
© British Crown Owned Copyright [2013]/AWE

CloverLeaf: Preparing Hydrodynamics Codes
 for Exascale

Andrew Mallinson

Andy.Mallinson@awe.co.uk
www.awe.co.uk

2

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications introduction
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

3

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

4

Atomic Weapons Establishment (AWE)
§  Responsible for the UK’s nuclear stock-pile
§  Conduct extensive scientific research

§  e.g. Hydro and laser facilities
§  HPC is a key enabling technology

§  conduct extensive HPC research
§  including engagements with academic institutions

5

University of Warwick
§  Performance Computing and Visualisation Group

§  Dept. of Computer Science / Centre for Scientific Computing
§  longstanding HPC research engagement with AWE

§  One of the UK’s top research universities
§  Near Birmingham

§  in historically the UK’s
 engineering heartland

§  Turnover ~ £500 M
§  ~1400 academics and
 researchers
§  ~24K students

6

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

7

Background & Motivation
§  Changing HPC landscape, future uncertain

§  Multi-core: slower clock, but more of them
§  Many-core: GPUs, MIC, APUs
§  massive scalability: Sequoia ~ 1.6 million cores

§  Issues for current code base:
§  future programming mode?

§  MPI, CAF, OpenMP, OpenACC, OpenCL, CUDA, Cilk, TBB, etc
§  code re-writes are not an option!

§  decades of manpower already invested
§  hardware is temporary but software is permanent

§  need to understand effort vs gains

8

AWE Current Code Base
§  Classified
§  Large applications ~ 0.5M Lines of Code (LoC)
§  Complex:

§  multi physics, utilities and libraries
§  Mostly Fortran
§  Flat MPI
§  How best to evolve for the future?

9

Option 1: Benchmarks
§  Use existing benchmarks of current algorithms
§  Still quite big (~90K LoC)

§  comms package alone is 46K LoC
§  Complex
§  Flat MPI
§  Inefficient tool to evaluate technologies / techniques

§  turnaround taking too long
§  ~18 months to convert 1 benchmark to CUDA/OpenCL

10

Option2: Mini-applications
§  Written with Computer Science in mind
§  Much smaller (~4.5 K LoC)
§  Amenable to a range of programming models and

hardware platforms
§  e.g. no “cut-offs”, etc

§  Enables efficient / rapid evaluation of new
programming models / techniques and platforms

§  Enter CloverLeaf …

11

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

12

CloverLeaf Intro: Physics
§  Solves the compressible Euler equations
§  Finite volume method - 2nd order accuracy
§  Equations are solved on a staggered grid

node-centred

quantities

(e.g. velocity)

cell-centred

quantities

(e.g. pressure)

13

CloverLeaf Intro: Physics
§  Single material cells
§  Predictor/corrector Lagrangian step
§  Followed by advective remap
§  System is hyperbolic:

§  can be solved with explicit numerical methods
§  without inverting a matrix

14

CloverLeaf Intro: Physics
§  Significantly simplified Physics for Computer Science

experimentation
§  Hydro is a common base to physics models of interest
§  If methodology fails or is difficult for Hydro

§  will be considerably harder for other physics models

15

CloverLeaf Intro: Computer Science
§  Computational mesh is spatially decomposed and

distributed across processes
§  Communications are mainly boundary/halo cell

exchanges of multiple fields between neighbours
§  occur frequently throughout each iteration

§  Global reduction operations within each iteration:
§  the calculation of the timestep value
§  outputting intermediate results

§  Simplified computational kernels (Fortran & C)

16

CloverLeaf Intro: Computer Science
§  14 kernels at lowest level of compute:

§  engineered to remove all loop-level dependencies
§  reduced error checking - robust problems
§  do not contain subroutine calls
§  called from driver routines allowing multiple versions of each

kernel to exist within the same codebase
§  no derived types
§  minimal pointers
§  no array syntax

§  Overall CloverLeaf is ~4.5 K LoC

17

Implementations: MPI
§  Based on a block-structure decomposition

§  one chunk (rectangular region of mesh) per process
§  All processes maintain halo of ghost cells
§  Minimises surface area between processes

§  same number of cells / process
§  Halo exchange depth varies during each iteration
§  One field exchange at once, shared comms buffers
§  One MPI message per data field
§  ISend & IRecv, followed by WaitALL

18

Implementations: CAF
§  CAF versions largely mirror the MPI version
§  MPI constructs replaced by one-sided CAF “puts”

§  host CAF process/image writes data directly into the
appropriate memory regions of neighbouring processes

§  No equivalent receive operations
§  One sub-version exchanges original comms buffers
§  Another exchanges 2D-array sections
§  Can use both local and global synchronisation
§  Utilises Cray CAF or MPI collectives

19

Implementations: Hybird (MPI+OpenMP)
§  Evolution of the MPI implementation
§  OpenMP pragmas applied to the loop blocks within the

computational kernels
§  Data parallel structure of CloverLeaf is amenable to

this style of parallelism
§  Coarser decomposition

§  reduces the amount of halo-cell data / node
§  Private constructs etc specified were necessary

20

Implementations: GPU-based
§  Based on MPI version

§  MPI+OpenACC and MPI+CUDA
§  Only GPU devices used for computational work
§  CPU coordinate computation, handle I/O etc
§  Fully resident on the GPU devices
§  Explicit (un)packing of communication buffers is carried

out on the GPUs for maximum performance

21

Implementations: OpenACC
§  Loop-level pragmas added to kernel loop blocks:

§  specify how they should be executed
§  the data dependencies etc

§  One off initial transfer to GPU using “copy” clause
§  “present” clause to indicate all input data available
§  Data transferred back to the host (for halo exchange)

using “update host” directive
§  Following exchange updated data transferred back to

the device using “update device” directive

22

Implementations: CUDA
§  The C bindings make interfacing with Fortran difficult
§  Global class implemented to coordinate data transfers

with and computation on the GPU
§  Data created and initialised on device and allowed to

reside on the GPU throughout the computation
§  New CUDA kernels implemented for the original kernels

§  each contains 2 parts: host side and device side
§  broadly each loop block within the original kernels was

converted to a CUDA device side kernel
§  majority of control code kept on the host side

23

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

24

Evaluate at scale:
§  Two alternative Cray architectures:

§  XK7 and XE6
§  The candidate programming models
§  The effects of different process to network topology

mappings at scale
§  Several communication focused optimisations to

improve strong-scaling performance
§  focus on the halo-exchange routine

25

Prog. Models / Techniques Examined
§  Weak scaling experiments:

§  (XE6: flat MPI) vs (XK7: MPI+OpenACC or MPI+CUDA)
§  Strong scaling experiments (XE6):

§  MPI vs Hybrid (MPI+OpenMP) vs CAF
§  MPI process to network topology mapping strategies
§  8 communication focused code optimisations

§  7 for MPI and 1 for CAF

26

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

27

Process to Network Topology Mappings

§  Re-order ranks within the actual application
§  4x4 blocking size used – 16 processes / node
§  Reduces number of off-node communications

MPI ranks on node 0

Node boundaries

Problem chunk boundaries

Original Modified

28

Communication Optimisations
§  Exchanging multiple fields in parallel – reduce sync
§  Diagonal communications – reduce sync further
§  Message aggregation
§  Pre-posting MPI receives
§  Dealing with messages as they arrival
§  MPI Datatypes plus utilising sequential memory
§  Overlapping communications and computation
§  CAF “gets” rather than “puts”

29

Communications Overlap Approach

§  Calculate outer region and initiate communications
§  Overlap with the cell calcs of the inner region

Cells required

for communication.

30

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

31

Experimental Platforms
§  Titan – ORNL (USA):

§  XK7, 200 cabinets, 20+ PF, Gemini interconnect
§  18,688 nodes / CPUs / GPUs
§  2.2 GHz AMD Opteron and Nvidia K20x
§  CCE v8.1.2, MPT v5.5.4, CUDA Toolkit v5.0.35

§  HECToR – EPCC (UK):
§  XE6, 30 cabinets, 800+ TF
§  2816 nodes, 5632 CPUs, Gemini interconnect
§  2.3 GHz AMD Opteron
§  CCE v8.1.2, MPT v5.6.1

32

Experiments: CloverLeaf Test Problem
§  Asymmetric test problem
§  Simulates a small, high-density region of ideal gas

expanding into a larger, low-density region
§  Shock front which penetrates low-density region
§  Variables: mesh resolution and simulation time

33

1) 2)

3) 4) 5)

§  and visually …

34

Experiments: Weak Scaling
§  38402 cells / node – 87 timesteps

35

Results: Weak Scaling

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

W
al

l-t
im

es
 (s

)

Nodes

Titan:MPI+OpenACC Titan:MPI+CUDA Hector:MPI

36

Results: Weak Scaling Analysis

§  CloverLeaf weak scales extremely well
§  Wall-time increase from 1 node to max job size

§  HECToR: MPI = 2.52s (4.2%),
§  Titan: MPI+OpenACC = 4.99s (16.7%)
§  Titan: MPI+CUDA = 4.12s (27.2%)

§  GPU-based XK7 architecture consistently outperforms
the CPU-based XE6 architecture
§  node vs node comparison
§  2x (OpenACC) and 3.7x (CUDA)

37

Experiments: Strong Scaling
§  153602 cells – 2955 timesteps
§  Jobs executed within the same node allocation

38

Results: MPI vs Hybrid vs CAF

-10
0

10
20
30
40
50
60
70
80
90

64 128 256 512 1024

R
el

at
iv

e
Pe

rf
or

m
an

ce
 (%

)

Nodes buffer ex vs array ex local vs global sync gets vs puts MPI vs CAF Hybird vs MPI

39

Analysis: “flat” MPI vs Hybrid (MPI+OMP)
§  4 MPI processes / node & 4 OMP threads / MPI process
§  Performance is broadly similar ≤ 256 nodes

§  with flat MPI slightly outperforming hybrid by <1%
§  >256 nodes hybrid significantly outperforms flat MPI

§  15.6% at 512 nodes and 29.4% at 1024 nodes

40

Analysis: CAF Performance Analysis
§  Buffer exchange based strategy outperforms the array-

section based strategy
§  ~ 81% at 1024 nodes

§  Local synchronisation vs global synchronisation:
§  3% at 64 nodes to 36% at 1024 nodes

§  “gets” vs “puts”:
§  “gets” initially delivered a modest improvement
§  at 1024 nodes “puts” version is 6.7% faster
§  “gets” are more suited for larger messages?

41

Analysis: CAF vs “flat” MPI
§  No CAF implementation was able to improve on the

performance of the flat MPI version
§  Performance disparity increase with scale

§  18% improvement at 1024 nodes

42

Results: Comms Optimisations

-10

-8

-6

-4

-2

0

2

4

6

8

64 128 256 512 1024

R
el

at
iv

e
Pe

rf
or

m
an

ce
 (%

)

Nodes
Multiple Fields Diagonal Comms Multi Fields + Diag Comms
Multi Fields + Mess Agg Multi Fields + Mess Agg + Diag Comms Multi Fields + Mess Agg + PrePost
Multi Fields + Diag Cooms + PrePost

43

Analysis: Comms Optimisations
§  All effects were more significant at scale
§  Message aggregation most successful technique
§  Consistent 6% improvement at 1024 nodes in the

versions which employed it
§  May also be the source of the hybrid version’s speedup
§  “One synchronisation per direction” and “diagonal

comms” both had a detrimental affect on performance:
§  - 4.5%, -7% and - 6.9% at 1024 nodes

§  “Message aggregation” + “diagonal comms” eliminated
the performance improvement ~ original version

§  Optimisations had greater impact at scale

44

Results: Rank Re-ordering

-1

0

1

2

3

4

5

64 128 256 512 1024

R
el

at
iv

e
Pe

rf
or

am
nc

e
(%

)

Nodes Rank Re-order Pre Posting Test-Unpack Datatypes

45

Analysis: MPI Rank Re-ordering
§  Outperforms the default topology mapping strategy
§  Benefits increase as job sizes increase

§  4.1% improvement at 1024 nodes

§  Important to select a mapping which reflects the
comms patterns or physical geometry of the application

46

Results: Comms/Comp Overlap

-14

-12

-10

-8

-6

-4

-2

0

2

64 128 256 512 1024

R
el

at
iv

e
Pe

rf
or

m
an

e
(%

)

Nodes Multi Fields + Diag Comms Multi Fields + Diag Comms + Overlap
Mess Agg + Diag Comms Mess Agg + Diag Comms + Overlap

47

Analysis: Comms Optimisations

§  Performance of our comms-comp overlapping
implementations was surprisingly worse
§  approximately 5% down on equivalent versions

§  Likely due to the cache “unfriendly” access pattern
§  The following optimisations did not have a significant

affect on overall performance:
§  pre-posting of MPI recvs
§  actively checking for message arrivals
§  MPI Datatypes plus calling MPI ops on sequential memory

48

Agenda
§  AWE & Uni. of Warwick introduction
§  Problem background and motivations
§  Mini-applications
§  CloverLeaf overview
§  Aims of this work
§  Optimisations
§  Experiments and results
§  Conclusions and future work
§  Q & A

49

Conclusion
§  Minimising communications key to enabling CloverLeaf

to scale well to high node counts:
§  16384 nodes of Titan

§  Significant computational advantage of using GPU
accelerated architectures (e.g. XK7)
§  OpenACC: ~2x and CUDA: ~3.7x

§  OpenACC delivers significant programmer productivity
improvements over CUDA

§  OpenACC performance on Kepler may well improve
and come closer to CUDA as with Fermi

50

Conclusion
§  When strong-scaling the hybrid (MPI+OMP) version

outperformed “flat” MPI at high node counts
§  MPI most likely candidate for delivering inter-node

communication as we approach Exascale
§  CAF shows promise but is not yet able to match MPI

§  A hybrid approach based on open standards and able
to accommodate accelerate type technologies also
likely be required

51

Conclusion
§  Improving the mapping of application processes onto

the 3D-Torus can deliver performance benefits
§  Optimising the communications intensive parts of

applications can deliver performance benefits
§  Message aggregation to reduce comms was the most

successful technique at scale

52

Future Work
§  Integrate comms optimisations with GPU targeted

versions, utilise Nvidia’s GPUDirect
§  Generalise and improve rank reordering
§  Investigate alternative rank placements
§  Evaluate a SHMEM based version of CloverLeaf
§  MPI v3.0 Neighbourhood Collectives
§  Alternative data structures

53

Co-authors
§  David Beckingsale – Uni. of Warwick

§  dab@dcs.warwick.ac.uk
§  Andy Herdman – AWE

§  Andy.herdman@awe.co.uk
§  Wayne Gaudin – AWE

§  Wayne.gaudin@awe.co.uk
§  John Levesque – Cray

§  levesque@cray.com
§  Stephen Jarvis – Uni. of Warwick

54

Accessing CloverLeaf
§  Released as part of Sandia’s Mantevo project:

§  http://www.mantevo.org

§  Main CloverLeaf repository in GitHub:

§  http://warwick-pcav.github.com/CloverLeaf/

55

Thank You
§  Any Questions?

