
Blue Waters I/O Performance

Mark Swan
Performance Group

Cray Inc.
Saint Paul, Minnesota, USA

mswan@cray.com

Doug Petesch
Performance Group

Cray Inc.
Saint Paul, Minnesota, USA

dpetesch@cray.com

Abstract—The Blue Waters system, installed at the National
Center for Supercomputing Applications (NCSA), contains over
25000 compute nodes and hundreds of LNET routers and other
service nodes spread across the largest Gemini network ever
constructed. The external Lustre file systems are made up of 216
Lustre object storage servers (OSSs) and 1728 object storage
targets (OSTs) and has produced more than 1 terabyte per
second (TB/s) of sustained I/O bandwidth.

This paper will describe, at a high level, the I/O infrastructure
used on this system and present a variety of performance results.
We will also talk about the challenges of benchmarking and
understanding a system this large and complex.

I. INTRODUCTION

A. Brief Mainframe Inventory

The mainframe's compute infrastructure is composed of
25,712 compute nodes (22,640 XE and 3,072 XK) and 784
service nodes. Of the service nodes, there are 582 that act as
LNET router nodes for the three Cray Sonexion-1600 file
systems. The Gemini-based High Speed Network (HSN) is
arranged in a 23x24x24 3-D torus.

B. Cray Sonexion-1600 File System Inventory

The Cray Sonexion-1600 Scalable Storage Units (SSUs)
have bandwidth rates of 6GB/s peak and 5GB/s sustained.
Each rack of the file system is composed of 6 SSUs. Each
SSU is composed of two Object Storage Servers (OSSs) that
act as each other's High Availability (HA) partner. Therefore,
there are 12 OSSs in each rack. Each OSS controls 4 Object
Storage Targets (OSTs). The Infiniband (IB) cabling within
each rack is such that all OSSs on the left side are plugged into
one Top-Of-Rack (TOR) IB switch while all OSSs on the right
side are plugged into another TOR IB switch. See fig. 1.

Table I summarizes some of the characteristics of each file
system.

Fig. 1. Cray Sonexion-1600 Rack

TABLE I. CRAY SONEXION-1600 OVERVIEW

 HOME PROJECTS SCRATCH total

Racks 3 3 30 36

Metadata Serves 2 2 2 6

SSUs 18 18 180 216

OSSs 36 36 360 432

OSTs 144 144 1440 1728

Active Disks 1440 1440 14400 17280

Hot Spares 72 72 720 864

Peak Bandwidth 108 108 1080 1296

Sustained Bandwidth 90 90 900 1080

a. Bandwidth values expressed in megabytes per second (MB/s)

1
8

 P
o

rt
 T

o
R

S
w

it
ch

1
8

 P
o

rt To
R

S
w

itch

OSS 0

OSS 2

OSS 4

OSS 6

OSS 8

OSS 10

MGS MDS

OSS 11

OSS 9

OSS 7

OSS 5

OSS 3

OSS 1

External many-port switch(es)

C. LNET Fine Grained Routing

Fig. 2 shows a simple view of the LNET Fine Grained
Routing (FGR) as implemented for the Blue Waters file
systems. In order to provide the necessary LNET bandwidth to
the OSSs, we created LNET groups containing four LNET
router nodes and three OSSs. All four LNET router nodes
reside on the same Cray XIO service blade. This is commonly
referred to as a "4:3 FGR Ratio". This general method for
creating LNET groups extends through all racks of all three file
systems.

Table II shows the number of LNET routers assigned to the
OSS LNET groups for the three file systems and their
maximum bandwidth capabilities.

Fig. 2. Cray Sonexion-1600 Rack with FGR

TABLE II. LNET ROUTER ASSIGNMENTS FOR OSS LNET GROUPS

 HOME PROJECTS SCRATCH total

LNET Router Nodes 48 48 480 576

LNET Bandwidth 124.8 124.8 1248 1497.6

a. Bandwidth values expressed in megabytes per second (MB/s)

II. PERFORMANCE RESULTS

A. Linear Scaling

One of the design goals of the Cray Sonexion, and the
implementation of it for Blue Waters, is scaling. The
architecture of the file systems is such that there are
independent building blocks that make up the whole. For
example, each OSS of a SSU is independent of the other, each
SSU in a rack is independent of the others, and each LNET
FGR group is independent of the others. All these building
blocks came together to create linearly scaling file systems.

Figures 3, 4, and 5 show the actual and expected scaling of
the three file systems. The IOR benchmarking application was
used to exercise one-third, two-thirds, and the entirety of each
of the file systems. For the HOME and PROJECTS file
systems, this means 1 rack, 2 racks, and 3 racks. For the
SCRATCH file system, this means 10 racks, 20 racks, and 30
racks.

Fig. 3. Scaling of HOME Performance

1
8

 P
o

rt
 T

o
R

S
w

it
ch

1
8

 P
o

rt To
R

S
w

itch

OSS 0

OSS 2

OSS 4

OSS 6

OSS 8

OSS 10

MGS MDS

OSS 11

OSS 9

OSS 7

OSS 5

OSS 3

OSS 1

External many-port switch(es)

Fig. 4. Scaling of PROJECTS Performance

Fig. 5. Scaling of SCRATCH Performance

B. Optimal Writing

To verify maximum I/O bandwidth of the entire system, we
constructed an IOR job that simultaneously wrote to all three
file systems. The characteristics of this job are as follows and
were based on our knowledge of how to optimally write to a
Cray Sonexion-1600:

• POSIX file per process

• Buffered I/O

• 4 MB transfer size

• 12 files per OST for a total of 17,280 ranks

• 4 ranks per node for a total of 5,184 nodes

• Nodes randomly placed among all 25,712 nodes

Fig. 6 shows the results of running this job 10 times. The
average across the 10 runs was 1.137 terabytes per second
(TB/s).

Fig. 6. Total Bandwidth, Optimal Writes

C. Writing From All XE Nodes

Another scenario of interest was the capability of every XE
node in the system to write to all three file systems
simultaneously. Of the 22,640 XE nodes, we chose to use
22,580 so the number of nodes assigned to each file system
was proportional to the sizes of the file systems. The
characteristics of this job were:

• POSIX file per process

• Direct I/O

• 16 MB transfer size

• 1 rank per node

• 1,880 nodes assigned to HOME

• 1,880 nodes assigned to PROJECTS

• 18,800 nodes assigned to SCRATCH

This arrangement resulted in 13.06 files per OST. Fig. 7
shows the results of running this job 10 times. The average
across the 10 runs was 1.117 terabytes per second (TB/s).

Fig. 7. Total Bandwidth, All XE Nodes Writing

D. Shared File MPI I/O

The Lustre version currently installed on the Blue Waters
system is capable of striping files across a maximum of 160
OSTs. While this is not a limitation for the HOME and
PROJECTS file systems (which have 144 OSTs), this does
present an issue for the SCRATCH file system with its 1,440
OSTs. In order to still test the I/O capabilities of shared files,
we created ten Lustre pools within the SCRATCH file system.
Each pool was 144 OSTs (i.e., one-tenth of the size of the
entire file system).

We constructed an IOR job that simultaneously wrote a
single shared file to each of the ten Lustre pools defined within
SCRATCH. Each shared file was striped as wide as the pool
(i.e., 144 OSTs). Our desire was to engage as many of the XE
nodes as possible so we assigned 2,260 nodes (with 1 rank per
node) to each of the ten shared files.

Fig. 8 shows the results of 22,600 XE compute nodes
writing to ten shared files in ten separate Lustre pools of
SCRATCH. The average across three runs was 771 gigabytes
per second (GB/s).

Fig. 8. MPI I/O Shared File Performance in SCRATCH Pools

III. PERFORMANCE CHALLENGES

Whenever a computing system is constructed that is as
large and complex as Blue Waters, challenges will arise. Some
challenges can be predicted while others cannot. As a member
of the Department Of Bottleneck Discovery (i.e., the Cray
Performance Team), it is our job to not only prove the
performance capabilities of a system but, in the event that
challenges arise, find explanations for, and, possibly, solutions
to, those challenges.

A. Reading Striped Shared Files with MPI I/O

When writing our ten shared files in the ten Lustre pools
within SCRATCH, we did not need to carefully match the
number of nodes to some integral multiple of the stripe count
in order to achieve acceptable performance. However, that
relationship is important when trying to maximize writing and
even more important when trying to maximize reading a shared
file that is striped across multiple OSTs [1].

With our goal still being to use as many XE compute nodes
as possible, we observed that using 22,600 for both writing and
reading the ten shared files produced very poor read rates.
Clearly, the biggest reason for this was our choice of the
number of compute nodes compared to the stripe count of the
shared files. Using a stripe count of 144 with 2,260 compute
nodes means we did not evenly distribute the compute nodes
across all OSTs (2,260 / 144 = 15.69). We decided to reduce
the stripe count to 141 and use 2,256 compute nodes per shared
file (2,256 / 141 = 16). This meant we would use 22,560
compute nodes which is 99.6% of all XE nodes.

The result of using 2,256 ranks per shared file and a stripe
count of 141 rather than 2,260 ranks per shared file and a stripe
count of 144 was the write rates improved by 12% and read
rates more than doubled.

B. Fragmented File Systems

Issues with fragmented file systems have been around since
the invention of the technology. Recognizing how the
fragmentation affects I/O performance has also been around
just as long. Many implementations of the Lustre file system
suffer from these same issues. In particular, the highly used
HOME file system exhibits these characteristics.

The HOME file system, as you can imagine, is a place
where users store files of all sizes. Over a several month
period of use, this file system sees many millions of files being
created and deleted. As this happens, holes of various sizes are
left behind and free space becomes scattered and non-
contiguous. When writing and reading data from the HOME
file system, it was quite apparent that we were experiencing
decreased performance due to fragmentation. It is quite easy to
analyze the files produced by IOR (or any other application) to
see the number and size of pieces that make up an entire file.

Next in line with the HOME file system is SCRATCH.
This file system had not been in use as long as HOME and
typically does not get exposed to millions of small file
creations and deletions. The effects of fragmentation on
SCRATCH were not as noticeable as HOME.

Finally, the PROJECTS file system was the least used and,
consequently, the least fragmented file system. Our testing
showed that this file system consistently performed better (per
SSU) than the other two file systems.

C. Maximizing Read Performance On A Large Gemini

Recall that the Gemini network of the Blue Waters system
is a very large three dimensional torus. Data moving from
point A to point B in this torus first travels along the X
dimension, then along the Y dimension, then along the Z
dimension. This is called “dimension ordered routing”. Each
Gemini has six directions in which to send data (X+, X-, Y+,
Y-, Z+, Z-) in order to move the data toward the destination.

Also, recall that the LNET FGR implementation is such
that there are three OSSs and four LNET router nodes in each
LNET group. Therefore, there are 12 OSTs in each LNET
group. Also, there are two Gemini serving the four LNET
router nodes.

When performing IOR write testing to the SCRATCH file
system, we would commonly create 12 files per OST. This
meant that we would employ several thousand ranks.
Depending on how many ranks per node we ran with, this
could equate to hundreds or thousands of nodes. In the vast
majority of our writing tests, it did not seem to matter how we
allowed the nodes to be placed in the system because we often
achieved good write rates. However, this was not true of node
placement when reading the file system.

Fig. 9 depicts the compute node and LNET router node
placement for a portion of a job that is reading files from the
SCRATCH file system. What is being shown are the Geminis
for the LNET router nodes for LNET group o2ib3037 (one of
the 120 LNET groups for the file system) and the Geminis for
the 48 compute nodes that had files on the OSTs of the three
OSSs in this LNET group. This job had 4 files per OST and
there are 12 OSTs in this LNET group and, therefore, 48
compute nodes (1 rank per node). The compute nodes were
chosen to be randomly distributed among all XE compute
nodes.

Fig. 10 depicts the Gemini-to-Gemini segments that were
utilized by compute nodes and LNET router nodes in LNET
group o2ib3037 when reading data from the file system. Data
comes into the LNET router nodes from the IB connections to
the OSSs and the LNET router nodes must then send data to
the compute nodes. Data movement is X, then Y, then Z. The
coloring indicates loading of the segment bandwidth. Green
indicates that the amount of data attempting to be transported
across that segment from all activity in the job is less than the
maximum bandwidth of the segment. Red indicates that more
bandwidth is attempting to be transported across the segment
than the segment is capable of.

Notice, for this particular LNET group, there is only one
compute node whose data does not have to first travel along the
X dimension.

Fig. 11 depicts the same LNET group (o2ib3037) but with
data being written to the file system rather than being read.
Data is still routed X, then Y, then Z. Even though most of the

data ends up moving along the Z dimension, that dimension is
the fastest in the system and there is very little contention.

What lessons can be learned from these observations? An
important lesson is that compute node placement matters. In
order to further investigate the effects of compute node
placement, we experimented with performing I/O to smaller
subsets of the file system and requesting specific compute
nodes that were near the LNET router nodes while taking
advantage of the six data directions that the LNET router
node’s Geminis could use. Utilizing this kind of placement,
read performance dramatically increased to the point where we
were achieving full bandwidth rates from the OSSs in that
LNET group.

Fig. 9. LNET Group o2ib3037

Fig. 10. LNET Group o2ib3037, Reading

Fig. 11. LNET Group o2ib3037, Writing

IV. FUTURE RESEARCH OPPORTUNITIES

A. Compute Node Placement for Improved I/O

One of the larger challenges described previously in this

paper was that of maximizing the Gemini bandwidth of the
LNET router nodes. Due to the dimension ordered routing of
Gemini, there are many cases where most of the data
movement at the LNET router nodes is concentrated in only
two of the six channels. When writing data to the file systems,
the Z+ and Z- channels are more highly used than X+, X-, Y+,
or Y-. When reading data from the file systems, the X+ and X-
channels are more highly used than Y+, Y-, Z+, or Z-.

If an application is constructed such that only certain ranks
are performing I/O, it would be advantageous to place these
ranks in a three dimensional halo around the LNET router
nodes so that all six channels of the LNET router node’s
Geminis are utilized.

Furthermore, there are bandwidth disparities between links
in the X, Y, and Z directions. These bandwidth capability
differences could also be accounted for when creating the three
dimensional halo of I/O ranks around the LNET router nodes.
For example, more of these ranks could be in the same Z
planes of the LNET routers since the Z dimensions have more
bandwidth capability than the X or Y.

If we’re going to attempt to place applications (or parts of
applications) near LNET router nodes, the placement algorithm
also needs to know where the files exist that the application
needs. For example, suppose an application is placed near
LNET router node X and so writing checkpoint files to the
OSTs assigned to X is optimized. If that application is
restarted and placed near LNET router node Y, the checkpoint
files that the application wants to read are still associated with
LNET router node X and might not be optimally accessed.
However, reads of those checkpoint files would be optimized if
the job could inform the placement algorithm that its files are
associated with LNET router node X.

This type of file access information simply does not exist
on the mainframe. Along with making the placement
algorithm aware of LNET router locations, it would also be

necessary to define the association between OSTs (where files
exist) and their LNET routers.

B. OST Fragmentation and Physical Positioning

Not only is fragmentation of the data on OSTs a factor in
achieving good I/O rates, so is the physical placement on the
spinning media. It has been observed that I/O rates on the
outer edges of the disks (where there is more data per track) are
significantly faster than rates on the inner edges (where there is
less data per track). Investigating methods of coalescing
fragmented blocks of files could be combined with methods of
placing seldom used files (or less performance sensitive files)
toward the slower regions of the OSTs.

V. REFERENCES

[1] Getting Started on MPI I/O, Cray publication S-
2490-40.

The source for the IOR benchmark application, version 2.10.3,
is available at “http://sourceforge.net/projects/ior-sio”.

The source for the IOR benchmark application, version 3.0.0,
is available at “https://github.com/chaos/ior”.

