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  MiniGhost	
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  remapping	
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Mo7va7on	
  

§  We	
  had	
  an	
  applica7on	
  that	
  was	
  scaling	
  well	
  to	
  16K	
  processes,	
  
then	
  poorly	
  aTerwards	
  (weak	
  scaling)	
  

§  We	
  suspected	
  network	
  conges7on/conten7on	
  was	
  becoming	
  
an	
  issue	
  and	
  wanted	
  to	
  quan7fy	
  it	
  empirically	
  	
  	
  

§  We	
  had	
  heard	
  the	
  Gemini	
  had	
  a	
  nice	
  set	
  of	
  performance	
  
counters	
  that	
  could	
  do	
  this	
  

➜ It	
  turned	
  out	
  to	
  be	
  quite	
  a	
  bit	
  of	
  work	
  to	
  access	
  the	
  counters,	
  
seemed	
  like	
  a	
  good	
  topic	
  to	
  discuss	
  at	
  CUG	
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Cray	
  Gemini	
  
§  Two	
  nodes	
  (hosts)	
  per	
  Gemini	
  chip	
  
§  Gemini	
  chip	
  consists	
  of:	
  

§  Two	
  network	
  interfaces	
  
§  48	
  port	
  (7le)	
  router,	
  	
  

logically	
  organized	
  into	
  7	
  network	
  links	
  

§  Routers	
  connected	
  to	
  form	
  3-­‐D	
  torus	
  
§  X	
  links	
  between	
  cabinets	
  in	
  a	
  row	
  
§  Y	
  links	
  between	
  rows	
  of	
  cabinets	
  
§  Z	
  links	
  within	
  a	
  cabinet	
  

§  Large	
  set	
  of	
  performance	
  counters	
  
§  Cray	
  Documenta7on	
  (S-­‐0025-­‐10):	
  

Using	
  the	
  Cray	
  Gemini	
  Hardware	
  Counters	
  	
  
§  This	
  talk	
  focuses	
  on	
  the	
  router	
  7le	
  

performance	
  counters	
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Y 

Z 

X 

TABLE I: Mapping of tile counter names used in Cray’s Gemini documentation [2] to the names used in the GPCD interface.

Cray Documentation Name GPCD Library Name Description
GM TILE PERF VC0 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 0 Request virtual channel phit count.
GM TILE PERF VC1 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 1 Response virtual channel phit count

(phit = 3 bytes)
GM TILE PERF VC0 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 2 Request virtual channel packet count
GM TILE PERF VC1 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 3 Response virtual channel packet count

(packet = 8 to 32 phits)
GM TILE PERF INQ STALL:n:m GM n m TILE PERFORMANCE COUNTERS 4 Count of input stall cycles
GM TILE PERF CREDIT STALL:n:m GM n m TILE PERFORMANCE COUNTERS 5 Count of output stall cycles

(router operates at 800 MHz)

1 g p c d c o n t e x t t * c t x ;
2 gpcd mmr desc t * desc ;
3 g p c d m m r l i s t t *p ;
4 i n t i , j , k ;
5 char name [ 1 2 8 ] ;
6
7 / / Cr ea t e a c o u n t e r group , a l l t i l e c o u n t e r s
8 c t x = g p c d c r e a t e c o n t e x t ( ) ;
9 f o r ( i = 0 ; i < 6 ; i ++) / / TILE ROWS

10 f o r ( j = 0 ; j < 8 ; j ++) / / TILE COLS
11 f o r ( k = 0 ; k < 6 ; k ++) / / TILE COUNTERS
12 {
13 s p r i n t f ( name ,
14 ”GM %d %d TILE PERFORMANCE COUNTERS %d ” ,
15 i , j , k ) ;
16 desc = gpcd lookup mmr byname ( name ) ;
17 gpcd context add mmr ( c tx , de sc ) ;
18 }
19
20 / / Sample t h e t i l e c o u n t e r s
21 g p c d c o n t e x t r e a d m m r v a l s ( c t x ) ;
22
23 / / P r i n t t h e c o u n t e r v a l u e s
24 f o r ( p = c tx�> l i s t ; p ; p = p�>n e x t )
25 p r i n t f ( ” Coun te r %s : Value=%l u \n ” ,
26 p�>i tem�>name , p�>v a l u e ) ;

Fig. 1: Example user-level code showing how to sample and
print the six static counters from each of the Gemini’s 48 router
tiles using the native Gemini Performance Counter Daemon
interface.

This command requires administrative privileges to run. We
then copied the text file to a login node so that it was available
to our tools.

The rtr tool output contains one line per source tile to
destination tile connection (i.e., a connection between two
Gemini chips). Figure 2 shows an example of the tool’s output.
Each line includes the direction of the link (X+, X-, Y+, Y-
, Z+, Z-), the 3-D coordinate of the source and destination
Gemini, and the type of link (backplane, mezzanine, or cable).
Only information for the 40 network link tiles per Gemini is
included in the output. The eight tiles per Gemini that are not
included make up the host link that connects the Gemini to its
two hosts. For the 9216 node DOE/NNSA Cielo XE6 system,
the interconnect.txt file is about 14 MB and contains
184,320 lines (40 tiles * 4,608 Geminis = 184,320 lines).

Figure 3 graphically shows an example tile to logical
link mapping for a node in Cielo. Other large XE and XK
systems will use a similar mapping, with eight tiles being
assigned to links in the X and Z dimensions and four tiles
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Fig. 3: Gemini tile to logical link mapping for the first node
defined in the interconnect.txt for Cielo. Links in the
X dimension are shown in orange, Y links in green, Z links
in blue, and host links in yellow.

being assigned to Y dimension links. In general, it is not
possible to assume that the mapping is identical on all nodes
of a given system because, at a minimum, the direction of
a given tile will be different on the source and destination
Geminis. For example, in Figure 3 tile 0 is assigned to the
Z+ link. This tile connects to tile 0 on the destination Gemini,
and is therefore associated with the Z- link. The link type
assigned to each Gemini also changes from node to node,
depending on the Gemini’s position in the 3-D torus. Our tools
parse the full interconnect.txt file so these differences
are automatically picked up without having to make any
assumptions.

Table II lists the bandwidth of each link type. This is useful
for calculating the aggregate bandwidth of a logical link. For
example, in Figure 3 there are eight tiles making up the X+
logical link, each using a cable link. The aggregate bandwidth
of the link is therefore 8⇤1.17 = 9.4 GBytes/s (uni-directional,
18.8 GB/s bi-directional). For large XE and XK systems, all
X links are cable based with bandwidth 9.4 GB/s. Links in the
Y dimension alternate every other between mezzanine (within
a board) and cable (between boards) links, with bandwidths
4 ⇤ 2.34 = 9.4 GB/s and 4 ⇤ 1.17 = 4.7 GB/s, respectively.
Links in the Z dimension are mostly backplane links (within
a cage) with bandwidth 8 ⇤ 1.88 = 15 GB/s. Every eighth
link in the Z dimension is a cable link (between cages) with

NIC A NIC B 

x 

Host A Host B 

Z+ Z- 

X+ X- 

Y- Y+ 



Available	
  Tile	
  Counters	
  

§  Each	
  7le	
  has	
  six	
  fixed	
  counters:	
  
0:	
  	
  	
  	
  VC0_PHIT_CNT 	
   	
  Request	
  VC	
  phits	
  
1:	
  	
  	
  	
  VC1_PHIT_CNT 	
   	
  Response	
  VC	
  phits	
  
2:	
  	
  	
  	
  VC0_PKT_CNT 	
   	
  Request	
  VC	
  packets	
  
3:	
  	
  	
  	
  VC1_PKT_CNT 	
   	
  Response	
  VC	
  packets	
  
4:	
  	
  	
  	
  INQ_STALLS 	
   	
  Request	
  VC	
  input	
  stalls	
  
5:	
  	
  	
  	
  CREDIT_STALLS 	
   	
  Request	
  VC	
  output	
  stalls	
  
	
  

§  What	
  is	
  a	
  phit?	
  	
   	
  =>	
   	
  3	
  bytes	
  
§  What	
  is	
  a	
  packet?	
   	
  => 	
  8	
  to	
  32	
  phits	
  (24	
  to	
  96	
  bytes)	
  
§  Input	
  stalls? 	
  => 	
  Time	
  wai7ng	
  to	
  get	
  to	
  output	
  7le	
  
§  Output	
  stalls? 	
  => 	
  Time	
  wai7ng	
  to	
  get	
  to	
  next	
  Gemini	
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Ques7ons?	
  

§  Basic	
  
§  How	
  can	
  we	
  access	
  the	
  7le	
  counters	
  from	
  an	
  MPI	
  program?	
  
§  How	
  do	
  we	
  turn	
  the	
  individual	
  7le	
  counters	
  into	
  link	
  counters?	
  
§  How	
  do	
  we	
  calculate	
  the	
  capacity	
  of	
  each	
  link?	
  

§  Opera7onal:	
  
§  What	
  exactly	
  are	
  the	
  packet/phit	
  counters	
  measuring?	
  
§  Do	
  the	
  counters	
  work	
  as	
  expected	
  for	
  PUT/GET	
  transac7ons?	
  
§  Are	
  measurements	
  repeatable?	
  
§  How	
  is	
  the	
  system	
  routed?	
  
§  Do	
  the	
  stall	
  counters	
  correlate	
  with	
  network	
  conges7on?	
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Outline	
  

§  Mo7va7on	
  and	
  background	
  

§  How	
  to	
  access	
  

§  What	
  they	
  measure	
  

§  Usage	
  example:	
  MiniGhost	
  rank	
  remapping	
  

§  Conclusion	
  



Directly	
  Accessing	
  Gemini	
  Counters	
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TABLE I: Mapping of tile counter names used in Cray’s Gemini documentation [2] to the names used in the GPCD interface.

Cray Documentation Name GPCD Library Name Description
GM TILE PERF VC0 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 0 Request virtual channel phit count.
GM TILE PERF VC1 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 1 Response virtual channel phit count

(phit = 3 bytes)
GM TILE PERF VC0 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 2 Request virtual channel packet count
GM TILE PERF VC1 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 3 Response virtual channel packet count

(packet = 8 to 32 phits)
GM TILE PERF INQ STALL:n:m GM n m TILE PERFORMANCE COUNTERS 4 Count of input stall cycles
GM TILE PERF CREDIT STALL:n:m GM n m TILE PERFORMANCE COUNTERS 5 Count of output stall cycles

(router operates at 800 MHz)

1 g p c d c o n t e x t t * c t x ;
2 gpcd mmr desc t * desc ;
3 g p c d m m r l i s t t *p ;
4 i n t i , j , k ;
5 char name [ 1 2 8 ] ;
6
7 / / Cr ea t e a c o u n t e r group , a l l t i l e c o u n t e r s
8 c t x = g p c d c r e a t e c o n t e x t ( ) ;
9 f o r ( i = 0 ; i < 6 ; i ++) / / TILE ROWS

10 f o r ( j = 0 ; j < 8 ; j ++) / / TILE COLS
11 f o r ( k = 0 ; k < 6 ; k ++) / / TILE COUNTERS
12 {
13 s p r i n t f ( name ,
14 ”GM %d %d TILE PERFORMANCE COUNTERS %d ” ,
15 i , j , k ) ;
16 de sc = gpcd lookup mmr byname ( name ) ;
17 gpcd context add mmr ( c tx , de sc ) ;
18 }
19
20 / / Sample t h e t i l e c o u n t e r s
21 g p c d c o n t e x t r e a d m m r v a l s ( c t x ) ;
22
23 / / P r i n t t h e c o u n t e r v a l u e s
24 f o r ( p = c tx�> l i s t ; p ; p = p�>n e x t )
25 p r i n t f ( ” Coun te r %s : Value=%l u \n ” ,
26 p�>i tem�>name , p�>v a l u e ) ;

Fig. 1: Example user-level code showing how to sample and
print the six static counters from each of the Gemini’s 48 router
tiles using the native Gemini Performance Counter Daemon
interface.

This command requires administrative privileges to run. We
then copied the text file to a login node so that it was available
to our tools.

The rtr tool output contains one line per source tile to
destination tile connection (i.e., a connection between two
Gemini chips). Figure 2 shows an example of the tool’s output.
Each line includes the direction of the link (X+, X-, Y+, Y-
, Z+, Z-), the 3-D coordinate of the source and destination
Gemini, and the type of link (backplane, mezzanine, or cable).
Only information for the 40 network link tiles per Gemini is
included in the output. The eight tiles per Gemini that are not
included make up the host link that connects the Gemini to its
two hosts. For the 9216 node DOE/NNSA Cielo XE6 system,
the interconnect.txt file is about 14 MB and contains
184,320 lines (40 tiles * 4,608 Geminis = 184,320 lines).

Figure 3 graphically shows an example tile to logical
link mapping for a node in Cielo. Other large XE and XK
systems will use a similar mapping, with eight tiles being
assigned to links in the X and Z dimensions and four tiles
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Fig. 3: Gemini tile to logical link mapping for the first node
defined in the interconnect.txt for Cielo. Links in the
X dimension are shown in orange, Y links in green, Z links
in blue, and host links in yellow.

being assigned to Y dimension links. In general, it is not
possible to assume that the mapping is identical on all nodes
of a given system because, at a minimum, the direction of
a given tile will be different on the source and destination
Geminis. For example, in Figure 3 tile 0 is assigned to the
Z+ link. This tile connects to tile 0 on the destination Gemini,
and is therefore associated with the Z- link. The link type
assigned to each Gemini also changes from node to node,
depending on the Gemini’s position in the 3-D torus. Our tools
parse the full interconnect.txt file so these differences
are automatically picked up without having to make any
assumptions.

Table II lists the bandwidth of each link type. This is useful
for calculating the aggregate bandwidth of a logical link. For
example, in Figure 3 there are eight tiles making up the X+
logical link, each using a cable link. The aggregate bandwidth
of the link is therefore 8⇤1.17 = 9.4 GBytes/s (uni-directional,
18.8 GB/s bi-directional). For large XE and XK systems, all
X links are cable based with bandwidth 9.4 GB/s. Links in the
Y dimension alternate every other between mezzanine (within
a board) and cable (between boards) links, with bandwidths
4 ⇤ 2.34 = 9.4 GB/s and 4 ⇤ 1.17 = 4.7 GB/s, respectively.
Links in the Z dimension are mostly backplane links (within
a cage) with bandwidth 8 ⇤ 1.88 = 15 GB/s. Every eighth
link in the Z dimension is a cable link (between cages) with

§  GPCD	
  Library	
  available	
  
in	
  Gemini	
  Kernel	
  driver	
  
source	
  code	
  (GPLv2)	
  

§  Code	
  sets	
  up	
  to	
  sample	
  
the	
  288	
  7le	
  counters,	
  
48	
  7les	
  *	
  6	
  counters	
  

§  Traps	
  to	
  kernel	
  to	
  read	
  
counters,	
  driver	
  ioctl()	
  

§  Benchmark,	
  7me	
  to	
  
sample	
  all	
  288	
  7le	
  
counters:	
  
Average: 	
  159	
  us	
  
Min: 	
   	
  154	
  us	
  
Max:	
   	
  305	
  us	
  

§  =>	
  Slow	
  Opera/on!	
  
	
  	
  	
  	
  	
  Use	
  with	
  care	
  



Aggrega7ng	
  to	
  Link	
  Counters	
  
§  Tile	
  counters	
  are	
  just	
  an	
  implementa7on	
  detail	
  

§  Really	
  care	
  about	
  the	
  logical	
  network	
  links	
  
§  Need	
  to	
  figure	
  out	
  which	
  7les	
  make	
  up	
  each	
  network	
  link	
  

§  No	
  obvious	
  way	
  to	
  get	
  the	
  mapping	
  from	
  compute	
  nodes	
  
§  Instead,	
  use	
  Cray’s	
  rtr	
  tool	
  available	
  on	
  the	
  SMW	
  to	
  dump	
  map	
  
§  Our	
  tools	
  depend	
  on	
  this	
  text	
  file,	
  parse	
  at	
  startup	
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c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c1-0c0s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c1-0c0s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X- -> c2-0c0s0g0l41[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l05[(0,0,0)] X- -> c2-0c0s0g0l31[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l06[(0,0,0)] Z- -> c0-0c2s7g0l26[(0,0,23)] LinkType: cable15z
c0-0c0s0g0l07[(0,0,0)] Z- -> c0-0c2s7g0l35[(0,0,23)] LinkType: cable15z

Fig. 2: First 8 lines of the interconnect.txt file for Cielo (16x12x24 topology).

TABLE II: Tile link type to bandwidth conversions.

Link Type Bandwidth
Mezzanine 2.34 GB/s
Backplane 1.88 GB/s
Cable 1.17 GB/s
Host 1.33 GB/s (est.)

bandwidth 8 ⇤ 1.17 = 9.4 GB/s. As can be seen, there is a
fairly heterogeneous distribution of interconnect link speeds
on Gemini based systems.

IV. GATHERING JOB-WIDE INFORMATION

Once we understood how to aggregate the tile counters
into logical links, our next step was to develop a higher-
level MPI library to aggregate the counter information across
an entire application run. This library, which we named the
Gemini monitor library (libgm.a), gets linked with the target
application to be profiled and provides a simple API for
sampling and printing application-wide counter information.
Currently there are three API calls:

// Initialize the library
gemini_init_state(comm, &state)

// Sample the gemini counters
gemini_read_counters(comm, &state)

// Output delta of last two samples
gemini_print_counters(comm, &state)

A typical usage scenario would be to surround a code
region of interest with calls gemini_read_counters()
and then call gemini_print_counters() to output the
counter difference from the start to the end of the region.

Internally, the library forms an MPI communicator with one
process per Gemini, which we call the leader process. Reading
the counters from multiple processes per Gemini would be
redundant and add unnecessary overhead. Each Gemini leader
process parses the interconnect.txt information (rank
0 broadcasts the file to all Gemini leader processes) to find its
own tile to logical link mapping. No information about other
Geminis is retained. When an application requests that the
counters be sampled, the individual tile counters are aggregated
to logical link counters, as described in Section III. Each
Gemini leader stores multiple logical link counter samples.

When the application requests that the counters be output,
each Gemini leader calculates the delta between the last two
counter samples and sends the result to rank 0 using an
MPI_Gather() collective. Rank 0 then outputs the aggre-
gated counter information to a text file.

Figure 4 shows an example of the library’s output. The first
two comment lines are included for convenience, and are not
normally included in the output. Each Gemini block begins
with a line indicating the Gemini’s coordinate in the 3-D torus
and is followed by up to seven lines, one per logical link
(including the host link, HH). Each logical link line includes
the direction of the link, the coordinate of the Gemini at the
remote end of the link, the speed of the link in Gbytes/s,
and the values of the six fixed tile counters for the link (the
delta between the last two samples). To allow for maximum
flexibility for post processing, we chose to output the full six
counters for each of the seven logical links on each Gemini,
rather than trying to condense or summarize the information
within the library.

We have tested the library on up to 131,072 process runs,
comprised of 8,192 nodes running 16 processes per node. We
found that the Gemini leader process communicator size is
typically slightly larger than half the number of nodes for
a given run, due to the Cray node allocator sometimes only
allocating one of a Gemini’s two nodes to the job (e.g., for
all of the 131,072 process runs, the same 4,118 Geminis
were used). The memory overhead of the library on non-
rank 0 processes is very small, since only local information
is stored. The rank 0 process requires some buffer space to
gather information from all Gemini leader processes. This
overhead grows linearly with the number of Geminis and is
approximately 6 MBytes for a hypothetical system with 10,000
Geminis.

V. SONAR EXPERIMENTS

We performed a number of simple tests to better understand
the operation of the Gemini tile counters. The basic theme of
these experiments was to send out a known “ping”, such as
a single MPI message of known size, and then inspect the
tile counters to determine what happened – the “pong” echo.
These experiments gave us a clear picture of what was actually
transmitted on the wire for put and get transactions, revealed
the directionality of the tile counters, helped us understand the
routing scheme used on our system, and allowed us to measure
the bandwidth efficiency of the Gemini network for MPI point-
to-point messages. These topics are discussed in the following
sections.

Source Gemini Tile           Destination Gemini Tile     Type of Link 
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Abstract—This paper describes our experience using the

Cray Gemini performance counters to gain insight into the

network resources being used by applications. The Gemini chip

consists of two network interfaces and a common router core,

each providing an extensive set of performance counters. Based

on our experience, we have found some of these counters to

be more enlightening than others. More importantly, we have

performed a set of controlled experiments to better understand

what the counters are actually measuring. These experiments led

to several surprises, described in this paper. This supplements the

documentation provided by Cray and is essential information

for anybody wishing to make use of the Gemini performance

counters. We demonstrate the use of the Gemini tile performance

counters to quantify the reduction in network congestion due to

an improved process mapping scheme for the MiniGhost miniapp.

I. INTRODUCTION

The Cray Gemini [1] network processing unit provides a
large set of hardware performance counters that have many
potential uses, including understanding individual application
communication behavior and understanding the behavior of
the system as a whole (e.g., network congestion). This is
a unique capability compared to most commodity networks.
Unfortunately, when we had a need to use these counters, we
quickly concluded that doing so would not be “easy”. The
available documentation [2] provided basic descriptions of the
counters but left out many necessary details, and provided no
examples showing how to directly access the counters without
using CrayPat. Our hope in writing this paper is to fill in some
of the missing gaps to jump start others who want to make use
of the Gemini counters.

The remainder of this paper is organized as follows:
Section II describes our approach for directly accessing Gemini
performance counter information from MPI applications. Sec-
tion III and IV describe how to derive logical link counters
and gather job-wide counter information, respectively. Results
of experiments designed to understand the operation of the
counters are described in Section V, followed by a demon-
stration of using the counters to measure network congestion
in Section VI. Future work is discussed in Section VII and
Section VIII concludes the paper.

II. DIRECTLY ACCESSING THE GEMINI TILE COUNTERS

Our first step was to gain direct access to the Gemini
counters from application code. At the time, CrayPat [3] had
the ability to access Gemini network interface counters but had
no support for accessing the Gemini router tile counters. Since
our main interest was in the tile counters and we wanted to
avoid the extra steps needed to use CrayPat, we began looking
for other options.

Fortunately our search was not long. While looking through
the Gemini Linux kernel driver source code,1 we found the
source code for the Gemini Performance Counter Daemon
(GPCD) kernel module and some example code showing how
to access its interface from user-level. This is presumably the
same interface that CrayPat uses. We converted the sample
user-level code into a library, wrote a test program, and verified
that we could access the tile counters.

Figure 1 shows an example of using the GPCD library.
The first step is to create a counter context that includes the six
fixed counters for each tile (lines 8 through 18). The code uses
the counter’s human readable name (line 14) to look up the
memory mapped register descriptor for the counter (line 16).
The descriptor is then added to the context (line 17). Overall,
288 counters are added to the context, since there are 48 tiles
and each tile has six fixed counters. The next step is to read
the counter values into the context (line 21). Internally, this
makes an ioctl() call to the GPCD kernel module, the kernel
module reads the counter values specified in the context, and
then returns the values to user space. The counter values are
stored in the context itself. The last step is to print the counter
values by walking the descriptor list stored in the context (lines
24-26).

The six per-tile fixed counters are briefly mentioned in
Cray’s documentation [2]. However, the mapping between the
counter names in the documentation and the GPCD library
counter names is not specified. We performed a set of simple
experiments similar to those described in Section V to deter-
mine the mapping is as shown in Table I. The table also gives
a brief description of each tile counter.

III. AGGREGATING TILE COUNTERS TO LINK COUNTERS

Our next step was to figure out how to aggregate the
individual tile counters into logical link counters. For our
purposes the router tiles were just an implementation detail–
what we really cared about were the network links connecting
the Geminis together in the 3-D torus and the host link
connecting the Gemini to its two local hosts. Each of these
logical links is made up of a set of tiles.

We were not able to find a way to determine the tile to link
mapping from a login node or compute node. Instead, we used
Cray’s rtr tool that is available on the Service Management
Workstation (SMW) to dump out the mapping to a text file:

rtr --interconnect > interconnect.txt

1For the Cray 4.0.36 release, this source code is available in cray-gni-1.0-
1.0400.4123.8.8.gem.src.rpm and is licensed under GPLv2.
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TABLE I: Mapping of tile counter names used in Cray’s Gemini documentation [2] to the names used in the GPCD interface.

Cray Documentation Name GPCD Library Name Description
GM TILE PERF VC0 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 0 Request virtual channel phit count.
GM TILE PERF VC1 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 1 Response virtual channel phit count

(phit = 3 bytes)
GM TILE PERF VC0 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 2 Request virtual channel packet count
GM TILE PERF VC1 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 3 Response virtual channel packet count

(packet = 8 to 32 phits)
GM TILE PERF INQ STALL:n:m GM n m TILE PERFORMANCE COUNTERS 4 Count of input stall cycles
GM TILE PERF CREDIT STALL:n:m GM n m TILE PERFORMANCE COUNTERS 5 Count of output stall cycles

(router operates at 800 MHz)

1 g p c d c o n t e x t t * c t x ;
2 gpcd mmr desc t * desc ;
3 g p c d m m r l i s t t *p ;
4 i n t i , j , k ;
5 char name [ 1 2 8 ] ;
6
7 / / Cr e a t e a c o u n t e r group , a l l t i l e c o u n t e r s
8 c t x = g p c d c r e a t e c o n t e x t ( ) ;
9 f o r ( i = 0 ; i < 6 ; i ++) / / TILE ROWS

10 f o r ( j = 0 ; j < 8 ; j ++) / / TILE COLS
11 f o r ( k = 0 ; k < 6 ; k ++) / / TILE COUNTERS
12 {
13 s p r i n t f ( name ,
14 ”GM %d %d TILE PERFORMANCE COUNTERS %d ” ,
15 i , j , k ) ;
16 desc = gpcd lookup mmr byname ( name ) ;
17 gpcd context add mmr ( c tx , de sc ) ;
18 }
19
20 / / Sample t h e t i l e c o u n t e r s
21 g p c d c o n t e x t r e a d m m r v a l s ( c t x ) ;
22
23 / / P r i n t t h e c o u n t e r v a l u e s
24 f o r ( p = c tx�> l i s t ; p ; p = p�>n e x t )
25 p r i n t f ( ” Coun te r %s : Value=%l u \n ” ,
26 p�>i tem�>name , p�>v a l u e ) ;

Fig. 1: Example user-level code showing how to sample and
print the six static counters from each of the Gemini’s 48 router
tiles using the native Gemini Performance Counter Daemon
interface.

This command requires administrative privileges to run. We
then copied the text file to a login node so that it was available
to our tools.

The rtr tool output contains one line per source tile to
destination tile connection (i.e., a connection between two
Gemini chips). Figure 2 shows an example of the tool’s output.
Each line includes the direction of the link (X+, X-, Y+, Y-
, Z+, Z-), the 3-D coordinate of the source and destination
Gemini, and the type of link (backplane, mezzanine, or cable).
Only information for the 40 network link tiles per Gemini is
included in the output. The eight tiles per Gemini that are not
included make up the host link that connects the Gemini to its
two hosts. For the 9216 node DOE/NNSA Cielo XE6 system,
the interconnect.txt file is about 14 MB and contains
184,320 lines (40 tiles * 4,608 Geminis = 184,320 lines).

Figure 3 graphically shows an example tile to logical
link mapping for a node in Cielo. Other large XE and XK
systems will use a similar mapping, with eight tiles being
assigned to links in the X and Z dimensions and four tiles
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Fig. 3: Gemini tile to logical link mapping for the first node
defined in the interconnect.txt for Cielo. Links in the
X dimension are shown in orange, Y links in green, Z links
in blue, and host links in yellow.

being assigned to Y dimension links. In general, it is not
possible to assume that the mapping is identical on all nodes
of a given system because, at a minimum, the direction of
a given tile will be different on the source and destination
Geminis. For example, in Figure 3 tile 0 is assigned to the
Z+ link. This tile connects to tile 0 on the destination Gemini,
and is therefore associated with the Z- link. The link type
assigned to each Gemini also changes from node to node,
depending on the Gemini’s position in the 3-D torus. Our tools
parse the full interconnect.txt file so these differences
are automatically picked up without having to make any
assumptions.

Table II lists the bandwidth of each link type. This is useful
for calculating the aggregate bandwidth of a logical link. For
example, in Figure 3 there are eight tiles making up the X+
logical link, each using a cable link. The aggregate bandwidth
of the link is therefore 8⇤1.17 = 9.4 GBytes/s (uni-directional,
18.8 GB/s bi-directional). For large XE and XK systems, all
X links are cable based with bandwidth 9.4 GB/s. Links in the
Y dimension alternate every other between mezzanine (within
a board) and cable (between boards) links, with bandwidths
4 ⇤ 2.34 = 9.4 GB/s and 4 ⇤ 1.17 = 4.7 GB/s, respectively.
Links in the Z dimension are mostly backplane links (within
a cage) with bandwidth 8 ⇤ 1.88 = 15 GB/s. Every eighth
link in the Z dimension is a cable link (between cages) with

c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c1-0c0s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c1-0c0s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X- -> c2-0c0s0g0l41[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l05[(0,0,0)] X- -> c2-0c0s0g0l31[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l06[(0,0,0)] Z- -> c0-0c2s7g0l26[(0,0,23)] LinkType: cable15z
c0-0c0s0g0l07[(0,0,0)] Z- -> c0-0c2s7g0l35[(0,0,23)] LinkType: cable15z

Fig. 2: First 8 lines of the interconnect.txt file for Cielo (16x12x24 topology).

TABLE II: Tile link type to bandwidth conversions.

Link Type Bandwidth
Mezzanine 2.34 GB/s
Backplane 1.88 GB/s
Cable 1.17 GB/s
Host 1.33 GB/s (est.)

bandwidth 8 ⇤ 1.17 = 9.4 GB/s. As can be seen, there is a
fairly heterogeneous distribution of interconnect link speeds
on Gemini based systems.

IV. GATHERING JOB-WIDE INFORMATION

Once we understood how to aggregate the tile counters
into logical links, our next step was to develop a higher-
level MPI library to aggregate the counter information across
an entire application run. This library, which we named the
Gemini monitor library (libgm.a), gets linked with the target
application to be profiled and provides a simple API for
sampling and printing application-wide counter information.
Currently there are three API calls:

// Initialize the library
gemini_init_state(comm, &state)

// Sample the gemini counters
gemini_read_counters(comm, &state)

// Output delta of last two samples
gemini_print_counters(comm, &state)

A typical usage scenario would be to surround a code
region of interest with calls gemini_read_counters()
and then call gemini_print_counters() to output the
counter difference from the start to the end of the region.

Internally, the library forms an MPI communicator with one
process per Gemini, which we call the leader process. Reading
the counters from multiple processes per Gemini would be
redundant and add unnecessary overhead. Each Gemini leader
process parses the interconnect.txt information (rank
0 broadcasts the file to all Gemini leader processes) to find its
own tile to logical link mapping. No information about other
Geminis is retained. When an application requests that the
counters be sampled, the individual tile counters are aggregated
to logical link counters, as described in Section III. Each
Gemini leader stores multiple logical link counter samples.

When the application requests that the counters be output,
each Gemini leader calculates the delta between the last two
counter samples and sends the result to rank 0 using an
MPI_Gather() collective. Rank 0 then outputs the aggre-
gated counter information to a text file.

Figure 4 shows an example of the library’s output. The first
two comment lines are included for convenience, and are not
normally included in the output. Each Gemini block begins
with a line indicating the Gemini’s coordinate in the 3-D torus
and is followed by up to seven lines, one per logical link
(including the host link, HH). Each logical link line includes
the direction of the link, the coordinate of the Gemini at the
remote end of the link, the speed of the link in Gbytes/s,
and the values of the six fixed tile counters for the link (the
delta between the last two samples). To allow for maximum
flexibility for post processing, we chose to output the full six
counters for each of the seven logical links on each Gemini,
rather than trying to condense or summarize the information
within the library.

We have tested the library on up to 131,072 process runs,
comprised of 8,192 nodes running 16 processes per node. We
found that the Gemini leader process communicator size is
typically slightly larger than half the number of nodes for
a given run, due to the Cray node allocator sometimes only
allocating one of a Gemini’s two nodes to the job (e.g., for
all of the 131,072 process runs, the same 4,118 Geminis
were used). The memory overhead of the library on non-
rank 0 processes is very small, since only local information
is stored. The rank 0 process requires some buffer space to
gather information from all Gemini leader processes. This
overhead grows linearly with the number of Geminis and is
approximately 6 MBytes for a hypothetical system with 10,000
Geminis.

V. SONAR EXPERIMENTS

We performed a number of simple tests to better understand
the operation of the Gemini tile counters. The basic theme of
these experiments was to send out a known “ping”, such as
a single MPI message of known size, and then inspect the
tile counters to determine what happened – the “pong” echo.
These experiments gave us a clear picture of what was actually
transmitted on the wire for put and get transactions, revealed
the directionality of the tile counters, helped us understand the
routing scheme used on our system, and allowed us to measure
the bandwidth efficiency of the Gemini network for MPI point-
to-point messages. These topics are discussed in the following
sections.

X Links, all: 
 8 * 1.17 = 9.4 GB/s 

 
Y Links, alternate every other: 

 4 * 2.34 = 9.4 GB/s (mezz) 
 4 * 1.17 = 4.7 GB/s 

 
Z Links, every eighth slower: 

 8 * 1.88 = 15 GB/s (backpl) 
 8 * 1.17 = 9.4 GB/s 
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c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c1-0c0s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c1-0c0s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X- -> c2-0c0s0g0l41[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l05[(0,0,0)] X- -> c2-0c0s0g0l31[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l06[(0,0,0)] Z- -> c0-0c2s7g0l26[(0,0,23)] LinkType: cable15z
c0-0c0s0g0l07[(0,0,0)] Z- -> c0-0c2s7g0l35[(0,0,23)] LinkType: cable15z

Fig. 2: First 8 lines of the interconnect.txt file for Cielo (16x12x24 topology).

TABLE II: Tile link type to bandwidth conversions.

Link Type Bandwidth
Mezzanine 2.34 GB/s
Backplane 1.88 GB/s
Cable 1.17 GB/s
Host 1.33 GB/s (est.)

bandwidth 8 ⇤ 1.17 = 9.4 GB/s. As can be seen, there is a
fairly heterogeneous distribution of interconnect link speeds
on Gemini based systems.

IV. GATHERING JOB-WIDE INFORMATION

Once we understood how to aggregate the tile counters
into logical links, our next step was to develop a higher-
level MPI library to aggregate the counter information across
an entire application run. This library, which we named the
Gemini monitor library (libgm.a), gets linked with the target
application to be profiled and provides a simple API for
sampling and printing application-wide counter information.
Currently there are three API calls:

// Initialize the library
gemini_init_state(comm, &state)

// Sample the gemini counters
gemini_read_counters(comm, &state)

// Output delta of last two samples
gemini_print_counters(comm, &state)

A typical usage scenario would be to surround a code
region of interest with calls gemini_read_counters()
and then call gemini_print_counters() to output the
counter difference from the start to the end of the region.

Internally, the library forms an MPI communicator with one
process per Gemini, which we call the leader process. Reading
the counters from multiple processes per Gemini would be
redundant and add unnecessary overhead. Each Gemini leader
process parses the interconnect.txt information (rank
0 broadcasts the file to all Gemini leader processes) to find its
own tile to logical link mapping. No information about other
Geminis is retained. When an application requests that the
counters be sampled, the individual tile counters are aggregated
to logical link counters, as described in Section III. Each
Gemini leader stores multiple logical link counter samples.

When the application requests that the counters be output,
each Gemini leader calculates the delta between the last two
counter samples and sends the result to rank 0 using an
MPI_Gather() collective. Rank 0 then outputs the aggre-
gated counter information to a text file.

Figure 4 shows an example of the library’s output. The first
two comment lines are included for convenience, and are not
normally included in the output. Each Gemini block begins
with a line indicating the Gemini’s coordinate in the 3-D torus
and is followed by up to seven lines, one per logical link
(including the host link, HH). Each logical link line includes
the direction of the link, the coordinate of the Gemini at the
remote end of the link, the speed of the link in Gbytes/s,
and the values of the six fixed tile counters for the link (the
delta between the last two samples). To allow for maximum
flexibility for post processing, we chose to output the full six
counters for each of the seven logical links on each Gemini,
rather than trying to condense or summarize the information
within the library.

We have tested the library on up to 131,072 process runs,
comprised of 8,192 nodes running 16 processes per node. We
found that the Gemini leader process communicator size is
typically slightly larger than half the number of nodes for
a given run, due to the Cray node allocator sometimes only
allocating one of a Gemini’s two nodes to the job (e.g., for
all of the 131,072 process runs, the same 4,118 Geminis
were used). The memory overhead of the library on non-
rank 0 processes is very small, since only local information
is stored. The rank 0 process requires some buffer space to
gather information from all Gemini leader processes. This
overhead grows linearly with the number of Geminis and is
approximately 6 MBytes for a hypothetical system with 10,000
Geminis.

V. SONAR EXPERIMENTS

We performed a number of simple tests to better understand
the operation of the Gemini tile counters. The basic theme of
these experiments was to send out a known “ping”, such as
a single MPI message of known size, and then inspect the
tile counters to determine what happened – the “pong” echo.
These experiments gave us a clear picture of what was actually
transmitted on the wire for put and get transactions, revealed
the directionality of the tile counters, helped us understand the
routing scheme used on our system, and allowed us to measure
the bandwidth efficiency of the Gemini network for MPI point-
to-point messages. These topics are discussed in the following
sections.

# DEST_COORD
# SRC_COORD GB/s VC0_PHITS VC1_PHITS VC0_PKTS VC1_PKTS INQ_STALLS OUTQ_STALLS

( 0, 1, 1 )
X+ ( 1, 1, 1) 9.38 1626452284 304999266 101662806 101666422 3533598961 2689080952
X- (15, 1, 1) 9.38 100506 38796 9780 12932 83 0
Y+ ( 0, 2, 1) 4.69 1627257610 305156760 101726643 101718920 1702270109 0
Y- ( 0, 0, 1) 9.38 1153554135 216313236 72105559 72104412 1925883229 2366983378
Z+ ( 0, 1, 2) 15.00 815234359 152948952 50988260 50982984 133047991 776502961
Z- ( 0, 1, 0) 15.00 1743043 378399 156635 126133 580 992022669
HH ( 0, 1, 1) 10.40 1834489368 344019696 114672167 114673232 10585723107 2263990777

( 0, 0, 1 )
X+ ( 1, 0, 1) 9.38 1966685020 368797209 122929393 122932403 3317929506 3063532486
X- (15, 0, 1) 9.38 122194 43005 11983 14335 9 0
Y+ ( 0, 1, 1) 9.38 1154016206 216417552 72141025 72139184 3589170400 1097189607
Y- ( 0,11, 1) 4.69 96911 20538 9646 6846 56244 0
Z+ ( 0, 0, 2) 15.00 2477453033 458007486 153779007 152669162 952487628 2209098748
Z- ( 0, 0, 0) 15.00 2071415 3684912 128723 1228304 464902 387186094
HH ( 0, 0, 1) 10.40 2174662127 407809092 135934105 135936364 10604254673 2216827070

Fig. 4: Example output of the Gemini Monitor library for two Geminis, (0, 1, 1) and (0, 0, 1).

A. Put and Get Transactions

As described in the Cray’s Gemini white paper [4], every
network transaction is a single “request” packet from source
to destination, followed by a single “response” packet from
destination to source. The maximum transaction contains 64
bytes of user data payload. Everything is built on top of these
small transactions. For example, a large MPI message will
get broken down into many individual 64 byte transactions.
Request packets always are sent on virtual channel 0 (VC0)
and response packets are always sent on virtual channel 1
(VC1).

A typical PUT transaction that sends 64 bytes of data from
a source to a destination consists of a 32 phit request packet
(96 bytes) followed by a 3 phit response packet (9 bytes) from
destination to source. The total traffic on the network is 96 +
9 = 105 bytes. A typical GET transaction requesting 64 bytes
of data from a remote node consists of a 8 phit request packet
(24 bytes) followed by a 27 phit response packet (81 bytes).
Total traffic on the network is 24 + 81 = 105 bytes, which is
the same as for PUT transactions.

We performed a series of experiments to confirm that the
tile phit counters were correctly measuring the expected values
for PUT and GET transactions, as just described. Our original
test consisted of sending a 1 MB message from a source to
a destination, sampling the tile counters before and after to
calculate the delta. The results we got were confusing at first.
While the packet counts were consistent with a PUT based
protocol, the phit counters were much too low, by about a
factor of three.

After discussing the issue with Cray, it turns out that the
Gemini compresses packets with runs of zero bits or runs
of one bits. Our benchmark was sending a zeroed message,
leading to the confusing phit counts. After we initialized
our test message to a random bit pattern, the phit counters
measured the expected values. This compression is something
to be aware of when using the Gemini’s tile counters.

B. Tile Counter Directionality

The documentation provided by Cray did not discuss the
directionality of the tile counters. It was not clear if the phit and
packet counters measured incoming or outgoing transmissions,
or whether the directionality of the VC0 and VC1 counters
were the same. Our experiments revealed that the VC0 and
VC1 counters both measured packets and phits coming into
the Gemini tile (i.e., they measure packets and phits that arrive
at the destination end of a network link). This means that
the traffic flowing into a Gemini router can be determined
with only local information. Remote tile counter information
from neighboring Geminis is needed to understand the traffic
flowing out of a given Gemini.

Like the packet and phit counters, the input stall counter
measures stall cycles for incoming packets. These stall cycles
occur when a packet is not able to move to the destination tile’s
output queue, due to lack of credits or some other Gemini-
internal resource being unavailable. The output stall counter
measures stall cycles for outgoing packets. This occurs when
a tile’s output queue does not have enough credits for the
destination Gemini tile’s input queue.

C. Routing

Gemini based systems use a static routing scheme where
all traffic from a given source to a given destination follows
the same path through the 3-D torus interconnect. While this is
obvious in retrospect, our experiments revealed that the path
taken by a given transaction’s request packet is, in general,
different from the path taken by the response packet. The
request packet will use the static route from the source to the
destination. The response packet will return via the static route
from the destination to the source. It is important to be aware
of this since PUT ACK response and GET REPLY response
traffic is significant. System models that attempt to calculate
the load on a given link should also consider the induced PUT
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src=0, dst=2!
==================================================================================!
(1, 0, 5) SOURCE!
  X- (0, 0, 5) 18.75           0         0         0         0         0         0!
  Y+ (1, 1, 5) 14.06           0         0         0         0         0         0!
  Z+ (1, 0, 6) 15.00         278     49203        14     16401         0    141274!
  Z- (1, 0, 4) 15.00           0         0         0         0         0         0!
  HH (1, 0, 5) 10.40      524580        42     16401        14    817252         0!
(1, 0, 6)!
  X- (0, 0, 6) 18.75           0         0         0         0         0         0!
  Y+ (1, 1, 6) 14.06           0         0         0         0         0         0!
  Z+ (1, 0, 7) 15.00         278     49203        14     16401         0         0!
  Z- (1, 0, 5) 15.00      524580        42     16401        14         0         0!
  HH (1, 0, 6) 10.40         156        24         8         8         0         0!
(1, 0, 7) DESTINATION!
  X- (0, 0, 7) 18.75           0         0         0         0         0         0!
  Y+ (1, 1, 7) 14.06           0         0         0         0         0         0!
  Z+ (1, 0, 0)  9.38           0         0         0         0         0         0!
  Z- (1, 0, 6) 15.00      524584        42     16401        14     57659         0!
  HH (1, 0, 7) 10.40         278     49203        14     16401         0         0!
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Fig. 5: Measured bandwidth efficiency for MPI point-to-point messages.
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Fig. 6: MiniGhost per-Gemini bytes injected on host links.
Filled bars represent the average per-Gemini remote commu-
nication for all Geminis in a run. The error bars represent the
Gemini with the most remote communication.

The plots show that X dimension network links encounter
the highest maximum congestion. We believe this is due to the
routing algorithm traversing the X dimension first, resulting in
added contention with traffic waiting to move into the Y and
Z dimensions. For all dimensions (X, Y, and Z), the Remap
scheme results in about a factor of two reduction in maximum
congestion compared to the No-Remap case. This correlates
with the observed decrease in MiniGhost communication time.
The maximum congestion on any link is the bottleneck for
MiniGhost, since it is a bulk-synchronous parallel application.
For X dimension output stalls, the average stall count actually
increases slightly for the Remap scheme, but the reduction in
maximum link congestion significantly improves MiniGhost
performance.

VII. FUTURE WORK

Now that we understand the Gemini’s router tile per-
formance counters and have tools for analyzing them, we
plan to use the capability to quantify the benefit of different
task mapping strategies with respect to network congestion.
Specifically, we would like to make use of MPI scalable
graph topology communicators [8] along with existing and new
topology mapping algorithms [9] to improve the performance
of DOE applications running on Cray Gemini and Aries based
systems. Cray has recently added support for Gemini and Aries
performance counters to PAPI [10], so we will be investigating
whether our tools can use this interface rather than the low-
level GPCD library described in Section II. A longer term goal
is to create a portable interface for accessing and aggregating
network performance counter information available on high-
end HPC systems [2], [11], and apply this information for
dynamic task mapping based on network congestion.

VIII. CONCLUSION

In this paper we have described our method for accessing
the router tile performance counters available on the Cray
Gemini network processing unit. This included a description
of how to directly access the counters from a user application,
aggregate the individual tile counters into logical links, and
gather application-wide counter information. We presented
the results of several experiments designed to understand the
meaning of the counters, including their directionality, and
to understand the operation of the system as a whole in
terms of network transactions, routing, and MPI point-to-point
messaging. Finally, we demonstrated the use of the Gemini’s
performance counters to quantify the reduction in network
congestion due to an improved process mapping scheme for
the MiniGhost miniapp. We plan to perform similar studies for
other applications and task mapping algorithms in the future.
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(a) Cielo (b) Chama

Figure 5.21. Performance of MiniGhost with MPI-rank
remapping on Cielo

to the interpretation of the message frequency and volume. The importance of D1 and D2

increases when the application is examined when executing on a dynamic mesh (i.e. Adaptive
Mesh Refinement, AMR). Future work calls for determining the predictive capabilities of
miniGhost as a static code with regard to CTH as an AMR code.

5.4 A Circuit Simulation code

Xyce is a circuit modeling tool 3 [21] developed at Sandia National Laboratories. It is
designed to perform transistor-level simulations for extremely large circuits on large-scale
parallel computing platforms of up to thousands of processors. Xyce is a traditional analog-
style circuit simulation tool, similar to the Berkeley SPICE program[25].

Circuit simulation adheres to a general flow, as shown in Fig. 5.24. The circuit, described
in a netlist file, is transformed via modified nodal analysis (MNA) into a set of nonlinear
di↵erential algebraic equations (DAEs)

dq(x(t))

dt
+ f(x(t)) = b(t), (5.6)

where x(t) 2 RN is the vector of circuit unknowns, q and f are functions representing the
dynamic and static circuit elements (respectively), and b(t) 2 RM is the input vector. For
any analysis type, the initial starting point is this set of DAEs. The numerical approach
employed to compute solutions to equation (5.6) is predicated by the analysis type.

3
http://xyce.sandia.gov/
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Fig. 5: Measured bandwidth efficiency for MPI point-to-point messages.
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Fig. 6: MiniGhost per-Gemini bytes injected on host links.
Filled bars represent the average per-Gemini remote commu-
nication for all Geminis in a run. The error bars represent the
Gemini with the most remote communication.

The plots show that X dimension network links encounter
the highest maximum congestion. We believe this is due to the
routing algorithm traversing the X dimension first, resulting in
added contention with traffic waiting to move into the Y and
Z dimensions. For all dimensions (X, Y, and Z), the Remap
scheme results in about a factor of two reduction in maximum
congestion compared to the No-Remap case. This correlates
with the observed decrease in MiniGhost communication time.
The maximum congestion on any link is the bottleneck for
MiniGhost, since it is a bulk-synchronous parallel application.
For X dimension output stalls, the average stall count actually
increases slightly for the Remap scheme, but the reduction in
maximum link congestion significantly improves MiniGhost
performance.

VII. FUTURE WORK

Now that we understand the Gemini’s router tile per-
formance counters and have tools for analyzing them, we
plan to use the capability to quantify the benefit of different
task mapping strategies with respect to network congestion.
Specifically, we would like to make use of MPI scalable
graph topology communicators [8] along with existing and new
topology mapping algorithms [9] to improve the performance
of DOE applications running on Cray Gemini and Aries based
systems. Cray has recently added support for Gemini and Aries
performance counters to PAPI [10], so we will be investigating
whether our tools can use this interface rather than the low-
level GPCD library described in Section II. A longer term goal
is to create a portable interface for accessing and aggregating
network performance counter information available on high-
end HPC systems [2], [11], and apply this information for
dynamic task mapping based on network congestion.

VIII. CONCLUSION

In this paper we have described our method for accessing
the router tile performance counters available on the Cray
Gemini network processing unit. This included a description
of how to directly access the counters from a user application,
aggregate the individual tile counters into logical links, and
gather application-wide counter information. We presented
the results of several experiments designed to understand the
meaning of the counters, including their directionality, and
to understand the operation of the system as a whole in
terms of network transactions, routing, and MPI point-to-point
messaging. Finally, we demonstrated the use of the Gemini’s
performance counters to quantify the reduction in network
congestion due to an improved process mapping scheme for
the MiniGhost miniapp. We plan to perform similar studies for
other applications and task mapping algorithms in the future.
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(b) Output Stalls

Fig. 7: Measured network congestion for MiniGhost running on 128K processes. Filled bars represent the average per-Gemini
stall counts for all Geminis in a run. The error bars represent the Gemini with the highest stall count.
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Fig. 7: Measured network congestion for MiniGhost running on 128K processes. Filled bars represent the average per-Gemini
stall counts for all Geminis in a run. The error bars represent the Gemini with the highest stall count.
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Fig. 5: Measured bandwidth efficiency for MPI point-to-point messages.
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Fig. 6: MiniGhost per-Gemini bytes injected on host links.
Filled bars represent the average per-Gemini remote commu-
nication for all Geminis in a run. The error bars represent the
Gemini with the most remote communication.

The plots show that X dimension network links encounter
the highest maximum congestion. We believe this is due to the
routing algorithm traversing the X dimension first, resulting in
added contention with traffic waiting to move into the Y and
Z dimensions. For all dimensions (X, Y, and Z), the Remap
scheme results in about a factor of two reduction in maximum
congestion compared to the No-Remap case. This correlates
with the observed decrease in MiniGhost communication time.
The maximum congestion on any link is the bottleneck for
MiniGhost, since it is a bulk-synchronous parallel application.
For X dimension output stalls, the average stall count actually
increases slightly for the Remap scheme, but the reduction in
maximum link congestion significantly improves MiniGhost
performance.

VII. FUTURE WORK

Now that we understand the Gemini’s router tile per-
formance counters and have tools for analyzing them, we
plan to use the capability to quantify the benefit of different
task mapping strategies with respect to network congestion.
Specifically, we would like to make use of MPI scalable
graph topology communicators [8] along with existing and new
topology mapping algorithms [9] to improve the performance
of DOE applications running on Cray Gemini and Aries based
systems. Cray has recently added support for Gemini and Aries
performance counters to PAPI [10], so we will be investigating
whether our tools can use this interface rather than the low-
level GPCD library described in Section II. A longer term goal
is to create a portable interface for accessing and aggregating
network performance counter information available on high-
end HPC systems [2], [11], and apply this information for
dynamic task mapping based on network congestion.

VIII. CONCLUSION

In this paper we have described our method for accessing
the router tile performance counters available on the Cray
Gemini network processing unit. This included a description
of how to directly access the counters from a user application,
aggregate the individual tile counters into logical links, and
gather application-wide counter information. We presented
the results of several experiments designed to understand the
meaning of the counters, including their directionality, and
to understand the operation of the system as a whole in
terms of network transactions, routing, and MPI point-to-point
messaging. Finally, we demonstrated the use of the Gemini’s
performance counters to quantify the reduction in network
congestion due to an improved process mapping scheme for
the MiniGhost miniapp. We plan to perform similar studies for
other applications and task mapping algorithms in the future.
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