
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Using	
 the	
 Cray	
 Gemini	

Performance	
 Counters	

Cray	
 User	
 Group	
 Mee7ng	

May	
 8,	
 2013	

	

Kevin	
 PedreA,	
 Courtenay	
 Vaughan,	

Richard	
 BarreE,	
 Karen	
 Devine,	
 ScoE	
 Hemmert	

Sandia	
 Na7onal	
 Laboratories	

	

0
Z+

Backplane

1
Z+

Backplane

2
X+

Cable

3
X+

Cable

4
X-

Cable

5
X-

Cable

6
Z-

Cable

7
Z-

Cable

8
Z+

Backplane

9
Z+

Backplane

10
X+

Cable

11
X+

Cable

12
X-

Cable

13
X-

Cable

14
Z-

Cable

15
Z-

Cable

16
Z-

Cable

17
Z-

Cable

18
Z-

Cable
19
Host

20
Host

21
Z+

Backplane

22
Z+

Backplane

23
Z+

Backplane

24
X+

Cable

25
X+

Cable

26
Z-

Cable
27
Host

28
Host

29
Z+

Backplane

30
X-

Cable

31
X-

Cable

32
X+

Cable

33
X+

Cable

34
Y-

Cable
35
Host

36
Host

37
Y+

Mezzanine

38
X-

Cable

39
X-

Cable

40
Y-

Cable

41
Y-

Cable

42
Y-

Cable
43
Host

44
Host

45
Y+

Mezzanine

46
Y+

Mezzanine

47
Y+

Mezzanine

Outline	

§  Mo7va7on	
 and	
 background	

§  How	
 to	
 access	

§  What	
 they	
 measure	

§  Usage	
 example:	
 MiniGhost	
 rank	
 remapping	

§  Conclusion	

Mo7va7on	

§  We	
 had	
 an	
 applica7on	
 that	
 was	
 scaling	
 well	
 to	
 16K	
 processes,	

then	
 poorly	
 aTerwards	
 (weak	
 scaling)	

§  We	
 suspected	
 network	
 conges7on/conten7on	
 was	
 becoming	

an	
 issue	
 and	
 wanted	
 to	
 quan7fy	
 it	
 empirically	
 	
 	

§  We	
 had	
 heard	
 the	
 Gemini	
 had	
 a	
 nice	
 set	
 of	
 performance	

counters	
 that	
 could	
 do	
 this	

➜ It	
 turned	
 out	
 to	
 be	
 quite	
 a	
 bit	
 of	
 work	
 to	
 access	
 the	
 counters,	

seemed	
 like	
 a	
 good	
 topic	
 to	
 discuss	
 at	
 CUG	

3	

Cray	
 Gemini	

§  Two	
 nodes	
 (hosts)	
 per	
 Gemini	
 chip	

§  Gemini	
 chip	
 consists	
 of:	

§  Two	
 network	
 interfaces	

§  48	
 port	
 (7le)	
 router,	
 	

logically	
 organized	
 into	
 7	
 network	
 links	

§  Routers	
 connected	
 to	
 form	
 3-­‐D	
 torus	

§  X	
 links	
 between	
 cabinets	
 in	
 a	
 row	

§  Y	
 links	
 between	
 rows	
 of	
 cabinets	

§  Z	
 links	
 within	
 a	
 cabinet	

§  Large	
 set	
 of	
 performance	
 counters	

§  Cray	
 Documenta7on	
 (S-­‐0025-­‐10):	

Using	
 the	
 Cray	
 Gemini	
 Hardware	
 Counters	
 	

§  This	
 talk	
 focuses	
 on	
 the	
 router	
 7le	

performance	
 counters	

4	

Y

Z

X

TABLE I: Mapping of tile counter names used in Cray’s Gemini documentation [2] to the names used in the GPCD interface.

Cray Documentation Name GPCD Library Name Description
GM TILE PERF VC0 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 0 Request virtual channel phit count.
GM TILE PERF VC1 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 1 Response virtual channel phit count

(phit = 3 bytes)
GM TILE PERF VC0 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 2 Request virtual channel packet count
GM TILE PERF VC1 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 3 Response virtual channel packet count

(packet = 8 to 32 phits)
GM TILE PERF INQ STALL:n:m GM n m TILE PERFORMANCE COUNTERS 4 Count of input stall cycles
GM TILE PERF CREDIT STALL:n:m GM n m TILE PERFORMANCE COUNTERS 5 Count of output stall cycles

(router operates at 800 MHz)

1 g p c d c o n t e x t t * c t x ;
2 gpcd mmr desc t * desc ;
3 g p c d m m r l i s t t *p ;
4 i n t i , j , k ;
5 char name [1 2 8] ;
6
7 / / Cr ea t e a c o u n t e r group , a l l t i l e c o u n t e r s
8 c t x = g p c d c r e a t e c o n t e x t () ;
9 f o r (i = 0 ; i < 6 ; i ++) / / TILE ROWS

10 f o r (j = 0 ; j < 8 ; j ++) / / TILE COLS
11 f o r (k = 0 ; k < 6 ; k ++) / / TILE COUNTERS
12 {
13 s p r i n t f (name ,
14 ”GM %d %d TILE PERFORMANCE COUNTERS %d ” ,
15 i , j , k) ;
16 desc = gpcd lookup mmr byname (name) ;
17 gpcd context add mmr (c tx , de sc) ;
18 }
19
20 / / Sample t h e t i l e c o u n t e r s
21 g p c d c o n t e x t r e a d m m r v a l s (c t x) ;
22
23 / / P r i n t t h e c o u n t e r v a l u e s
24 f o r (p = c tx�> l i s t ; p ; p = p�>n e x t)
25 p r i n t f (” Coun te r %s : Value=%l u \n ” ,
26 p�>i tem�>name , p�>v a l u e) ;

Fig. 1: Example user-level code showing how to sample and
print the six static counters from each of the Gemini’s 48 router
tiles using the native Gemini Performance Counter Daemon
interface.

This command requires administrative privileges to run. We
then copied the text file to a login node so that it was available
to our tools.

The rtr tool output contains one line per source tile to
destination tile connection (i.e., a connection between two
Gemini chips). Figure 2 shows an example of the tool’s output.
Each line includes the direction of the link (X+, X-, Y+, Y-
, Z+, Z-), the 3-D coordinate of the source and destination
Gemini, and the type of link (backplane, mezzanine, or cable).
Only information for the 40 network link tiles per Gemini is
included in the output. The eight tiles per Gemini that are not
included make up the host link that connects the Gemini to its
two hosts. For the 9216 node DOE/NNSA Cielo XE6 system,
the interconnect.txt file is about 14 MB and contains
184,320 lines (40 tiles * 4,608 Geminis = 184,320 lines).

Figure 3 graphically shows an example tile to logical
link mapping for a node in Cielo. Other large XE and XK
systems will use a similar mapping, with eight tiles being
assigned to links in the X and Z dimensions and four tiles

0
Z+

Backplane

1
Z+

Backplane

2
X+

Cable

3
X+

Cable

4
X-

Cable

5
X-

Cable

6
Z-

Cable

7
Z-

Cable

8
Z+

Backplane

9
Z+

Backplane

10
X+

Cable

11
X+

Cable

12
X-

Cable

13
X-

Cable

14
Z-

Cable

15
Z-

Cable

16
Z-

Cable

17
Z-

Cable

18
Z-

Cable
19
Host

20
Host

21
Z+

Backplane

22
Z+

Backplane

23
Z+

Backplane

24
X+

Cable

25
X+

Cable

26
Z-

Cable
27
Host

28
Host

29
Z+

Backplane

30
X-

Cable

31
X-

Cable

32
X+

Cable

33
X+

Cable

34
Y-

Cable
35
Host

36
Host

37
Y+

Mezzanine

38
X-

Cable

39
X-

Cable

40
Y-

Cable

41
Y-

Cable

42
Y-

Cable
43
Host

44
Host

45
Y+

Mezzanine

46
Y+

Mezzanine

47
Y+

Mezzanine

Fig. 3: Gemini tile to logical link mapping for the first node
defined in the interconnect.txt for Cielo. Links in the
X dimension are shown in orange, Y links in green, Z links
in blue, and host links in yellow.

being assigned to Y dimension links. In general, it is not
possible to assume that the mapping is identical on all nodes
of a given system because, at a minimum, the direction of
a given tile will be different on the source and destination
Geminis. For example, in Figure 3 tile 0 is assigned to the
Z+ link. This tile connects to tile 0 on the destination Gemini,
and is therefore associated with the Z- link. The link type
assigned to each Gemini also changes from node to node,
depending on the Gemini’s position in the 3-D torus. Our tools
parse the full interconnect.txt file so these differences
are automatically picked up without having to make any
assumptions.

Table II lists the bandwidth of each link type. This is useful
for calculating the aggregate bandwidth of a logical link. For
example, in Figure 3 there are eight tiles making up the X+
logical link, each using a cable link. The aggregate bandwidth
of the link is therefore 8⇤1.17 = 9.4 GBytes/s (uni-directional,
18.8 GB/s bi-directional). For large XE and XK systems, all
X links are cable based with bandwidth 9.4 GB/s. Links in the
Y dimension alternate every other between mezzanine (within
a board) and cable (between boards) links, with bandwidths
4 ⇤ 2.34 = 9.4 GB/s and 4 ⇤ 1.17 = 4.7 GB/s, respectively.
Links in the Z dimension are mostly backplane links (within
a cage) with bandwidth 8 ⇤ 1.88 = 15 GB/s. Every eighth
link in the Z dimension is a cable link (between cages) with

NIC A NIC B

x

Host A Host B

Z+ Z-

X+ X-

Y- Y+

Available	
 Tile	
 Counters	

§  Each	
 7le	
 has	
 six	
 fixed	
 counters:	

0:	
 	
 	
 	
 VC0_PHIT_CNT 	
 	
 Request	
 VC	
 phits	

1:	
 	
 	
 	
 VC1_PHIT_CNT 	
 	
 Response	
 VC	
 phits	

2:	
 	
 	
 	
 VC0_PKT_CNT 	
 	
 Request	
 VC	
 packets	

3:	
 	
 	
 	
 VC1_PKT_CNT 	
 	
 Response	
 VC	
 packets	

4:	
 	
 	
 	
 INQ_STALLS 	
 	
 Request	
 VC	
 input	
 stalls	

5:	
 	
 	
 	
 CREDIT_STALLS 	
 	
 Request	
 VC	
 output	
 stalls	

	

§  What	
 is	
 a	
 phit?	
 	
 	
 =>	
 	
 3	
 bytes	

§  What	
 is	
 a	
 packet?	
 	
 => 	
 8	
 to	
 32	
 phits	
 (24	
 to	
 96	
 bytes)	

§  Input	
 stalls? 	
 => 	
 Time	
 wai7ng	
 to	
 get	
 to	
 output	
 7le	

§  Output	
 stalls? 	
 => 	
 Time	
 wai7ng	
 to	
 get	
 to	
 next	
 Gemini	

5	

Ques7ons?	

§  Basic	

§  How	
 can	
 we	
 access	
 the	
 7le	
 counters	
 from	
 an	
 MPI	
 program?	

§  How	
 do	
 we	
 turn	
 the	
 individual	
 7le	
 counters	
 into	
 link	
 counters?	

§  How	
 do	
 we	
 calculate	
 the	
 capacity	
 of	
 each	
 link?	

§  Opera7onal:	

§  What	
 exactly	
 are	
 the	
 packet/phit	
 counters	
 measuring?	

§  Do	
 the	
 counters	
 work	
 as	
 expected	
 for	
 PUT/GET	
 transac7ons?	

§  Are	
 measurements	
 repeatable?	

§  How	
 is	
 the	
 system	
 routed?	

§  Do	
 the	
 stall	
 counters	
 correlate	
 with	
 network	
 conges7on?	

6	

Outline	

§  Mo7va7on	
 and	
 background	

§  How	
 to	
 access	

§  What	
 they	
 measure	

§  Usage	
 example:	
 MiniGhost	
 rank	
 remapping	

§  Conclusion	

Directly	
 Accessing	
 Gemini	
 Counters	

8	

TABLE I: Mapping of tile counter names used in Cray’s Gemini documentation [2] to the names used in the GPCD interface.

Cray Documentation Name GPCD Library Name Description
GM TILE PERF VC0 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 0 Request virtual channel phit count.
GM TILE PERF VC1 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 1 Response virtual channel phit count

(phit = 3 bytes)
GM TILE PERF VC0 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 2 Request virtual channel packet count
GM TILE PERF VC1 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 3 Response virtual channel packet count

(packet = 8 to 32 phits)
GM TILE PERF INQ STALL:n:m GM n m TILE PERFORMANCE COUNTERS 4 Count of input stall cycles
GM TILE PERF CREDIT STALL:n:m GM n m TILE PERFORMANCE COUNTERS 5 Count of output stall cycles

(router operates at 800 MHz)

1 g p c d c o n t e x t t * c t x ;
2 gpcd mmr desc t * desc ;
3 g p c d m m r l i s t t *p ;
4 i n t i , j , k ;
5 char name [1 2 8] ;
6
7 / / Cr ea t e a c o u n t e r group , a l l t i l e c o u n t e r s
8 c t x = g p c d c r e a t e c o n t e x t () ;
9 f o r (i = 0 ; i < 6 ; i ++) / / TILE ROWS

10 f o r (j = 0 ; j < 8 ; j ++) / / TILE COLS
11 f o r (k = 0 ; k < 6 ; k ++) / / TILE COUNTERS
12 {
13 s p r i n t f (name ,
14 ”GM %d %d TILE PERFORMANCE COUNTERS %d ” ,
15 i , j , k) ;
16 de sc = gpcd lookup mmr byname (name) ;
17 gpcd context add mmr (c tx , de sc) ;
18 }
19
20 / / Sample t h e t i l e c o u n t e r s
21 g p c d c o n t e x t r e a d m m r v a l s (c t x) ;
22
23 / / P r i n t t h e c o u n t e r v a l u e s
24 f o r (p = c tx�> l i s t ; p ; p = p�>n e x t)
25 p r i n t f (” Coun te r %s : Value=%l u \n ” ,
26 p�>i tem�>name , p�>v a l u e) ;

Fig. 1: Example user-level code showing how to sample and
print the six static counters from each of the Gemini’s 48 router
tiles using the native Gemini Performance Counter Daemon
interface.

This command requires administrative privileges to run. We
then copied the text file to a login node so that it was available
to our tools.

The rtr tool output contains one line per source tile to
destination tile connection (i.e., a connection between two
Gemini chips). Figure 2 shows an example of the tool’s output.
Each line includes the direction of the link (X+, X-, Y+, Y-
, Z+, Z-), the 3-D coordinate of the source and destination
Gemini, and the type of link (backplane, mezzanine, or cable).
Only information for the 40 network link tiles per Gemini is
included in the output. The eight tiles per Gemini that are not
included make up the host link that connects the Gemini to its
two hosts. For the 9216 node DOE/NNSA Cielo XE6 system,
the interconnect.txt file is about 14 MB and contains
184,320 lines (40 tiles * 4,608 Geminis = 184,320 lines).

Figure 3 graphically shows an example tile to logical
link mapping for a node in Cielo. Other large XE and XK
systems will use a similar mapping, with eight tiles being
assigned to links in the X and Z dimensions and four tiles

0
Z+

Backplane

1
Z+

Backplane

2
X+

Cable

3
X+

Cable

4
X-

Cable

5
X-

Cable

6
Z-

Cable

7
Z-

Cable

8
Z+

Backplane

9
Z+

Backplane

10
X+

Cable

11
X+

Cable

12
X-

Cable

13
X-

Cable

14
Z-

Cable

15
Z-

Cable

16
Z-

Cable

17
Z-

Cable

18
Z-

Cable
19
Host

20
Host

21
Z+

Backplane

22
Z+

Backplane

23
Z+

Backplane

24
X+

Cable

25
X+

Cable

26
Z-

Cable
27
Host

28
Host

29
Z+

Backplane

30
X-

Cable

31
X-

Cable

32
X+

Cable

33
X+

Cable

34
Y-

Cable
35
Host

36
Host

37
Y+

Mezzanine

38
X-

Cable

39
X-

Cable

40
Y-

Cable

41
Y-

Cable

42
Y-

Cable
43
Host

44
Host

45
Y+

Mezzanine

46
Y+

Mezzanine

47
Y+

Mezzanine

Fig. 3: Gemini tile to logical link mapping for the first node
defined in the interconnect.txt for Cielo. Links in the
X dimension are shown in orange, Y links in green, Z links
in blue, and host links in yellow.

being assigned to Y dimension links. In general, it is not
possible to assume that the mapping is identical on all nodes
of a given system because, at a minimum, the direction of
a given tile will be different on the source and destination
Geminis. For example, in Figure 3 tile 0 is assigned to the
Z+ link. This tile connects to tile 0 on the destination Gemini,
and is therefore associated with the Z- link. The link type
assigned to each Gemini also changes from node to node,
depending on the Gemini’s position in the 3-D torus. Our tools
parse the full interconnect.txt file so these differences
are automatically picked up without having to make any
assumptions.

Table II lists the bandwidth of each link type. This is useful
for calculating the aggregate bandwidth of a logical link. For
example, in Figure 3 there are eight tiles making up the X+
logical link, each using a cable link. The aggregate bandwidth
of the link is therefore 8⇤1.17 = 9.4 GBytes/s (uni-directional,
18.8 GB/s bi-directional). For large XE and XK systems, all
X links are cable based with bandwidth 9.4 GB/s. Links in the
Y dimension alternate every other between mezzanine (within
a board) and cable (between boards) links, with bandwidths
4 ⇤ 2.34 = 9.4 GB/s and 4 ⇤ 1.17 = 4.7 GB/s, respectively.
Links in the Z dimension are mostly backplane links (within
a cage) with bandwidth 8 ⇤ 1.88 = 15 GB/s. Every eighth
link in the Z dimension is a cable link (between cages) with

§  GPCD	
 Library	
 available	

in	
 Gemini	
 Kernel	
 driver	

source	
 code	
 (GPLv2)	

§  Code	
 sets	
 up	
 to	
 sample	

the	
 288	
 7le	
 counters,	

48	
 7les	
 *	
 6	
 counters	

§  Traps	
 to	
 kernel	
 to	
 read	

counters,	
 driver	
 ioctl()	

§  Benchmark,	
 7me	
 to	

sample	
 all	
 288	
 7le	

counters:	

Average: 	
 159	
 us	

Min: 	
 	
 154	
 us	

Max:	
 	
 305	
 us	

§  =>	
 Slow	
 Opera/on!	

	
 	
 	
 	
 	
 Use	
 with	
 care	

Aggrega7ng	
 to	
 Link	
 Counters	

§  Tile	
 counters	
 are	
 just	
 an	
 implementa7on	
 detail	

§  Really	
 care	
 about	
 the	
 logical	
 network	
 links	

§  Need	
 to	
 figure	
 out	
 which	
 7les	
 make	
 up	
 each	
 network	
 link	

§  No	
 obvious	
 way	
 to	
 get	
 the	
 mapping	
 from	
 compute	
 nodes	

§  Instead,	
 use	
 Cray’s	
 rtr	
 tool	
 available	
 on	
 the	
 SMW	
 to	
 dump	
 map	

§  Our	
 tools	
 depend	
 on	
 this	
 text	
 file,	
 parse	
 at	
 startup	

9	

c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c1-0c0s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c1-0c0s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X- -> c2-0c0s0g0l41[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l05[(0,0,0)] X- -> c2-0c0s0g0l31[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l06[(0,0,0)] Z- -> c0-0c2s7g0l26[(0,0,23)] LinkType: cable15z
c0-0c0s0g0l07[(0,0,0)] Z- -> c0-0c2s7g0l35[(0,0,23)] LinkType: cable15z

Fig. 2: First 8 lines of the interconnect.txt file for Cielo (16x12x24 topology).

TABLE II: Tile link type to bandwidth conversions.

Link Type Bandwidth
Mezzanine 2.34 GB/s
Backplane 1.88 GB/s
Cable 1.17 GB/s
Host 1.33 GB/s (est.)

bandwidth 8 ⇤ 1.17 = 9.4 GB/s. As can be seen, there is a
fairly heterogeneous distribution of interconnect link speeds
on Gemini based systems.

IV. GATHERING JOB-WIDE INFORMATION

Once we understood how to aggregate the tile counters
into logical links, our next step was to develop a higher-
level MPI library to aggregate the counter information across
an entire application run. This library, which we named the
Gemini monitor library (libgm.a), gets linked with the target
application to be profiled and provides a simple API for
sampling and printing application-wide counter information.
Currently there are three API calls:

// Initialize the library
gemini_init_state(comm, &state)

// Sample the gemini counters
gemini_read_counters(comm, &state)

// Output delta of last two samples
gemini_print_counters(comm, &state)

A typical usage scenario would be to surround a code
region of interest with calls gemini_read_counters()
and then call gemini_print_counters() to output the
counter difference from the start to the end of the region.

Internally, the library forms an MPI communicator with one
process per Gemini, which we call the leader process. Reading
the counters from multiple processes per Gemini would be
redundant and add unnecessary overhead. Each Gemini leader
process parses the interconnect.txt information (rank
0 broadcasts the file to all Gemini leader processes) to find its
own tile to logical link mapping. No information about other
Geminis is retained. When an application requests that the
counters be sampled, the individual tile counters are aggregated
to logical link counters, as described in Section III. Each
Gemini leader stores multiple logical link counter samples.

When the application requests that the counters be output,
each Gemini leader calculates the delta between the last two
counter samples and sends the result to rank 0 using an
MPI_Gather() collective. Rank 0 then outputs the aggre-
gated counter information to a text file.

Figure 4 shows an example of the library’s output. The first
two comment lines are included for convenience, and are not
normally included in the output. Each Gemini block begins
with a line indicating the Gemini’s coordinate in the 3-D torus
and is followed by up to seven lines, one per logical link
(including the host link, HH). Each logical link line includes
the direction of the link, the coordinate of the Gemini at the
remote end of the link, the speed of the link in Gbytes/s,
and the values of the six fixed tile counters for the link (the
delta between the last two samples). To allow for maximum
flexibility for post processing, we chose to output the full six
counters for each of the seven logical links on each Gemini,
rather than trying to condense or summarize the information
within the library.

We have tested the library on up to 131,072 process runs,
comprised of 8,192 nodes running 16 processes per node. We
found that the Gemini leader process communicator size is
typically slightly larger than half the number of nodes for
a given run, due to the Cray node allocator sometimes only
allocating one of a Gemini’s two nodes to the job (e.g., for
all of the 131,072 process runs, the same 4,118 Geminis
were used). The memory overhead of the library on non-
rank 0 processes is very small, since only local information
is stored. The rank 0 process requires some buffer space to
gather information from all Gemini leader processes. This
overhead grows linearly with the number of Geminis and is
approximately 6 MBytes for a hypothetical system with 10,000
Geminis.

V. SONAR EXPERIMENTS

We performed a number of simple tests to better understand
the operation of the Gemini tile counters. The basic theme of
these experiments was to send out a known “ping”, such as
a single MPI message of known size, and then inspect the
tile counters to determine what happened – the “pong” echo.
These experiments gave us a clear picture of what was actually
transmitted on the wire for put and get transactions, revealed
the directionality of the tile counters, helped us understand the
routing scheme used on our system, and allowed us to measure
the bandwidth efficiency of the Gemini network for MPI point-
to-point messages. These topics are discussed in the following
sections.

Source Gemini Tile Destination Gemini Tile Type of Link

Using the Cray Gemini Performance Counters

Kevin Pedretti, Courtenay Vaughan, Richard Barrett, Karen Devine, K. Scott Hemmert
Sandia National Laboratories

Albuquerque, NM 87185
Email: {ktpedre, ctvaugh, rfbarre, kddevin, kshemme}@sandia.gov

Abstract—This paper describes our experience using the

Cray Gemini performance counters to gain insight into the

network resources being used by applications. The Gemini chip

consists of two network interfaces and a common router core,

each providing an extensive set of performance counters. Based

on our experience, we have found some of these counters to

be more enlightening than others. More importantly, we have

performed a set of controlled experiments to better understand

what the counters are actually measuring. These experiments led

to several surprises, described in this paper. This supplements the

documentation provided by Cray and is essential information

for anybody wishing to make use of the Gemini performance

counters. We demonstrate the use of the Gemini tile performance

counters to quantify the reduction in network congestion due to

an improved process mapping scheme for the MiniGhost miniapp.

I. INTRODUCTION

The Cray Gemini [1] network processing unit provides a
large set of hardware performance counters that have many
potential uses, including understanding individual application
communication behavior and understanding the behavior of
the system as a whole (e.g., network congestion). This is
a unique capability compared to most commodity networks.
Unfortunately, when we had a need to use these counters, we
quickly concluded that doing so would not be “easy”. The
available documentation [2] provided basic descriptions of the
counters but left out many necessary details, and provided no
examples showing how to directly access the counters without
using CrayPat. Our hope in writing this paper is to fill in some
of the missing gaps to jump start others who want to make use
of the Gemini counters.

The remainder of this paper is organized as follows:
Section II describes our approach for directly accessing Gemini
performance counter information from MPI applications. Sec-
tion III and IV describe how to derive logical link counters
and gather job-wide counter information, respectively. Results
of experiments designed to understand the operation of the
counters are described in Section V, followed by a demon-
stration of using the counters to measure network congestion
in Section VI. Future work is discussed in Section VII and
Section VIII concludes the paper.

II. DIRECTLY ACCESSING THE GEMINI TILE COUNTERS

Our first step was to gain direct access to the Gemini
counters from application code. At the time, CrayPat [3] had
the ability to access Gemini network interface counters but had
no support for accessing the Gemini router tile counters. Since
our main interest was in the tile counters and we wanted to
avoid the extra steps needed to use CrayPat, we began looking
for other options.

Fortunately our search was not long. While looking through
the Gemini Linux kernel driver source code,1 we found the
source code for the Gemini Performance Counter Daemon
(GPCD) kernel module and some example code showing how
to access its interface from user-level. This is presumably the
same interface that CrayPat uses. We converted the sample
user-level code into a library, wrote a test program, and verified
that we could access the tile counters.

Figure 1 shows an example of using the GPCD library.
The first step is to create a counter context that includes the six
fixed counters for each tile (lines 8 through 18). The code uses
the counter’s human readable name (line 14) to look up the
memory mapped register descriptor for the counter (line 16).
The descriptor is then added to the context (line 17). Overall,
288 counters are added to the context, since there are 48 tiles
and each tile has six fixed counters. The next step is to read
the counter values into the context (line 21). Internally, this
makes an ioctl() call to the GPCD kernel module, the kernel
module reads the counter values specified in the context, and
then returns the values to user space. The counter values are
stored in the context itself. The last step is to print the counter
values by walking the descriptor list stored in the context (lines
24-26).

The six per-tile fixed counters are briefly mentioned in
Cray’s documentation [2]. However, the mapping between the
counter names in the documentation and the GPCD library
counter names is not specified. We performed a set of simple
experiments similar to those described in Section V to deter-
mine the mapping is as shown in Table I. The table also gives
a brief description of each tile counter.

III. AGGREGATING TILE COUNTERS TO LINK COUNTERS

Our next step was to figure out how to aggregate the
individual tile counters into logical link counters. For our
purposes the router tiles were just an implementation detail–
what we really cared about were the network links connecting
the Geminis together in the 3-D torus and the host link
connecting the Gemini to its two local hosts. Each of these
logical links is made up of a set of tiles.

We were not able to find a way to determine the tile to link
mapping from a login node or compute node. Instead, we used
Cray’s rtr tool that is available on the Service Management
Workstation (SMW) to dump out the mapping to a text file:

rtr --interconnect > interconnect.txt

1For the Cray 4.0.36 release, this source code is available in cray-gni-1.0-
1.0400.4123.8.8.gem.src.rpm and is licensed under GPLv2.

Example	
 Tile	
 to	
 Logical	
 Link	
 Mapping	

For	
 LANL/SNL	
 Cielo	
 Cray	
 XE6	

10	

TABLE I: Mapping of tile counter names used in Cray’s Gemini documentation [2] to the names used in the GPCD interface.

Cray Documentation Name GPCD Library Name Description
GM TILE PERF VC0 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 0 Request virtual channel phit count.
GM TILE PERF VC1 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 1 Response virtual channel phit count

(phit = 3 bytes)
GM TILE PERF VC0 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 2 Request virtual channel packet count
GM TILE PERF VC1 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 3 Response virtual channel packet count

(packet = 8 to 32 phits)
GM TILE PERF INQ STALL:n:m GM n m TILE PERFORMANCE COUNTERS 4 Count of input stall cycles
GM TILE PERF CREDIT STALL:n:m GM n m TILE PERFORMANCE COUNTERS 5 Count of output stall cycles

(router operates at 800 MHz)

1 g p c d c o n t e x t t * c t x ;
2 gpcd mmr desc t * desc ;
3 g p c d m m r l i s t t *p ;
4 i n t i , j , k ;
5 char name [1 2 8] ;
6
7 / / Cr e a t e a c o u n t e r group , a l l t i l e c o u n t e r s
8 c t x = g p c d c r e a t e c o n t e x t () ;
9 f o r (i = 0 ; i < 6 ; i ++) / / TILE ROWS

10 f o r (j = 0 ; j < 8 ; j ++) / / TILE COLS
11 f o r (k = 0 ; k < 6 ; k ++) / / TILE COUNTERS
12 {
13 s p r i n t f (name ,
14 ”GM %d %d TILE PERFORMANCE COUNTERS %d ” ,
15 i , j , k) ;
16 desc = gpcd lookup mmr byname (name) ;
17 gpcd context add mmr (c tx , de sc) ;
18 }
19
20 / / Sample t h e t i l e c o u n t e r s
21 g p c d c o n t e x t r e a d m m r v a l s (c t x) ;
22
23 / / P r i n t t h e c o u n t e r v a l u e s
24 f o r (p = c tx�> l i s t ; p ; p = p�>n e x t)
25 p r i n t f (” Coun te r %s : Value=%l u \n ” ,
26 p�>i tem�>name , p�>v a l u e) ;

Fig. 1: Example user-level code showing how to sample and
print the six static counters from each of the Gemini’s 48 router
tiles using the native Gemini Performance Counter Daemon
interface.

This command requires administrative privileges to run. We
then copied the text file to a login node so that it was available
to our tools.

The rtr tool output contains one line per source tile to
destination tile connection (i.e., a connection between two
Gemini chips). Figure 2 shows an example of the tool’s output.
Each line includes the direction of the link (X+, X-, Y+, Y-
, Z+, Z-), the 3-D coordinate of the source and destination
Gemini, and the type of link (backplane, mezzanine, or cable).
Only information for the 40 network link tiles per Gemini is
included in the output. The eight tiles per Gemini that are not
included make up the host link that connects the Gemini to its
two hosts. For the 9216 node DOE/NNSA Cielo XE6 system,
the interconnect.txt file is about 14 MB and contains
184,320 lines (40 tiles * 4,608 Geminis = 184,320 lines).

Figure 3 graphically shows an example tile to logical
link mapping for a node in Cielo. Other large XE and XK
systems will use a similar mapping, with eight tiles being
assigned to links in the X and Z dimensions and four tiles

0
Z+

Backplane

1
Z+

Backplane

2
X+

Cable

3
X+

Cable

4
X-

Cable

5
X-

Cable

6
Z-

Cable

7
Z-

Cable

8
Z+

Backplane

9
Z+

Backplane

10
X+

Cable

11
X+

Cable

12
X-

Cable

13
X-

Cable

14
Z-

Cable

15
Z-

Cable

16
Z-

Cable

17
Z-

Cable

18
Z-

Cable
19
Host

20
Host

21
Z+

Backplane

22
Z+

Backplane

23
Z+

Backplane

24
X+

Cable

25
X+

Cable

26
Z-

Cable
27
Host

28
Host

29
Z+

Backplane

30
X-

Cable

31
X-

Cable

32
X+

Cable

33
X+

Cable

34
Y-

Cable
35
Host

36
Host

37
Y+

Mezzanine

38
X-

Cable

39
X-

Cable

40
Y-

Cable

41
Y-

Cable

42
Y-

Cable
43
Host

44
Host

45
Y+

Mezzanine

46
Y+

Mezzanine

47
Y+

Mezzanine

Fig. 3: Gemini tile to logical link mapping for the first node
defined in the interconnect.txt for Cielo. Links in the
X dimension are shown in orange, Y links in green, Z links
in blue, and host links in yellow.

being assigned to Y dimension links. In general, it is not
possible to assume that the mapping is identical on all nodes
of a given system because, at a minimum, the direction of
a given tile will be different on the source and destination
Geminis. For example, in Figure 3 tile 0 is assigned to the
Z+ link. This tile connects to tile 0 on the destination Gemini,
and is therefore associated with the Z- link. The link type
assigned to each Gemini also changes from node to node,
depending on the Gemini’s position in the 3-D torus. Our tools
parse the full interconnect.txt file so these differences
are automatically picked up without having to make any
assumptions.

Table II lists the bandwidth of each link type. This is useful
for calculating the aggregate bandwidth of a logical link. For
example, in Figure 3 there are eight tiles making up the X+
logical link, each using a cable link. The aggregate bandwidth
of the link is therefore 8⇤1.17 = 9.4 GBytes/s (uni-directional,
18.8 GB/s bi-directional). For large XE and XK systems, all
X links are cable based with bandwidth 9.4 GB/s. Links in the
Y dimension alternate every other between mezzanine (within
a board) and cable (between boards) links, with bandwidths
4 ⇤ 2.34 = 9.4 GB/s and 4 ⇤ 1.17 = 4.7 GB/s, respectively.
Links in the Z dimension are mostly backplane links (within
a cage) with bandwidth 8 ⇤ 1.88 = 15 GB/s. Every eighth
link in the Z dimension is a cable link (between cages) with

c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c1-0c0s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c1-0c0s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X- -> c2-0c0s0g0l41[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l05[(0,0,0)] X- -> c2-0c0s0g0l31[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l06[(0,0,0)] Z- -> c0-0c2s7g0l26[(0,0,23)] LinkType: cable15z
c0-0c0s0g0l07[(0,0,0)] Z- -> c0-0c2s7g0l35[(0,0,23)] LinkType: cable15z

Fig. 2: First 8 lines of the interconnect.txt file for Cielo (16x12x24 topology).

TABLE II: Tile link type to bandwidth conversions.

Link Type Bandwidth
Mezzanine 2.34 GB/s
Backplane 1.88 GB/s
Cable 1.17 GB/s
Host 1.33 GB/s (est.)

bandwidth 8 ⇤ 1.17 = 9.4 GB/s. As can be seen, there is a
fairly heterogeneous distribution of interconnect link speeds
on Gemini based systems.

IV. GATHERING JOB-WIDE INFORMATION

Once we understood how to aggregate the tile counters
into logical links, our next step was to develop a higher-
level MPI library to aggregate the counter information across
an entire application run. This library, which we named the
Gemini monitor library (libgm.a), gets linked with the target
application to be profiled and provides a simple API for
sampling and printing application-wide counter information.
Currently there are three API calls:

// Initialize the library
gemini_init_state(comm, &state)

// Sample the gemini counters
gemini_read_counters(comm, &state)

// Output delta of last two samples
gemini_print_counters(comm, &state)

A typical usage scenario would be to surround a code
region of interest with calls gemini_read_counters()
and then call gemini_print_counters() to output the
counter difference from the start to the end of the region.

Internally, the library forms an MPI communicator with one
process per Gemini, which we call the leader process. Reading
the counters from multiple processes per Gemini would be
redundant and add unnecessary overhead. Each Gemini leader
process parses the interconnect.txt information (rank
0 broadcasts the file to all Gemini leader processes) to find its
own tile to logical link mapping. No information about other
Geminis is retained. When an application requests that the
counters be sampled, the individual tile counters are aggregated
to logical link counters, as described in Section III. Each
Gemini leader stores multiple logical link counter samples.

When the application requests that the counters be output,
each Gemini leader calculates the delta between the last two
counter samples and sends the result to rank 0 using an
MPI_Gather() collective. Rank 0 then outputs the aggre-
gated counter information to a text file.

Figure 4 shows an example of the library’s output. The first
two comment lines are included for convenience, and are not
normally included in the output. Each Gemini block begins
with a line indicating the Gemini’s coordinate in the 3-D torus
and is followed by up to seven lines, one per logical link
(including the host link, HH). Each logical link line includes
the direction of the link, the coordinate of the Gemini at the
remote end of the link, the speed of the link in Gbytes/s,
and the values of the six fixed tile counters for the link (the
delta between the last two samples). To allow for maximum
flexibility for post processing, we chose to output the full six
counters for each of the seven logical links on each Gemini,
rather than trying to condense or summarize the information
within the library.

We have tested the library on up to 131,072 process runs,
comprised of 8,192 nodes running 16 processes per node. We
found that the Gemini leader process communicator size is
typically slightly larger than half the number of nodes for
a given run, due to the Cray node allocator sometimes only
allocating one of a Gemini’s two nodes to the job (e.g., for
all of the 131,072 process runs, the same 4,118 Geminis
were used). The memory overhead of the library on non-
rank 0 processes is very small, since only local information
is stored. The rank 0 process requires some buffer space to
gather information from all Gemini leader processes. This
overhead grows linearly with the number of Geminis and is
approximately 6 MBytes for a hypothetical system with 10,000
Geminis.

V. SONAR EXPERIMENTS

We performed a number of simple tests to better understand
the operation of the Gemini tile counters. The basic theme of
these experiments was to send out a known “ping”, such as
a single MPI message of known size, and then inspect the
tile counters to determine what happened – the “pong” echo.
These experiments gave us a clear picture of what was actually
transmitted on the wire for put and get transactions, revealed
the directionality of the tile counters, helped us understand the
routing scheme used on our system, and allowed us to measure
the bandwidth efficiency of the Gemini network for MPI point-
to-point messages. These topics are discussed in the following
sections.

X Links, all:
 8 * 1.17 = 9.4 GB/s

Y Links, alternate every other:

 4 * 2.34 = 9.4 GB/s (mezz)
 4 * 1.17 = 4.7 GB/s

Z Links, every eighth slower:

 8 * 1.88 = 15 GB/s (backpl)
 8 * 1.17 = 9.4 GB/s

Unidirectional Bandwidths

Gathering	
 Job	
 Wide	
 Informa7on	

11	

c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c1-0c0s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c1-0c0s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X- -> c2-0c0s0g0l41[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l05[(0,0,0)] X- -> c2-0c0s0g0l31[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l06[(0,0,0)] Z- -> c0-0c2s7g0l26[(0,0,23)] LinkType: cable15z
c0-0c0s0g0l07[(0,0,0)] Z- -> c0-0c2s7g0l35[(0,0,23)] LinkType: cable15z

Fig. 2: First 8 lines of the interconnect.txt file for Cielo (16x12x24 topology).

TABLE II: Tile link type to bandwidth conversions.

Link Type Bandwidth
Mezzanine 2.34 GB/s
Backplane 1.88 GB/s
Cable 1.17 GB/s
Host 1.33 GB/s (est.)

bandwidth 8 ⇤ 1.17 = 9.4 GB/s. As can be seen, there is a
fairly heterogeneous distribution of interconnect link speeds
on Gemini based systems.

IV. GATHERING JOB-WIDE INFORMATION

Once we understood how to aggregate the tile counters
into logical links, our next step was to develop a higher-
level MPI library to aggregate the counter information across
an entire application run. This library, which we named the
Gemini monitor library (libgm.a), gets linked with the target
application to be profiled and provides a simple API for
sampling and printing application-wide counter information.
Currently there are three API calls:

// Initialize the library
gemini_init_state(comm, &state)

// Sample the gemini counters
gemini_read_counters(comm, &state)

// Output delta of last two samples
gemini_print_counters(comm, &state)

A typical usage scenario would be to surround a code
region of interest with calls gemini_read_counters()
and then call gemini_print_counters() to output the
counter difference from the start to the end of the region.

Internally, the library forms an MPI communicator with one
process per Gemini, which we call the leader process. Reading
the counters from multiple processes per Gemini would be
redundant and add unnecessary overhead. Each Gemini leader
process parses the interconnect.txt information (rank
0 broadcasts the file to all Gemini leader processes) to find its
own tile to logical link mapping. No information about other
Geminis is retained. When an application requests that the
counters be sampled, the individual tile counters are aggregated
to logical link counters, as described in Section III. Each
Gemini leader stores multiple logical link counter samples.

When the application requests that the counters be output,
each Gemini leader calculates the delta between the last two
counter samples and sends the result to rank 0 using an
MPI_Gather() collective. Rank 0 then outputs the aggre-
gated counter information to a text file.

Figure 4 shows an example of the library’s output. The first
two comment lines are included for convenience, and are not
normally included in the output. Each Gemini block begins
with a line indicating the Gemini’s coordinate in the 3-D torus
and is followed by up to seven lines, one per logical link
(including the host link, HH). Each logical link line includes
the direction of the link, the coordinate of the Gemini at the
remote end of the link, the speed of the link in Gbytes/s,
and the values of the six fixed tile counters for the link (the
delta between the last two samples). To allow for maximum
flexibility for post processing, we chose to output the full six
counters for each of the seven logical links on each Gemini,
rather than trying to condense or summarize the information
within the library.

We have tested the library on up to 131,072 process runs,
comprised of 8,192 nodes running 16 processes per node. We
found that the Gemini leader process communicator size is
typically slightly larger than half the number of nodes for
a given run, due to the Cray node allocator sometimes only
allocating one of a Gemini’s two nodes to the job (e.g., for
all of the 131,072 process runs, the same 4,118 Geminis
were used). The memory overhead of the library on non-
rank 0 processes is very small, since only local information
is stored. The rank 0 process requires some buffer space to
gather information from all Gemini leader processes. This
overhead grows linearly with the number of Geminis and is
approximately 6 MBytes for a hypothetical system with 10,000
Geminis.

V. SONAR EXPERIMENTS

We performed a number of simple tests to better understand
the operation of the Gemini tile counters. The basic theme of
these experiments was to send out a known “ping”, such as
a single MPI message of known size, and then inspect the
tile counters to determine what happened – the “pong” echo.
These experiments gave us a clear picture of what was actually
transmitted on the wire for put and get transactions, revealed
the directionality of the tile counters, helped us understand the
routing scheme used on our system, and allowed us to measure
the bandwidth efficiency of the Gemini network for MPI point-
to-point messages. These topics are discussed in the following
sections.

DEST_COORD
SRC_COORD GB/s VC0_PHITS VC1_PHITS VC0_PKTS VC1_PKTS INQ_STALLS OUTQ_STALLS

(0, 1, 1)
X+ (1, 1, 1) 9.38 1626452284 304999266 101662806 101666422 3533598961 2689080952
X- (15, 1, 1) 9.38 100506 38796 9780 12932 83 0
Y+ (0, 2, 1) 4.69 1627257610 305156760 101726643 101718920 1702270109 0
Y- (0, 0, 1) 9.38 1153554135 216313236 72105559 72104412 1925883229 2366983378
Z+ (0, 1, 2) 15.00 815234359 152948952 50988260 50982984 133047991 776502961
Z- (0, 1, 0) 15.00 1743043 378399 156635 126133 580 992022669
HH (0, 1, 1) 10.40 1834489368 344019696 114672167 114673232 10585723107 2263990777

(0, 0, 1)
X+ (1, 0, 1) 9.38 1966685020 368797209 122929393 122932403 3317929506 3063532486
X- (15, 0, 1) 9.38 122194 43005 11983 14335 9 0
Y+ (0, 1, 1) 9.38 1154016206 216417552 72141025 72139184 3589170400 1097189607
Y- (0,11, 1) 4.69 96911 20538 9646 6846 56244 0
Z+ (0, 0, 2) 15.00 2477453033 458007486 153779007 152669162 952487628 2209098748
Z- (0, 0, 0) 15.00 2071415 3684912 128723 1228304 464902 387186094
HH (0, 0, 1) 10.40 2174662127 407809092 135934105 135936364 10604254673 2216827070

Fig. 4: Example output of the Gemini Monitor library for two Geminis, (0, 1, 1) and (0, 0, 1).

A. Put and Get Transactions

As described in the Cray’s Gemini white paper [4], every
network transaction is a single “request” packet from source
to destination, followed by a single “response” packet from
destination to source. The maximum transaction contains 64
bytes of user data payload. Everything is built on top of these
small transactions. For example, a large MPI message will
get broken down into many individual 64 byte transactions.
Request packets always are sent on virtual channel 0 (VC0)
and response packets are always sent on virtual channel 1
(VC1).

A typical PUT transaction that sends 64 bytes of data from
a source to a destination consists of a 32 phit request packet
(96 bytes) followed by a 3 phit response packet (9 bytes) from
destination to source. The total traffic on the network is 96 +
9 = 105 bytes. A typical GET transaction requesting 64 bytes
of data from a remote node consists of a 8 phit request packet
(24 bytes) followed by a 27 phit response packet (81 bytes).
Total traffic on the network is 24 + 81 = 105 bytes, which is
the same as for PUT transactions.

We performed a series of experiments to confirm that the
tile phit counters were correctly measuring the expected values
for PUT and GET transactions, as just described. Our original
test consisted of sending a 1 MB message from a source to
a destination, sampling the tile counters before and after to
calculate the delta. The results we got were confusing at first.
While the packet counts were consistent with a PUT based
protocol, the phit counters were much too low, by about a
factor of three.

After discussing the issue with Cray, it turns out that the
Gemini compresses packets with runs of zero bits or runs
of one bits. Our benchmark was sending a zeroed message,
leading to the confusing phit counts. After we initialized
our test message to a random bit pattern, the phit counters
measured the expected values. This compression is something
to be aware of when using the Gemini’s tile counters.

B. Tile Counter Directionality

The documentation provided by Cray did not discuss the
directionality of the tile counters. It was not clear if the phit and
packet counters measured incoming or outgoing transmissions,
or whether the directionality of the VC0 and VC1 counters
were the same. Our experiments revealed that the VC0 and
VC1 counters both measured packets and phits coming into
the Gemini tile (i.e., they measure packets and phits that arrive
at the destination end of a network link). This means that
the traffic flowing into a Gemini router can be determined
with only local information. Remote tile counter information
from neighboring Geminis is needed to understand the traffic
flowing out of a given Gemini.

Like the packet and phit counters, the input stall counter
measures stall cycles for incoming packets. These stall cycles
occur when a packet is not able to move to the destination tile’s
output queue, due to lack of credits or some other Gemini-
internal resource being unavailable. The output stall counter
measures stall cycles for outgoing packets. This occurs when
a tile’s output queue does not have enough credits for the
destination Gemini tile’s input queue.

C. Routing

Gemini based systems use a static routing scheme where
all traffic from a given source to a given destination follows
the same path through the 3-D torus interconnect. While this is
obvious in retrospect, our experiments revealed that the path
taken by a given transaction’s request packet is, in general,
different from the path taken by the response packet. The
request packet will use the static route from the source to the
destination. The response packet will return via the static route
from the destination to the source. It is important to be aware
of this since PUT ACK response and GET REPLY response
traffic is significant. System models that attempt to calculate
the load on a given link should also consider the induced PUT

Outline	

§  Mo7va7on	
 and	
 background	

§  How	
 to	
 access	

§  What	
 they	
 measure	

§  Usage	
 example:	
 MiniGhost	
 rank	
 remapping	

§  Conclusion	

“Sonar”	
 Experiments	

§  Basic	
 Idea:	
 Send	
 out	
 a	
 known	
 ping,	
 observe	
 7le	
 counters	
 to	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 figure	
 out	
 what	
 happened	

§  First	
 test,	
 send	
 a	
 1	
 MB	
 MPI	
 message	
 between	
 two	
 nodes	

§  Expect	
 either	
 PUT	
 or	
 GET	
 transac7ons	

§  Both	
 transac7on	
 types	
 move	
 up	
 to	
 64	
 bytes	
 of	
 user	
 data	

§  PUT	
 transac7ons	
 consist	
 of	
 32	
 phit	
 (96	
 byte)	
 request	
 packet	
 on	
 VC0	

followed	
 by	
 a	
 3	
 phit	
 (9	
 byte)	
 response	
 packet	
 on	
 VC1	
 (the	
 ACK)	

§  GET	
 transac7ons	
 consist	
 of	
 8	
 phit	
 (24	
 byte)	
 request	
 packet	
 on	
 VC0	

followed	
 by	
 a	
 27	
 phit	
 (81	
 byte)	
 response	
 packet	
 on	
 VC1	
 (the	
 REPLY)	

13	

Source Destination

PUT 96 bytes
VC0 VC0

VC1 VC1
ACK 9 bytes

Total: 105 Bytes

Source Destination

GET 24 bytes
VC0 VC0

VC1 VC1
REPLY 81 bytes

Total: 105 Bytes

1	
 MB	
 Point-­‐to-­‐Point	
 MPI	
 Test	

§  Original	
 counts	
 from	
 sender’s	
 perspec7ve:	

§  Packets: 	
 TX	
 =	
 	
 	
 16,407 	
 RX	
 =	
 16,407 	
 (Expected	
 16,384)	

§  Phits: 	
 TX	
 =	
 262,565 	
 RX	
 =	
 49,221 	
 (Expected	
 TX	
 524,288

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 RX	
 	
 	
 49,152)	

§  Packet	
 counters	
 make	
 sense,	
 phit	
 counters	
 too	
 low	
 by	
 2x	

§  ATer	
 discussing	
 with	
 Cray,	
 due	
 to	
 compression	
 (!)	

§  Our	
 test	
 was	
 sending	
 a	
 zero’ed	
 message	

§  The	
 Gemini	
 compresses	
 runs	
 of	
 zeros	
 and	
 ones	

	

§  ATer	
 ini7alizing	
 buffer	
 to	
 random	
 bits,	
 phit	
 counters	
 made	

sense	
 J	

§  Phits: 	
 TX	
 =	
 524,709 	
 RX	
 =	
 49,221	

14	

Tile	
 Counter	
 Direc7onality	
 (1)	

§  Packet	
 and	
 Phit	
 counters	
 measure	
 input	
 into	
 7le,	
 not	
 output	

15	

src=0, dst=2!
==!
(1, 0, 5) SOURCE!
 X- (0, 0, 5) 18.75 0 0 0 0 0 0!
 Y+ (1, 1, 5) 14.06 0 0 0 0 0 0!
 Z+ (1, 0, 6) 15.00 278 49203 14 16401 0 141274!
 Z- (1, 0, 4) 15.00 0 0 0 0 0 0!
 HH (1, 0, 5) 10.40 524580 42 16401 14 817252 0!
(1, 0, 6)!
 X- (0, 0, 6) 18.75 0 0 0 0 0 0!
 Y+ (1, 1, 6) 14.06 0 0 0 0 0 0!
 Z+ (1, 0, 7) 15.00 278 49203 14 16401 0 0!
 Z- (1, 0, 5) 15.00 524580 42 16401 14 0 0!
 HH (1, 0, 6) 10.40 156 24 8 8 0 0!
(1, 0, 7) DESTINATION!
 X- (0, 0, 7) 18.75 0 0 0 0 0 0!
 Y+ (1, 1, 7) 14.06 0 0 0 0 0 0!
 Z+ (1, 0, 0) 9.38 0 0 0 0 0 0!
 Z- (1, 0, 6) 15.00 524584 42 16401 14 57659 0!
 HH (1, 0, 7) 10.40 278 49203 14 16401 0 0!
	

Tile	
 Counter	
 Direc7onality	
 (2)	

16	

Source
Host

Gemini
(1, 0, 5)

Gemini
(1, 0, 6)

Gemini
(1, 0, 7)

Destination
Host

524K
HH

524K
Z-

524K
Z-

49K
HH

49K
Z+

49K
Z+

§  Graphical	
 view	
 of	
 data	
 on	
 previous	
 slide	

Rou7ng	

§  Performed	
 experiments	
 to	
 verify	
 empirical	
 counters	
 matched	

routes	
 output	
 by	
 “rtr	
 -­‐-­‐logical-­‐routes”	
 command	

§  Sta7c	
 rou7ng	

§  All	
 packets	
 from	
 a	
 given	
 src	
 to	
 dst	
 always	
 travels	
 the	
 same	
 path	

§  The	
 path	
 from	
 (src	
 to	
 dst)	
 not	
 the	
 same	
 as	
 (dst	
 to	
 src)	
 in	
 general	

§  Request	
 and	
 response	
 packets	
 follow	
 different	
 paths	

§  All	
 routes	
 completely	
 traverse	
 the	
 X	
 dimension,	
 then	

completely	
 traverse	
 Y	
 dimension,	
 then	
 Z	
 last	

§  More	
 flexible	
 rou7ng	
 if	
 there	
 are	
 link	
 failures,	
 didn’t	
 verify	

§  Should	
 consider	
 PUT	
 ACK	
 +	
 GET	
 REPLY	
 backflows	
 in	
 system	
 models	

17	

X

Y

MPI	
 Point-­‐to-­‐Point	
 BW	
 Efficiency	

(Ini7ator	
 Transmit	
 Only)	

18	

8

64

512

4K

32K

256K

2M

16M

8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
yt

e
s

o
n

 W
ir
e

B
a

n
d

w
id

th
 %

E
ff

ic
ie

n
cy

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(a) Initiator Transmit Only

1

8

64

512

4K

32K

256K

2M

16M

1 8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
yt

e
s

o
n

 W
ir
e

B
a

n
d

w
id

th
 %

E
ff

ic
ie

n
cy

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(b) Overall (Transmit + Receive)

Fig. 5: Measured bandwidth efficiency for MPI point-to-point messages.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

16K 32K 64K 128K

B
yt

e
s

Processes (16 Processes/Node)

Random
No-Remap

Remap

Fig. 6: MiniGhost per-Gemini bytes injected on host links.
Filled bars represent the average per-Gemini remote commu-
nication for all Geminis in a run. The error bars represent the
Gemini with the most remote communication.

The plots show that X dimension network links encounter
the highest maximum congestion. We believe this is due to the
routing algorithm traversing the X dimension first, resulting in
added contention with traffic waiting to move into the Y and
Z dimensions. For all dimensions (X, Y, and Z), the Remap
scheme results in about a factor of two reduction in maximum
congestion compared to the No-Remap case. This correlates
with the observed decrease in MiniGhost communication time.
The maximum congestion on any link is the bottleneck for
MiniGhost, since it is a bulk-synchronous parallel application.
For X dimension output stalls, the average stall count actually
increases slightly for the Remap scheme, but the reduction in
maximum link congestion significantly improves MiniGhost
performance.

VII. FUTURE WORK

Now that we understand the Gemini’s router tile per-
formance counters and have tools for analyzing them, we
plan to use the capability to quantify the benefit of different
task mapping strategies with respect to network congestion.
Specifically, we would like to make use of MPI scalable
graph topology communicators [8] along with existing and new
topology mapping algorithms [9] to improve the performance
of DOE applications running on Cray Gemini and Aries based
systems. Cray has recently added support for Gemini and Aries
performance counters to PAPI [10], so we will be investigating
whether our tools can use this interface rather than the low-
level GPCD library described in Section II. A longer term goal
is to create a portable interface for accessing and aggregating
network performance counter information available on high-
end HPC systems [2], [11], and apply this information for
dynamic task mapping based on network congestion.

VIII. CONCLUSION

In this paper we have described our method for accessing
the router tile performance counters available on the Cray
Gemini network processing unit. This included a description
of how to directly access the counters from a user application,
aggregate the individual tile counters into logical links, and
gather application-wide counter information. We presented
the results of several experiments designed to understand the
meaning of the counters, including their directionality, and
to understand the operation of the system as a whole in
terms of network transactions, routing, and MPI point-to-point
messaging. Finally, we demonstrated the use of the Gemini’s
performance counters to quantify the reduction in network
congestion due to an improved process mapping scheme for
the MiniGhost miniapp. We plan to perform similar studies for
other applications and task mapping algorithms in the future.

ACKNOWLEDGMENT

The authors would like to thank Bob Alverson at Cray for
his assistance in understanding the Gemini tile counters.

§  Observing	
 VC0	
 and	

VC1	
 traffic	
 reveals	

the	
 MPI	
 protocols,	

PUT	
 push	
 vs.	
 GET	

pull	
 based	

§  Purple	
 curve	
 plots	

bandwidth	

efficiency,	
 uses	
 scale	

on	
 right	
 Y	
 axis	

§  Lower	
 bandwidth	

efficiency	
 for	
 small	

messages,	
 due	
 to	

~64	
 byte	
 MPI	
 header	

§  Results	
 highly	

repeatable,	
 appear	

accurate	
 even	
 for	

zero	
 byte	
 messages	

Outline	

§  Mo7va7on	
 and	
 background	

§  How	
 to	
 access	

§  What	
 they	
 measure	

§  Usage	
 example:	
 MiniGhost	
 rank	
 remapping	

§  Conclusion	

Large-­‐scale	
 MiniGhost	
 Experiments	

20	

(a) Cielo (b) Chama

Figure 5.21. Performance of MiniGhost with MPI-rank
remapping on Cielo

to the interpretation of the message frequency and volume. The importance of D1 and D2

increases when the application is examined when executing on a dynamic mesh (i.e. Adaptive
Mesh Refinement, AMR). Future work calls for determining the predictive capabilities of
miniGhost as a static code with regard to CTH as an AMR code.

5.4 A Circuit Simulation code

Xyce is a circuit modeling tool 3 [21] developed at Sandia National Laboratories. It is
designed to perform transistor-level simulations for extremely large circuits on large-scale
parallel computing platforms of up to thousands of processors. Xyce is a traditional analog-
style circuit simulation tool, similar to the Berkeley SPICE program[25].

Circuit simulation adheres to a general flow, as shown in Fig. 5.24. The circuit, described
in a netlist file, is transformed via modified nodal analysis (MNA) into a set of nonlinear
di↵erential algebraic equations (DAEs)

dq(x(t))

dt
+ f(x(t)) = b(t), (5.6)

where x(t) 2 RN is the vector of circuit unknowns, q and f are functions representing the
dynamic and static circuit elements (respectively), and b(t) 2 RM is the input vector. For
any analysis type, the initial starting point is this set of DAEs. The numerical approach
employed to compute solutions to equation (5.6) is predicated by the analysis type.

3
http://xyce.sandia.gov/

58

§  MiniGhost	
 is	
 a	
 proxy	

applica7on,	
 represents	
 CTH	

full	
 applica7on	

§  Explicit	
 7me-­‐stepping,	

synchronous	
 communica7on,	

27-­‐point	
 stencil	
 across	
 3-­‐D	

grid	

§  Dark	
 Red	
 Curve:	

Original	
 configura7on	
 	

scaled	
 poorly	
 aTer	
 16K	
 cores	

(1024	
 nodes,	
 512	
 Geminis)	

§  Light	
 Red	
 Curve:	

Reorder	
 MPI	
 rank	
 to	
 node	

mapping	
 to	
 reduce	
 off-­‐node	

communica7on	

Original:	
 1x1x16	
 ranks/node	

Reorder:	
 	
 2x2x4	
 	
 ranks/node	

Reducing	
 Off-­‐node	
 Communica7on	
 	

21	

8

64

512

4K

32K

256K

2M

16M

8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
yt

e
s

o
n
 W

ir
e

B
a
n
d
w

id
th

 %
E

ff
ic

ie
n
cy

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(a) Initiator Transmit Only

1

8

64

512

4K

32K

256K

2M

16M

1 8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
yt

e
s

o
n
 W

ir
e

B
a
n
d
w

id
th

 %
E

ff
ic

ie
n
cy

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(b) Overall (Transmit + Receive)

Fig. 5: Measured bandwidth efficiency for MPI point-to-point messages.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

16K 32K 64K 128K

B
yt

e
s

Processes (16 Processes/Node)

Random
No-Remap

Remap

Fig. 6: MiniGhost per-Gemini bytes injected on host links.
Filled bars represent the average per-Gemini remote commu-
nication for all Geminis in a run. The error bars represent the
Gemini with the most remote communication.

The plots show that X dimension network links encounter
the highest maximum congestion. We believe this is due to the
routing algorithm traversing the X dimension first, resulting in
added contention with traffic waiting to move into the Y and
Z dimensions. For all dimensions (X, Y, and Z), the Remap
scheme results in about a factor of two reduction in maximum
congestion compared to the No-Remap case. This correlates
with the observed decrease in MiniGhost communication time.
The maximum congestion on any link is the bottleneck for
MiniGhost, since it is a bulk-synchronous parallel application.
For X dimension output stalls, the average stall count actually
increases slightly for the Remap scheme, but the reduction in
maximum link congestion significantly improves MiniGhost
performance.

VII. FUTURE WORK

Now that we understand the Gemini’s router tile per-
formance counters and have tools for analyzing them, we
plan to use the capability to quantify the benefit of different
task mapping strategies with respect to network congestion.
Specifically, we would like to make use of MPI scalable
graph topology communicators [8] along with existing and new
topology mapping algorithms [9] to improve the performance
of DOE applications running on Cray Gemini and Aries based
systems. Cray has recently added support for Gemini and Aries
performance counters to PAPI [10], so we will be investigating
whether our tools can use this interface rather than the low-
level GPCD library described in Section II. A longer term goal
is to create a portable interface for accessing and aggregating
network performance counter information available on high-
end HPC systems [2], [11], and apply this information for
dynamic task mapping based on network congestion.

VIII. CONCLUSION

In this paper we have described our method for accessing
the router tile performance counters available on the Cray
Gemini network processing unit. This included a description
of how to directly access the counters from a user application,
aggregate the individual tile counters into logical links, and
gather application-wide counter information. We presented
the results of several experiments designed to understand the
meaning of the counters, including their directionality, and
to understand the operation of the system as a whole in
terms of network transactions, routing, and MPI point-to-point
messaging. Finally, we demonstrated the use of the Gemini’s
performance counters to quantify the reduction in network
congestion due to an improved process mapping scheme for
the MiniGhost miniapp. We plan to perform similar studies for
other applications and task mapping algorithms in the future.

ACKNOWLEDGMENT

The authors would like to thank Bob Alverson at Cray for
his assistance in understanding the Gemini tile counters.

§  Changing	
 the	
 mapping	
 of	

MPI	
 processes	
 to	
 nodes	

affects	
 off-­‐node	

communica7on	

§  Used	
 Gemini	
 7le	
 counters	

to	
 measure	
 traffic	
 injected	

on	
 the	
 host	
 links	

§  The	
 reordered	
 “Remap”	

scheme	
 (2x2x4)	
 reduces	

off-­‐node	
 communica7on	

by	
 more	
 than	
 a	
 factor	
 of	

2x	
 compared	
 to	
 the	

original	
 “No-­‐Remap”	

scheme	
 (1x1x16)	

Per-Gemini Bytes Injected into Network

Stalls	
 Correlate	
 with	
 Communica7on	
 Time	

22	

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

16K 32K 64K 128K

In
p

u
t

Q
u

e
u

e
 S

ta
ll

C
yc

le
s

Processes (16 Processes/Node)

Random
No-Remap

Remap

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16K 32K 64K 128K

S
e
co

n
d
s

Processes (16 Processes/Node)

Random
No-Remap

Remap

Per-Gemini Input Stalls Per-Rank Communication Time

Per-­‐Link	
 Input	
 and	
 Output	
 Stalls	

128K	
 Process	
 Runs	
 (4K	
 Geminis)	

23	

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

Overall Host X Y Z

In
p

u
t

Q
u

e
u

e
 S

ta
ll

C
yc

le
s

Link Type

Random
No-Remap

Remap

(a) Input Stalls

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

Overall Host X Y Z

O
u

tp
u

t
Q

u
e

u
e

 S
ta

ll
C

yc
le

s

Link Type

Random
No-Remap

Remap

(b) Output Stalls

Fig. 7: Measured network congestion for MiniGhost running on 128K processes. Filled bars represent the average per-Gemini
stall counts for all Geminis in a run. The error bars represent the Gemini with the highest stall count.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system inter-
connect,” in High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, 2010, pp. 83–87.

[2] Using the Cray Gemini Hardware Counters, Cray Inc., 2010. [Online].
Available: http://docs.cray.com/books/S-0025-10/

[3] Using Cray Performance Measurement and Analysis Tools, Cray Inc.,
2013. [Online]. Available: http://docs.cray.com/books/S-2376-610/

[4] “The Gemini Network,” Cray Inc., Tech. Rep., Aug.
2010. [Online]. Available: http://wiki.ci.uchicago.edu/pub/Beagle/
SystemSpecs/Gemini whitepaper.pdf

[5] R. F. Barrett, C. T. Vaughan, and M. A. Herox, “Minighost: A miniapp
for exploring boundary exchange strategies using stencil computations
in scientific parallel computing,” Sandia National Laboratories, Tech.
Rep. SAND 2011-5294832, May 2011.

[6] R. F. Barrett, P. S. Crozier, D. W. Doerfler, S. D. Hammond, M. A.
Heroux, H. K. Thornquist, T. G. Trucano, and C. T. Vaughan, “Summary
of work for ASC L2 milestone 4465: Characterize the role of the
mini-application in predicting key performance characteristics of real
applications,” Sandia National Laboratories, Tech. Rep. SAND 2012-
4667, Jun. 2012.

[7] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H. Edwards,
A. Williams, M. Rajan, E. Keiter, H. Thornquist, and R. Numrich,
“Improving performance via mini-applications,” Sandia National Lab-
oratories, Tech. Rep. SAND2009-5574, Sep. 2009.

[8] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur,
and J. L. Traeff, “The scalable process topology interface of mpi 2.2,”
Concurrency and Computation: Practice and Experience, vol. 23, no. 4,
pp. 293–310, Aug. 2010.

[9] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in ACM International Conference on
Supercomputing (ICS’11), Jun. 2011.

[10] Using the PAPI Cray NPU Component, Cray Inc., Mar. 2013. [Online].
Available: http://docs.cray.com/books/S-0046-10/

[11] H. Jagode, S. Moore, and D. Terpstra, “Performance Counter Monitor-
ing for the Blue Gene/Q Architecture,” in The 18th Annual Meeting of
ScicomP, the IBM HPC Systems Scientific Computing User Group, ser.
ScicomP’12, May 2012.

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

Overall Host X Y Z

In
p

u
t

Q
u

e
u

e
 S

ta
ll

C
yc

le
s

Link Type

Random
No-Remap

Remap

(a) Input Stalls

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

Overall Host X Y Z

O
u

tp
u

t
Q

u
e

u
e

 S
ta

ll
C

yc
le

s

Link Type

Random
No-Remap

Remap

(b) Output Stalls

Fig. 7: Measured network congestion for MiniGhost running on 128K processes. Filled bars represent the average per-Gemini
stall counts for all Geminis in a run. The error bars represent the Gemini with the highest stall count.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system inter-
connect,” in High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, 2010, pp. 83–87.

[2] Using the Cray Gemini Hardware Counters, Cray Inc., 2010. [Online].
Available: http://docs.cray.com/books/S-0025-10/

[3] Using Cray Performance Measurement and Analysis Tools, Cray Inc.,
2013. [Online]. Available: http://docs.cray.com/books/S-2376-610/

[4] “The Gemini Network,” Cray Inc., Tech. Rep., Aug.
2010. [Online]. Available: http://wiki.ci.uchicago.edu/pub/Beagle/
SystemSpecs/Gemini whitepaper.pdf

[5] R. F. Barrett, C. T. Vaughan, and M. A. Herox, “Minighost: A miniapp
for exploring boundary exchange strategies using stencil computations
in scientific parallel computing,” Sandia National Laboratories, Tech.
Rep. SAND 2011-5294832, May 2011.

[6] R. F. Barrett, P. S. Crozier, D. W. Doerfler, S. D. Hammond, M. A.
Heroux, H. K. Thornquist, T. G. Trucano, and C. T. Vaughan, “Summary
of work for ASC L2 milestone 4465: Characterize the role of the
mini-application in predicting key performance characteristics of real
applications,” Sandia National Laboratories, Tech. Rep. SAND 2012-
4667, Jun. 2012.

[7] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H. Edwards,
A. Williams, M. Rajan, E. Keiter, H. Thornquist, and R. Numrich,
“Improving performance via mini-applications,” Sandia National Lab-
oratories, Tech. Rep. SAND2009-5574, Sep. 2009.

[8] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur,
and J. L. Traeff, “The scalable process topology interface of mpi 2.2,”
Concurrency and Computation: Practice and Experience, vol. 23, no. 4,
pp. 293–310, Aug. 2010.

[9] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in ACM International Conference on
Supercomputing (ICS’11), Jun. 2011.

[10] Using the PAPI Cray NPU Component, Cray Inc., Mar. 2013. [Online].
Available: http://docs.cray.com/books/S-0046-10/

[11] H. Jagode, S. Moore, and D. Terpstra, “Performance Counter Monitor-
ing for the Blue Gene/Q Architecture,” in The 18th Annual Meeting of
ScicomP, the IBM HPC Systems Scientific Computing User Group, ser.
ScicomP’12, May 2012.

§  Remap	
 scheme	
 reduces	
 maximum	
 load	
 on	
 any	
 link	
 (error	
 bars)	

§  X-­‐dimension	
 has	
 highest	
 conges7on,	
 likely	
 due	
 to	
 rou7ng	
 alg.	

Input Stalls Output Stalls

Outline	

§  Mo7va7on	
 and	
 background	

§  How	
 to	
 access	

§  What	
 they	
 measure	

§  Usage	
 example:	
 MiniGhost	
 rank	
 remapping	

§  Conclusion	

Future	
 Work	

§  Inves7gate	
 Cray	
 PAPI	
 support	
 for	
 Gemini	
 and	
 Aries	

§  Using	
 the	
 PAPI	
 Cray	
 NPU	
 Component,	
 Cray	
 Inc.,	
 Mar.	
 2013.	

Available:	
 hEp://docs.cray.com/books/S-­‐0046-­‐10/	
 	

§  Evalua7ng	
 topology	
 mapping	
 strategies	

§  Dynamic	
 (re)par77oning	
 based	
 on	
 real-­‐7me	
 counter	
 info	

§  Inves7gate	
 Aries	
 network	

25	

Conclusion	

§  Direct	
 access	
 to	
 Gemini	
 7le	
 performance	
 counters	

§  Convert	
 7le	
 counters	
 to	
 logical	
 network	
 link	
 counters	

§  Gemini	
 counter	
 opera7on	

§  Put	
 and	
 Get	
 transac7ons	

§  Counter	
 direc7onality	
 (count	
 incoming	
 packets/phits)	

§  Rou7ng	

§  MPI	
 bandwidth	
 efficiency	

§  Used	
 counters	
 to	
 quan7fy	
 MiniGhost	
 rank	
 remapping	
 scheme	

§  Plan	
 to	
 release	
 Gemini	
 Monitor	
 library	
 as	
 open	
 source,	

email	
 ktpedre@sandia.gov	
 in	
 the	
 mean7me	

26	

Backup	
 Slides	

27	

28	

8

64

512

4K

32K

256K

2M

16M

8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
yt

e
s

o
n

 W
ir
e

B
a

n
d

w
id

th
 %

E
ff

ic
ie

n
cy

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(a) Initiator Transmit Only

1

8

64

512

4K

32K

256K

2M

16M

1 8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
yt

e
s

o
n

 W
ir
e

B
a

n
d

w
id

th
 %

E
ff

ic
ie

n
cy

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(b) Overall (Transmit + Receive)

Fig. 5: Measured bandwidth efficiency for MPI point-to-point messages.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

16K 32K 64K 128K

B
yt

e
s

Processes (16 Processes/Node)

Random
No-Remap

Remap

Fig. 6: MiniGhost per-Gemini bytes injected on host links.
Filled bars represent the average per-Gemini remote commu-
nication for all Geminis in a run. The error bars represent the
Gemini with the most remote communication.

The plots show that X dimension network links encounter
the highest maximum congestion. We believe this is due to the
routing algorithm traversing the X dimension first, resulting in
added contention with traffic waiting to move into the Y and
Z dimensions. For all dimensions (X, Y, and Z), the Remap
scheme results in about a factor of two reduction in maximum
congestion compared to the No-Remap case. This correlates
with the observed decrease in MiniGhost communication time.
The maximum congestion on any link is the bottleneck for
MiniGhost, since it is a bulk-synchronous parallel application.
For X dimension output stalls, the average stall count actually
increases slightly for the Remap scheme, but the reduction in
maximum link congestion significantly improves MiniGhost
performance.

VII. FUTURE WORK

Now that we understand the Gemini’s router tile per-
formance counters and have tools for analyzing them, we
plan to use the capability to quantify the benefit of different
task mapping strategies with respect to network congestion.
Specifically, we would like to make use of MPI scalable
graph topology communicators [8] along with existing and new
topology mapping algorithms [9] to improve the performance
of DOE applications running on Cray Gemini and Aries based
systems. Cray has recently added support for Gemini and Aries
performance counters to PAPI [10], so we will be investigating
whether our tools can use this interface rather than the low-
level GPCD library described in Section II. A longer term goal
is to create a portable interface for accessing and aggregating
network performance counter information available on high-
end HPC systems [2], [11], and apply this information for
dynamic task mapping based on network congestion.

VIII. CONCLUSION

In this paper we have described our method for accessing
the router tile performance counters available on the Cray
Gemini network processing unit. This included a description
of how to directly access the counters from a user application,
aggregate the individual tile counters into logical links, and
gather application-wide counter information. We presented
the results of several experiments designed to understand the
meaning of the counters, including their directionality, and
to understand the operation of the system as a whole in
terms of network transactions, routing, and MPI point-to-point
messaging. Finally, we demonstrated the use of the Gemini’s
performance counters to quantify the reduction in network
congestion due to an improved process mapping scheme for
the MiniGhost miniapp. We plan to perform similar studies for
other applications and task mapping algorithms in the future.

ACKNOWLEDGMENT

The authors would like to thank Bob Alverson at Cray for
his assistance in understanding the Gemini tile counters.

MPI	
 Point-­‐to-­‐Point	
 BW	
 Efficiency	

(Overall,	
 Transmit	
 +	
 Receive)	

§  This	
 plot	
 includes	
 all	

traffic	
 on	
 the	
 wire,	

including	
 response	

traffic	
 (PUT	
 ACK	
 and	

GET	
 REPLY)	

§  Large	
 messages	

achieve	
 ~60%	

bandwidth	
 efficiency,	
 	

larger	
 max	
 packet	

size	
 would	
 help	
 	

