eye.  

Once an error is introduced into the configuration, large 
configurations are equally complicated to analyze and debug. 

• Must cross-reference NID values and IB IP 
addresses with hostnames. 

• Must trace the endpoints of every IB cable in 
every IB switch. 

• Must visually parse output from utilities such as 
“ibnetdiscover”. 

• Must cross-check what was intended with what is 
actual. 

All of this discovery must be done within multiple sets of 
disjoint text files that often reach to kilobyte sizes, and are all 
of course formatted and described differently. Often the tools 
used to debug physical network hardware talk in realms of 
Globally Unique Identifiers (GUIDs) or World Wide Names 
(WWNs), providing another step of required transmogrification 
before becoming usable to resolve issues best described in the 
normal naming of hosts and nodes. Once all of these 
opportunities for error injection are combined, it is difficult to 
envision even moderately sized FGR LNET configurations 
being implemented without significant difficulty. 

III.  COMPLEXITY REDUCTION 

By applying FGR to an LNET configuration we add a 
nontrivial amount of difficulty. In order to productize these 
schemes and make them usable without domain expertise, we 
must find ways to reduce the complexity to the point where a 
human can look at a simple description of the system and 
understand it while utilizing software to remove human error.  
As we looked at how to implement FGR on the Blue Waters 
system, we saw the necessary building blocks in the Cray 
Sonexion. 

As you can see in figure 6, each Cray Sonexion-1600 rack 
is composed of the following elements. 

• There are 6 SSUs per rack. 

“Obscurity is the realm of error” - Luc de Clapiers  



• An SSU is made up of two OSSs. 

o One on the left side. 

o One on the right side. 

• All OSSs on the left side are given even numbered 
node names. 

• All OSSs on the right side are given odd 
numbered node names. 

• There is a separate IB switch for the left and right 
sides. 

• All OSSs on the left are plugged into the IB 
switch on the left. 

• All OSSs on the right are plugged into the IB 
switch on the right. 

Furthermore, due to bandwidth matching, we can create 
other building blocks using LNET router groups. 

• The MGS and MDS are placed in their own LNET 
group. 

• OSS LNET groups are formed on the left and right 
sides. 

• Two groups of three OSSs on the left. 

• Two groups of three OSSs on the right. 

• Four LNET routers assigned to each group. 

To complete our consistent approach to LNET groups, we 
employed a simple and consistent naming scheme.   

• The MGS and MDS are in a group with suffix 
“000”.   

• The OSS LNET groups are given suffixes “002”, 
“003”, and so on. 

• Even numbered LNET groups contain even 
numbered OSS hostnames. 

• Odd numbered LNET groups contain odd 
numbered OSS hostnames. 

Referring back to figure 6 once again, you will notice that 
there are two LNET groups associated with every Cray 
Sonexion top-of-rack (TOR) IB switch.  Therefore, it is easy to 
see that the LNET router nodes that are assigned to one of 
those LNET groups has access to the other LNET group’s 
OSSs while still avoiding any inter-switch-links (ISLs).  In 
addition to the high availability features of the SSU (i.e., Lustre 
level failover between the two OSSs), this IB connectivity 
feature allows us to implement another level of resiliency.  By 
configuring the eight LNET routers (that are plugged into the 
same IB TOR switch) to be each other’s secondary paths, we 
could lose up to seven of the eight LNET routers and still have 
connectivity to the LNET groups on that side of the rack. 

All of these independently operating building blocks not 
only create building blocks of performance, but also create 
building blocks of problem isolation.  Failed IB cables, failed 

LNET routers, failed IB switch ports, failed XIO blades in the 
mainframe, and even failed OSSs in the file system merely 
create local (not global) issues. 

In a flat LNET implementation, for instance, losing a 
LNET router connection would mean that there is some 
percentage of bandwidth no longer available to the entire file 
system.  I/O jobs that measure performance would potentially 
notice a slight decrease in overall performance but there would 
be no obvious indication of where the problem exists.  Any 
overall LNET bandwidth decrease would likewise decrease 
each OSSs perceived performance.  However, an 
implementation of LNET FGR, the decrease of LNET 
bandwidth caused by the loss of a LNET router is confined to 
the LNET group to which it belongs.  No other LNET group 
would be affected.  Tools that measure I/O performance would 
clearly see a performance decrease in that LNET group alone 
and this greatly aids in problem isolation. 

The LNET naming scheme also tricks Lustre into helping 
us through its logging abilities. When connectivity problems 
occur, Lustre will output a volume of information, including 
the LNET NID of the problematic Lustre client or server. With 
the addition of distinct LNET number for each group, this 
information can be quickly parsed out to find the small group 
of hardware that needs further investigation. 

Figure 8 shows an interpretation of per-OSS write and read 
completion times.  OSSs 6, 8, and 10 are part of the same 
LNET group and we can see that their read times are all 
abnormally high.  This was due to the loss of one of the four 
LNET router nodes for that group. 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Localized performance effects 

 



A. Cray LNET Configuration and Validation Tool (CLCVT) 

 
When we set out to design CLCVT, we had the following 

goals in mind. 

• Simple and descriptive input file format 

• Understands Cray Sonexion IB switch 
configuration 

• Handles multiple Cray clients connected to 
multiple Sonexion file systems 

• Generates secondary routes for LNET groups 

• Generates appropriate “lnet.conf” file contents for 
each system 

• Generates a cable table 

• Performs live validation of IB connectivity 

• Performs live validation of LNET group 
membership 

• Performs live validation of LNET destinations 
(i.e., cable check) 

As an example, the following is the CLCVT input file for a 
Cray XE connected to a 6 SSU Cray Sonexion-1600. 

 

One of the inherent beauties of this configuration file 
format is that the majority of its contents can actually be 
software generated by simply knowing some key aspects of the 
file system, such as: 

• Number of SSUs 

• File system “cluster name” 

• Intended “o2ib” base name 

The resulting “/etc/modprobe.conf.local” file information 
that is generated for LNET router nodes. 

 

B. Other Live Validation 

The LNET Selftest (LST) tool can be used to perform 
LNET bandwidth testing of the resulting LNET groups.  LST 
allows testing of each OSS independently, all OSSs 
simultaneously, each LNET group independently, and all 
LNET groups simultaneously.  Due to the building block 
nature of FGR, this is yet another tool to help easily spot 
performance issues that are localized to a LNET group. 

Figure 7 shows the LST results when running two LNET 
groups simultaneously on a Cray XE connected to a 2 SSU 
Sonexion-1600. 

 

 

 

 

 

 

 

Fig. 8. LNET Selftest Results 

[info] 
clustername = snx11029n 
SSU_count = 6 
clients = hera 
 
 
[hera] 
lnet_network_wildcard = gni1:10.128.*.* 
 
 
o2ib6000: c0-0c2s2n0, c0-0c2s2n2 ; MGS and MDS 
o2ib6002: c1-0c0s7n0, c1-0c0s7n1, c1-0c0s7n2, c1-0c0s7n3 ; OSSs 2/4/6 
o2ib6003: c3-0c1s5n0, c3-0c1s5n1, c3-0c1s5n2, c3-0c1s5n3 ; OSSs 3/5/7 
o2ib6004: c3-0c1s0n0, c3-0c1s0n1, c3-0c1s0n2, c3-0c1s0n3 ; OSSs 8/10/12 
o2ib6005: c3-0c2s4n0, c3-0c2s4n1, c3-0c2s4n2, c3-0c2s4n3 ; OSSs 9/11/13 
 
 
[snx11029n] 
lnet_network_wildcard = o2ib6:10.10.100.* 
 
 
o2ib6000: snx11029n002, snx11029n003 ; MGS and MDS 
o2ib6002: snx11029n004, snx11029n006, snx11029n008 ; OSSs 2/4/6 
o2ib6003: snx11029n005, snx11029n007, snx11029n009 ; OSSs 3/5/7 
o2ib6004: snx11029n010, snx11029n012, snx11029n014 ; OSSs 8/10/12 
o2ib6005: snx11029n011, snx11029n013, snx11029n015 ; OSSs 9/11/13 
 

options lnet ip2nets="gni1 10.128.*.*;\ 
                     o2ib6000 
10.10.100.[101,102,103,104,105,106,107,108,109,110,111,112,113,114,11
5,116,117,118];\ 
                     o2ib6002 10.10.100.[103,104,105,106,107,108,109,110];\ 
                     o2ib6003 10.10.100.[111,112,113,114,115,116,117,118];\ 
                     o2ib6004 10.10.100.[103,104,105,106,107,108,109,110];\ 
                     o2ib6005 10.10.100.[111,112,113,114,115,116,117,118]" 
options lnet routes="o2ib6000 1 [68,90]@gni1;\ 
                    o2ib6002 1 [750,751,752,753]@gni1;\ 
                    o2ib6003 1 [618,619,628,629]@gni1;\ 
                    o2ib6004 1 [608,609,638,639]@gni1;\ 
                    o2ib6005 1 [648,649,662,663]@gni1;\ 
                    o2ib6000 2 
[608,609,618,619,628,629,638,639,648,649,662,663,750,751,752,753]@gn
i1;\ 
                    o2ib6002 2 [608,609,638,639]@gni1;\ 
                    o2ib6003 2 [648,649,662,663]@gni1;\ 
                    o2ib6004 2 [750,751,752,753]@gni1;\ 
                    o2ib6005 2 [618,619,628,629]@gni1" 

 



IV.  FUTURE WORK 

A. Helping an application understand where LNET routers 
are 

There can be significant I/O performance improvements by 
placing certain ranks of an application (e.g., those performing 
I/O) near the LNET routers they will be using.  This could 
potentially help take advantage of the six links into and out of 
each Gemini associated with the LNET routers.  Areas of 
exploration are: 

• Providing FGR information to the mainframe. 

• Which OSTs belong to which LNET groups 

• Which LNET routers service which LNET groups 

• Providing directives to the application placement tool 
for how to place ranks in the system. 

B. CLCVT becoming topology aware 

Clearly, not every customer has the same IB connectivity as 
imposed by an implementation such as that in Figure 6.  The 
use of large external IB switches is not detected and could be 
handled more gracefully.  In general, making CLCVT aware of 
the IB topology is desirable. 

C. CLCVT validation on the server side 

In the same manner that CLCVT performs live validation 
of LNET group membership and IB connectivity on the Cray 
mainframe, it could also validate the Luster server side. 

D. CLCVT understanding other external Lustre 
implementations 

CLCVT contains built-in knowledge of the architectural 
nuances of the Cray Sonexion-1600.  Other external Lustre 
implementations, such as esFS, will have their own unique 
characteristics.  While some support for alternative 
implementations exist in CLCVT, including flat LNET, 
enhancements to the tool would make these alternatives easier 
to configure and validate. 

V. CONCLUSION 

For a large LNET configuration, there is a fixed amount of 
complexity; fixed number of LNET routers, OSSs, IB cables, 
switches, etc.  A flat LNET configuration is easy to configure 
but leaves the difficult tasks of optimization and debugging to 
run-time.  LNET FGR, on the other hand, increases the level of 
difficulty related to how all these components are configured 
and used but greatly reduces the run-time challenges associated 
with debugging. 

CLCVT, in concert with LNET FGR, gives us the best of 
both worlds.  Ease of configuration and with all the benefits of 
reduced run-time complexity. 
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