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Abstract—The Blue Waters system, installed at the National 
Center for Supercomputing Applications (NCSA), contains over 
25000 compute nodes and hundreds of LNET routers and other 
service nodes spread across the largest Gemini network ever 
constructed.  The external Lustre file systems are made up of 216 
Lustre object storage servers (OSSs) and 1728 object storage 
targets (OSTs) and has produced more than 1 terabyte per 
second (TB/s) of sustained I/O bandwidth. 

This paper will describe, at a high level, the I/O infrastructure 
used on this system and present a variety of performance results.  
We will also talk about the challenges of benchmarking and 
understanding a system this large and complex. 

I. INTRODUCTION 

A. Brief Mainframe Inventory 

The mainframe's compute infrastructure is composed of 
25,712 compute nodes (22,640 XE and 3,072 XK) and 784 
service nodes.  Of the service nodes, there are 582 that act as 
LNET router nodes for the three Cray Sonexion-1600 file 
systems.    The Gemini-based High Speed Network (HSN) is 
arranged in a 23x24x24 3-D torus. 

B. Cray Sonexion-1600 File System Inventory 

The Cray Sonexion-1600 Scalable Storage Units (SSUs) 
have bandwidth rates of 6GB/s peak and 5GB/s sustained. 
Each rack of the file system is composed of 6 SSUs.  Each 
SSU is composed of two Object Storage Servers (OSSs) that 
act as each other's High Availability (HA) partner.  Therefore, 
there are 12 OSSs in each rack.  Each OSS controls 4 Object 
Storage Targets (OSTs).  The Infiniband (IB) cabling within 
each rack is such that all OSSs on the left side are plugged into 
one Top-Of-Rack (TOR) IB switch while all OSSs on the right 
side are plugged into another TOR IB switch.  See fig. 1. 

Table I summarizes some of the characteristics of each file 
system. 

 
Fig. 1. Cray Sonexion-1600 Rack 

TABLE I.  CRAY SONEXION-1600 OVERVIEW 

 HOME PROJECTS SCRATCH total 

Racks 3 3 30 36 

Metadata Serves 2 2 2 6 

SSUs 18 18 180 216 

OSSs 36 36 360 432 

OSTs 144 144 1440 1728 

Active Disks 1440 1440 14400 17280 

Hot Spares 72 72 720 864 

Peak Bandwidth 108 108 1080 1296 

Sustained Bandwidth 90 90 900 1080 

a. Bandwidth values expressed in megabytes per second (MB/s) 
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C. LNET Fine Grained Routing 

Fig. 2 shows a simple view of the LNET Fine Grained 
Routing (FGR) as implemented for the Blue Waters file 
systems.  In order to provide the necessary LNET bandwidth to 
the OSSs, we created LNET groups containing four LNET 
router nodes and three OSSs.  All four LNET router nodes 
reside on the same Cray XIO service blade.  This is commonly 
referred to as a "4:3 FGR Ratio".  This general method for 
creating LNET groups extends through all racks of all three file 
systems. 

Table II shows the number of LNET routers assigned to the 
OSS LNET groups for the three file systems and their 
maximum bandwidth capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Cray Sonexion-1600 Rack with FGR 

 

TABLE II.  LNET ROUTER ASSIGNMENTS FOR OSS LNET GROUPS 

 HOME PROJECTS SCRATCH total 

LNET Router Nodes 48 48 480 576 

LNET Bandwidth 124.8 124.8 1248 1497.6 

a. Bandwidth values expressed in megabytes per second (MB/s) 

 

II. PERFORMANCE RESULTS 

A. Linear Scaling 

One of the design goals of the Cray Sonexion, and the 
implementation of it for Blue Waters, is scaling.  The 
architecture of the file systems is such that there are 
independent building blocks that make up the whole.  For 
example, each OSS of a SSU is independent of the other, each 
SSU in a rack is independent of the others, and each LNET 
FGR group is independent of the others.  All these building 
blocks came together to create linearly scaling file systems. 

Figures 3, 4, and 5 show the actual and expected scaling of 
the three file systems.  The IOR benchmarking application was 
used to exercise one-third, two-thirds, and the entirety of each 
of the file systems.  For the HOME and PROJECTS file 
systems, this means 1 rack, 2 racks, and 3 racks.  For the 
SCRATCH file system, this means 10 racks, 20 racks, and 30 
racks. 

 

 

 

 

 

 

 

 

 
Fig. 3. Scaling of HOME Performance 
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Fig. 4. Scaling of PROJECTS Performance 

 
Fig. 5. Scaling of SCRATCH Performance 

 

B. Optimal Writing 

To verify maximum I/O bandwidth of the entire system, we 
constructed an IOR job that simultaneously wrote to all three 
file systems.  The characteristics of this job are as follows and 
were based on our knowledge of how to optimally write to a 
Cray Sonexion-1600: 

• POSIX file per process 

• Buffered I/O 

• 4 MB transfer size 

• 12 files per OST for a total of 17,280 ranks 

• 4 ranks per node for a total of 5,184 nodes 

• Nodes randomly placed among all 25,712 nodes 

Fig. 6 shows the results of running this job 10 times.  The 
average across the 10 runs was 1.137 terabytes per second 
(TB/s). 

 
Fig. 6. Total Bandwidth, Optimal Writes 

C. Writing From All XE Nodes 

Another scenario of interest was the capability of every XE 
node in the system to write to all three file systems 
simultaneously.  Of the 22,640 XE nodes, we chose to use 
22,580 so the number of nodes assigned to each file system 
was proportional to the sizes of the file systems.  The 
characteristics of this job were: 

• POSIX file per process 

• Direct I/O 

• 16 MB transfer size 

• 1 rank per node 

• 1,880 nodes assigned to HOME 

• 1,880 nodes assigned to PROJECTS 

• 18,800 nodes assigned to SCRATCH 

This arrangement resulted in 13.06 files per OST.  Fig. 7 
shows the results of running this job 10 times.  The average 
across the 10 runs was 1.117 terabytes per second (TB/s). 

 

 

 

 

 
Fig. 7. Total Bandwidth, All XE Nodes Writing 

 

 

 

 



D. Shared File MPI I/O 

The Lustre version currently installed on the Blue Waters 
system is capable of striping files across a maximum of 160 
OSTs.  While this is not a limitation for the HOME and 
PROJECTS file systems (which have 144 OSTs), this does 
present an issue for the SCRATCH file system with its 1,440 
OSTs.  In order to still test the I/O capabilities of shared files, 
we created ten Lustre pools within the SCRATCH file system.  
Each pool was 144 OSTs (i.e., one-tenth of the size of the 
entire file system). 

We constructed an IOR job that simultaneously wrote a 
single shared file to each of the ten Lustre pools defined within 
SCRATCH.  Each shared file was striped as wide as the pool 
(i.e., 144 OSTs).  Our desire was to engage as many of the XE 
nodes as possible so we assigned 2,260 nodes (with 1 rank per 
node) to each of the ten shared files.   

Fig. 8 shows the results of 22,600 XE compute nodes 
writing to ten shared files in ten separate Lustre pools of 
SCRATCH.  The average across three runs was 771 gigabytes 
per second (GB/s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. MPI I/O Shared File Performance in SCRATCH Pools 

III.  PERFORMANCE CHALLENGES 

Whenever a computing system is constructed that is as 
large and complex as Blue Waters, challenges will arise.  Some 
challenges can be predicted while others cannot.  As a member 
of the Department Of Bottleneck Discovery (i.e., the Cray 
Performance Team), it is our job to not only prove the 
performance capabilities of a system but, in the event that 
challenges arise, find explanations for, and, possibly, solutions 
to, those challenges. 

A. Reading Striped Shared Files with MPI I/O 

When writing our ten shared files in the ten Lustre pools 
within SCRATCH, we did not need to carefully match the 
number of nodes to some integral multiple of the stripe count 
in order to achieve acceptable performance.  However, that 
relationship is important when trying to maximize writing and 
even more important when trying to maximize reading a shared 
file that is striped across multiple OSTs [1]. 

With our goal still being to use as many XE compute nodes 
as possible, we observed that using 22,600 for both writing and 
reading the ten shared files produced very poor read rates.  
Clearly, the biggest reason for this was our choice of the 
number of compute nodes compared to the stripe count of the 
shared files.  Using a stripe count of 144 with 2,260 compute 
nodes means we did not evenly distribute the compute nodes 
across all OSTs (2,260 / 144 = 15.69).  We decided to reduce 
the stripe count to 141 and use 2,256 compute nodes per shared 
file (2,256 / 141 = 16).  This meant we would use 22,560 
compute nodes which is 99.6% of all XE nodes. 

The result of using 2,256 ranks per shared file and a stripe 
count of 141 rather than 2,260 ranks per shared file and a stripe 
count of 144 was the write rates improved by 12% and read 
rates more than doubled. 

B. Fragmented File Systems 

Issues with fragmented file systems have been around since 
the invention of the technology.  Recognizing how the 
fragmentation affects I/O performance has also been around 
just as long.  Many implementations of the Lustre file system 
suffer from these same issues.  In particular, the highly used 
HOME file system exhibits these characteristics. 

The HOME file system, as you can imagine, is a place 
where users store files of all sizes.  Over a several month 
period of use, this file system sees many millions of files being 
created and deleted.  As this happens, holes of various sizes are 
left behind and free space becomes scattered and non-
contiguous.  When writing and reading data from the HOME 
file system, it was quite apparent that we were experiencing 
decreased performance due to fragmentation.  It is quite easy to 
analyze the files produced by IOR (or any other application) to 
see the number and size of pieces that make up an entire file. 

Next in line with the HOME file system is SCRATCH.  
This file system had not been in use as long as HOME and 
typically does not get exposed to millions of small file 
creations and deletions.  The effects of fragmentation on 
SCRATCH were not as noticeable as HOME. 

 



Finally, the PROJECTS file system was the least used and, 
consequently, the least fragmented file system.  Our testing 
showed that this file system consistently performed better (per 
SSU) than the other two file systems. 

C. Maximizing Read Performance On A Large Gemini 

Recall that the Gemini network of the Blue Waters system 
is a very large three dimensional torus.  Data moving from 
point A to point B in this torus first travels along the X 
dimension, then along the Y dimension, then along the Z 
dimension.  This is called “dimension ordered routing”.  Each 
Gemini has six directions in which to send data (X+, X-, Y+, 
Y-, Z+, Z-) in order to move the data toward the destination. 

Also, recall that the LNET FGR implementation is such 
that there are three OSSs and four LNET router nodes in each 
LNET group.  Therefore, there are 12 OSTs in each LNET 
group.  Also, there are two Gemini serving the four LNET 
router nodes. 

When performing IOR write testing to the SCRATCH file 
system, we would commonly create 12 files per OST.  This 
meant that we would employ several thousand ranks.  
Depending on how many ranks per node we ran with, this 
could equate to hundreds or thousands of nodes.  In the vast 
majority of our writing tests, it did not seem to matter how we 
allowed the nodes to be placed in the system because we often 
achieved good write rates.  However, this was not true of node 
placement when reading the file system. 

Fig. 9 depicts the compute node and LNET router node 
placement for a portion of a job that is reading files from the 
SCRATCH file system.  What is being shown are the Geminis 
for the LNET router nodes for LNET group o2ib3037 (one of 
the 120 LNET groups for the file system) and the Geminis for 
the 48 compute nodes that had files on the OSTs of the three 
OSSs in this LNET group.  This job had 4 files per OST and 
there are 12 OSTs in this LNET group and, therefore, 48 
compute nodes (1 rank per node).  The compute nodes were 
chosen to be randomly distributed among all XE compute 
nodes. 

Fig. 10 depicts the Gemini-to-Gemini segments that were 
utilized by compute nodes and LNET router nodes in LNET 
group o2ib3037 when reading data from the file system.  Data 
comes into the LNET router nodes from the IB connections to 
the OSSs and the LNET router nodes must then send data to 
the compute nodes.  Data movement is X, then Y, then Z.  The 
coloring indicates loading of the segment bandwidth.  Green 
indicates that the amount of data attempting to be transported 
across that segment from all activity in the job is less than the 
maximum bandwidth of the segment.  Red indicates that more 
bandwidth is attempting to be transported across the segment 
than the segment is capable of. 

Notice, for this particular LNET group, there is only one 
compute node whose data does not have to first travel along the 
X dimension.   

Fig. 11 depicts the same LNET group (o2ib3037) but with 
data being written to the file system rather than being read.  
Data is still routed X, then Y, then Z.  Even though most of the 

data ends up moving along the Z dimension, that dimension is 
the fastest in the system and there is very little contention. 

What lessons can be learned from these observations?  An 
important lesson is that compute node placement matters.  In 
order to further investigate the effects of compute node 
placement, we experimented with performing I/O to smaller 
subsets of the file system and requesting specific compute 
nodes that were near the LNET router nodes while taking 
advantage of the six data directions that the LNET router 
node’s Geminis could use.  Utilizing this kind of placement, 
read performance dramatically increased to the point where we 
were achieving full bandwidth rates from the OSSs in that 
LNET group. 

 

 

 

 

 

 

 

 

 

 
Fig. 9. LNET Group o2ib3037 

 
Fig. 10. LNET Group o2ib3037, Reading 

 



 
Fig. 11. LNET Group o2ib3037, Writing 

IV.  FUTURE RESEARCH OPPORTUNITIES 

A. Compute Node Placement for Improved I/O 

 
One of the larger challenges described previously in this 

paper was that of maximizing the Gemini bandwidth of the 
LNET router nodes.  Due to the dimension ordered routing of 
Gemini, there are many cases where most of the data 
movement at the LNET router nodes is concentrated in only 
two of the six channels.  When writing data to the file systems, 
the Z+ and Z- channels are more highly used than X+, X-, Y+, 
or Y-.  When reading data from the file systems, the X+ and X- 
channels are more highly used than Y+, Y-, Z+, or Z-. 

If an application is constructed such that only certain ranks 
are performing I/O, it would be advantageous to place these 
ranks in a three dimensional halo around the LNET router 
nodes so that all six channels of the LNET router node’s 
Geminis are utilized. 

Furthermore, there are bandwidth disparities between links 
in the X, Y, and Z directions.  These bandwidth capability 
differences could also be accounted for when creating the three 
dimensional halo of I/O ranks around the LNET router nodes.  
For example, more of these ranks could be in the same Z 
planes of the LNET routers since the Z dimensions have more 
bandwidth capability than the X or Y. 

If we’re going to attempt to place applications (or parts of 
applications) near LNET router nodes, the placement algorithm 
also needs to know where the files exist that the application 
needs.  For example, suppose an application is placed near 
LNET router node X and so writing checkpoint files to the 
OSTs assigned to X is optimized.  If that application is 
restarted and placed near LNET router node Y, the checkpoint 
files that the application wants to read are still associated with 
LNET router node X and might not be optimally accessed.  
However, reads of those checkpoint files would be optimized if 
the job could inform the placement algorithm that its files are 
associated with LNET router node X. 

This type of file access information simply does not exist 
on the mainframe.  Along with making the placement 
algorithm aware of LNET router locations, it would also be 

necessary to define the association between OSTs (where files 
exist) and their LNET routers. 

B. OST Fragmentation and Physical Positioning 

Not only is fragmentation of the data on OSTs a factor in 
achieving good I/O rates, so is the physical placement on the 
spinning media.  It has been observed that I/O rates on the 
outer edges of the disks (where there is more data per track) are 
significantly faster than rates on the inner edges (where there is 
less data per track).  Investigating methods of coalescing 
fragmented blocks of files could be combined with methods of 
placing seldom used files (or less performance sensitive files) 
toward the slower regions of the OSTs. 
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