Blue Waters I/0 Performance

Mark Swan
Performance Group
Cray Inc.
Saint Paul, Minnesota, USA
mswan@cray.com

dpetesch@cray.com

Doug Petesch
Performance Group
Cray Inc.

Saint Paul, Minnesota, USA

Abstract—The Blue Waters system, installed at the National
Center for Supercomputing Applications (NCSA), contains over
25000 compute nodes and hundreds of LNET routers and other
service nodes spread across the largest Gemini network ever
constructed. Theexternal Lustrefile systems are made up of 216
Lustre object storage servers (OSSs) and 1728 object storage
targets (OSTs) and has produced more than 1 terabyte per
second (TB/s) of sustained I/0O bandwidth.

This paper will describe, at a high level, the 1/O infrastructure
used on this system and present a variety of performance results.
We will also talk about the challenges of benchmarking and
under standing a system thislar ge and complex.

I INTRODUCTION

A. Brief Mainframe Inventory

The mainframe's compute infrastructure is composked
25,712 compute nodes (22,640 XE and 3,072 XK) addl 7
service nodes. Of the service nodes, there argt&82act as
LNET router nodes for the three Cray Sonexion-1608€
systems. The Gemini-based High Speed Networl\N{HS

arranged in a 23x24x24 3-D torus.

B. Cray Sonexion-1600 File System Inventory

The Cray Sonexion-1600 Scalable Storage Units (JSUs
have bandwidth rates of 6GB/s peak and 5GB/s sstai
Each rack of the file system is composed of 6 SSHsch
SSU is composed of two Object Storage Servers (Pthas
act as each other's High Availability (HA) partnérherefore,
there are 12 OSSs in each rack. Each OSS co#trolsject
Storage Targets (OSTs). The Infiniband (IB) cablimithin
each rack is such that all OSSs on the left sidgplgged into
one Top-Of-Rack (TOR) IB switch while all OSSs twe tight
side are plugged into another TOR IB switch. Sgelf

Table | summarizes some of the characteristicsaoh dile
system.

Fig. 1. Cray Sonexion-1600 Rack

TABLE I. CRAY SONEXION-16000VERVIEW

HOME | PROJECTS| SCRATCH total

Racks 3 3 30 36
Metadata Serves 2 2 2 6
SSUs 18 18 180 216
OSSs 36 36 360 432
OSTs 144 144 1440 172¢
Active Disks 1440 1440 14400 1728
Hot Spares 72 72 720 864
Peak Bandwidth 108 108 1080 129
Sustained Bandwidth 90 90 900 108

6

0

& Bandwidth values expressed in megabytes per sgddBit)

C. LNET Fine Grained Routing

Fig. 2 shows a simple view of the LNET Fine Grained
Routing (FGR) as implemented for the Blue Watels fi
systems. In order to provide the necessary LNEWWalth to
the OSSs, we created LNET groups containing fouETN
router nodes and three OSSs. All four LNET routedes
reside on the same Cray XIO service blade. Thimismonly
referred to as a "4:3 FGR Ratio". This generalhoetfor
creating LNET groups extends through all racksliahaee file
systems.

Table Il shows the number of LNET routers assigioeithe
OSS LNET groups for the three file systems andrthei
maximum bandwidth capabilities.

TABLE II. LNET ROUTERASSIGNMENTSFOROSSLNET GROUPS

HOME | PROJECTS| SCRATCH total

LNET Router Nodes 48 48 480 576
LNET Bandwidth 124.8 124.8 1248 14976

II. PERFORMANCERESULTS

A. Linear Scaling

Bandwidth values expressed in megabytes per sedoB)

Fig. 2. Cray Sonexion-1600 Rack with FGR

One of the design goals of the Cray Sonexion, dmed t
implementation of it for Blue Waters, is scaling.The
architecture of the file systems is such that thare
independent building blocks that make up the wholeor
example, each OSS of a SSU is independent of tiex,atach
SSU in a rack is independent of the others, anth &NET
FGR group is independent of the others. All thbaiding
blocks came together to create linearly scalirgdilstems.

Figures 3, 4, and 5 show the actual and expectdthgof
the three file systems. The IOR benchmarking appibn was
used to exercise one-third, two-thirds, and thé&etgtof each
of the file systems. For the HOME and PROJECTS fil
systems, this means 1 rack, 2 racks, and 3 radkw. the
SCRATCH file system, this means 10 racks, 20 raaks, 30

racks.

S0000

80000

Megabytes per second (MB/s)
w iy [[} ~l
[=] [=] [=] [=] [=]
2 2 =] =) 2
(=) (=) =] =) (=)
[=] [=] [=] [=] [=]

| HOME Write Performance

yd

actual

yd

linear

i

7~

1 rack 2 racks 3 racks

Fig. 3. Scaling of HOME Performance

Megabytes per second (MB/

1 |PROJECTS Write Performance '7

Simultaneous Write
Optimal number of ranks and nodes

=
)

=
o

e
%)

= EEE TEE TN TEE TEE EEE A T . SCRATCH
m PROJECTS

I
=

B HOME

Terabytes per second (TB/s)
(=]
o

o
N}

E

Run Number

900000

B8UGUGU 7

Vs
700000 —

100000

0

10racks 20racks 30 racks

Fig. 5. Scaling of SCRATCH Performance

B. Optimal Wkiting

To verify maximum I/O bandwidth of the entire syateve
constructed an IOR job that simultaneously wrotaltachree
file systems. The characteristics of this job asdollows and
were based on our knowledge of how to optimallytevio a
Cray Sonexion-1600:

POSIX file per process

Buffered 1/O

4 MB transfer size

12 files per OST for a total of 17,280 ranks

4 ranks per node for a total of 5,184 nodes
Nodes randomly placed among all 25,712 nodes

Fig. 6 shows the results of running this job 10esm The
average across the 10 runs was 1.137 terabytesegoend
(TB/s).

Fig. 6. Total Bandwidth, Optimal Writes

C. Writing From All XE Nodes

Another scenario of interest was the capabilitgwdry XE
node in the system to write to all three file sywse
simultaneously. Of the 22,640 XE nodes, we chosese
22,580 so the number of nodes assigned to eaclsyfiitem
was proportional to the sizes of the file system3he
characteristics of this job were:

« POSIX file per process

e Direct I/O

e 16 MB transfer size

e 1 rank per node

e 1,880 nodes assigned to HOME

e 1,880 nodes assigned to PROJECTS
e 18,800 nodes assigned to SCRATCH

This arrangement resulted in 13.06 files per OFlg. 7
shows the results of running this job 10 times.e Hverage
across the 10 runs was 1.117 terabytes per set@iis)(

Simultaneous Write
22,580 nodes, 1 rank per node

=
(N

[

I
o

E= TN =k I . - e . ss-tSs SCRATCH

B PROJECTS

o
kY

H HOME

Tereabytes per second (TB/s)
(=]
[a2}

o
[N

E

Run Number

Fig. 7. Total Bandwidth, All XE Nodes Writing

D. Shared File MPI I/O

The Lustre version currently installed on the BWaters
system is capable of striping files across a marinof 160
OSTs. While this is not a limitation for the HOMand
PROJECTS file systems (which have 144 OSTSs), tbissd
present an issue for the SCRATCH file system wigh1i440
OSTs. In order to still test the 1/0 capabilitefsshared files,
we created ten Lustre pools within the SCRATCH $ystem.
Each pool was 144 OSTs (i.e., one-tenth of the eizéhe
entire file system).

We constructed an IOR job that simultaneously wrate
single shared file to each of the ten Lustre pdefned within
SCRATCH. Each shared file was striped as widehaspbol
(i.e., 144 OSTs). Our desire was to engage as mithe XE
nodes as possible so we assigned 2,260 nodes(wéthk per
node) to each of the ten shared files.

Fig. 8 shows the results of 22,600 XE compute node

writing to ten shared files in ten separate Lugio®ls of
SCRATCH. The average across three runs was 7 &byfies
per second (GB/s).

MPI 1/0 Shared File

12

Pool 10

-

Pool 9

Pool 8

Pool 7

o
~

-
.

Pool 6

<]
o

B Pool 5

Terabytes per second (TB/s)
o
=N

—
.
2

Run Number

—
o,
1 B Pool 4

Pool 3

Fig. 8. MPI I/O Shared File Performance in SCRATCH Pools

lll. PERFORMANCECHALLENGES

Whenever a computing system is constructed thasis
large and complex as Blue Waters, challenges w#lea Some
challenges can be predicted while others cannsta Aember
of the Department Of Bottleneck Discovery (i.e.e tBray
Performance Team), it is our job to not only prothe
performance capabilities of a system but, in thenéwhat
challenges arise, find explanations for, and, fbgssolutions
to, those challenges.

A. Reading Striped Shared Fileswith MPI 1/O

When writing our ten shared files in the ten Lugimols
within SCRATCH, we did not need to carefully mattte
number of nodes to some integral multiple of th#stcount
in order to achieve acceptable performance. Howyethat
relationship is important when trying to maximizeitimg and
even more important when trying to maximize readirghared
file that is striped across multiple OSTs [1].

With our goal still being to use as many XE commuaees
as possible, we observed that using 22,600 for Wwating and
reading the ten shared files produced very pood medes.
Clearly, the biggest reason for this was our chaéethe
number of compute nodes compared to the stripetanfuime
shared files. Using a stripe count of 144 with6B,Zompute
nodes means we did not evenly distribute the coenpotles
across all OSTs (2,260 / 144 = 15.69). We dectdedduce
the stripe count to 141 and use 2,256 compute noeteshared
file (2,256 / 141 = 16). This meant we would us®580
compute nodes which is 99.6% of all XE nodes.

The result of using 2,256 ranks per shared file astripe
count of 141 rather than 2,260 ranks per sharedafill a stripe
count of 144 was the write rates improved by 12% sead
rates more than doubled.

B. Fragmented File Systems

Issues with fragmented file systems have been dreimte
the invention of the technology. Recognizing hohe t
fragmentation affects 1/0O performance has also bmewund
just as long. Many implementations of the Lustle $ystem
suffer from these same issues. In particular,higaly used
HOME file system exhibits these characteristics.

The HOME file system, as you can imagine, is a elac
where users store files of all sizes. Over a séveronth
period of use, this file system sees many millioh§les being
created and deleted. As this happens, holes @fusasizes are
left behind and free space becomes scattered amd no
contiguous. When writing and reading data from tHH@ME
file system, it was quite apparent that we wereeggpcing
decreased performance due to fragmentation. gliite easy to
analyze the files produced by IOR (or any othediagfion) to
see the number and size of pieces that make uptiae file.

Next in line with the HOME file system is SCRATCH.
This file system had not been in use as long as HGId
typically does not get exposed to millions of smélé
creations and deletions. The effects of fragmantabn
SCRATCH were not as noticeable as HOME.

Finally, the PROJECTS file system was the leastl asel,
consequently, the least fragmented file system.r @sting
showed that this file system consistently perforrhetter (per
SSU) than the other two file systems.

C. Maximizing Read Performance On A Large Gemini

Recall that the Gemini network of the Blue Waterstem
is a very large three dimensional torus. Data mgvirom
point A to point B in this torus first travels alprthe X
dimension, then along the Y dimension, then along Z
dimension. This is called “dimension ordered nogiti Each
Gemini has six directions in which to send data,(X+ Y+,
Y-, Z+, Z-) in order to move the data toward thetdetion.

Also, recall that the LNET FGR implementation isclsu
that there are three OSSs and four LNET router siaddeach
LNET group. Therefore, there are 12 OSTs in eablET
group. Also, there are two Gemini serving the foNET
router nodes.

When performing IOR write testing to the SCRATCI¢ fi
system, we would commonly create 12 files per OShis
meant that we would employ several thousand

could equate to hundreds or thousands of nodeghelrvast
majority of our writing tests, it did not seem tatter how we
allowed the nodes to be placed in the system beosasften
achieved good write rates. However, this was na 6f node
placement when reading the file system.

Fig. 9 depicts the compute node and LNET routerenod

placement for a portion of a job that is readirgsfifrom the

SCRATCH file system. What is being shown are tleeniBis

for the LNET router nodes for LNET group 02ib303nh¢ of

the 120 LNET groups for the file system) and then®és for

the 48 compute nodes that had files on the OSTheothree
OSSs in this LNET group. This job had 4 files @8T and

there are 12 OSTs in this LNET group and, therefd&

compute nodes (1 rank per node). The compute nodes

chosen to be randomly distributed among all XE oat@p
nodes.

Fig. 10 depicts the Gemini-to-Gemini segments thate
utilized by compute nodes and LNET router node&NET
group 02ib3037 when reading data from the fileeyst Data
comes into the LNET router nodes from the IB cotines to
the OSSs and the LNET router nodes must then satadtd
the compute nodes. Data movement is X, then Yy theThe
coloring indicates loading of the segment bandwidtBreen
indicates that the amount of data attempting tdréesported
across that segment from all activity in the jolkeiss than the
maximum bandwidth of the segment. Red indicatas iiore
bandwidth is attempting to be transported acrosssggment
than the segment is capable of.

Notice, for this particular LNET group, there islpmone
compute node whose data does not have to firstltedong the
X dimension.

Fig. 11 depicts the same LNET group (02ib3037)aitit
data being written to the file system rather thamnd read.
Data is still routed X, then Y, then Z. Even thbugost of the

data ends up moving along the Z dimension, thatdsion is
the fastest in the system and there is very littletention.

What lessons can be learned from these observatids
important lesson is that compute node placementensat In
order to further investigate the effects of computede
placement, we experimented with performing 1/O toaber
subsets of the file system and requesting speciimpute
nodes that were near the LNET router nodes whikinga
advantage of the six data directions that the LN&uiter
node’s Geminis could use. Utilizing this kind dagement,
read performance dramatically increased to thetpaiere we
were achieving full bandwidth rates from the OSBsthat
LNET group.

ranks.
Depending on how many ranks per node we ran wits, t

Blue Maters read test
LNET group 02ib3037

Router nodes

Fig. 9. LNET Group 02ib3037

Blue Maters read test
LNET group 02ib3837

Router nodes
\

. N .
E PN PE »
. S bd
15 (951 !
L | 0. . ’
10 % . * o
1'YS g s |
g =
- e
~ . L 4
ol 2 . 5

Fig. 10.LNET Group 02ib3037, Reading

Blue Maters re

ead test
LNET group 02ib3ea7

Router nodes

28
15 -

e -

Fig. 11.LNET Group 02ib3037, Writing

IV. FUTURE RESEARCHOPPORTUNITIES

A. Compute Node Placement for Improved I/O

One of the larger challenges described previouslthis
paper was that of maximizing the Gemini bandwidthtre
LNET router nodes. Due to the dimension orderedimg of

necessary to define the association between OSHaréviles
exist) and their LNET routers.

B. OST Fragmentation and Physical Positioning

Not only is fragmentation of the data on OSTs ddian
achieving good I/O rates, so is the physical plaagnon the
spinning media. It has been observed that I/Osrate the
outer edges of the disks (where there is moremit#rack) are
significantly faster than rates on the inner edgére there is
less data per track). Investigating methods oflesaing
fragmented blocks of files could be combined witbtiods of
placing seldom used files (or less performanceisendiles)
toward the slower regions of the OSTs.

V. REFERENCES

[1] Getting Started on MPI 1/O, Cray publication S-
2490-40.

The source for the IOR benchmark application, ver&.10.3,

is available at “http://sourceforge.net/projectsfm”.

Gemini, there are many cases where most of the datghe source for the IOR benchmark application, werd.0.0,

movement at the LNET router nodes is concentratedniy
two of the six channels. When writing data to filesystems,
the Z+ and Z- channels are more highly used thanX¥#Y+,

or Y-. When reading data from the file systems, X+ and X-
channels are more highly used than Y+, Y-, Z+,-0r Z

If an application is constructed such that onlytaiarranks
are performing I/O, it would be advantageous tac@lthese
ranks in a three dimensional halo around the LNBUtar
nodes so that all six channels of the LNET routedas
Geminis are utilized.

Furthermore, there are bandwidth disparities betwids
in the X, Y, and Z directions. These bandwidth adality
differences could also be accounted for when crgdtie three
dimensional halo of I/0 ranks around the LNET routedes.
For example, more of these ranks could be in theesZ
planes of the LNET routers since the Z dimensicgemore
bandwidth capability than the X or Y.

If we're going to attempt to place applications farts of
applications) near LNET router nodes, the placerakgurithm
also needs to know where the files exist that thalication
needs. For example, suppose an application ieglaear
LNET router node X and so writing checkpoint files the
OSTs assigned to X is optimized. If that applmatiis
restarted and placed near LNET router node Y, hieekpoint
files that the application wants to read are aslociated with
LNET router node X and might not be optimally asesb
However, reads of those checkpoint files would pnaized if
the job could inform the placement algorithm thatfiles are
associated with LNET router node X.

This type of file access information simply doeg agist
on the mainframe. Along with making the placement
algorithm aware of LNET router locations, it wouddso be

is available at “https://github.com/chaos/ior”.

