
Using the Cray Gemini Performance Counters

Kevin Pedretti, Courtenay Vaughan, Richard Barrett, Karen Devine, K. Scott Hemmert
Sandia National Laboratories

Albuquerque, NM 87185
Email: {ktpedre, ctvaugh, rfbarre, kddevin, kshemme}@sandia.gov

Abstract—This paper describes our experience using the
Cray Gemini performance counters to gain insight into the
network resources being used by applications. The Gemini chip
consists of two network interfaces and a common router core,
each providing an extensive set of performance counters. Based
on our experience, we have found some of these counters to
be more enlightening than others. More importantly, we have
performed a set of controlled experiments to better understand
what the counters are actually measuring. These experiments led
to several surprises, described in this paper. This supplements the
documentation provided by Cray and is essential information
for anybody wishing to make use of the Gemini performance
counters. We demonstrate the use of the Gemini tile performance
counters to quantify the reduction in network congestion due to
an improved process mapping scheme for the MiniGhost miniapp.

I. INTRODUCTION

The Cray Gemini [1] network processing unit provides a
large set of hardware performance counters that have many
potential uses, including understanding individual application
communication behavior and understanding the behavior of
the system as a whole (e.g., network congestion). This is
a unique capability compared to most commodity networks.
Unfortunately, when we had a need to use these counters, we
quickly concluded that doing so would not be “easy”. The
available documentation [2] provided basic descriptions of the
counters but left out many necessary details, and provided no
examples showing how to directly access the counters without
using CrayPat. Our hope in writing this paper is to fill in some
of the missing gaps to jump start others who want to make use
of the Gemini counters.

The remainder of this paper is organized as follows:
Section II describes our approach for directly accessing Gemini
performance counter information from MPI applications. Sec-
tion III and IV describe how to derive logical link counters
and gather job-wide counter information, respectively. Results
of experiments designed to understand the operation of the
counters are described in Section V, followed by a demon-
stration of using the counters to measure network congestion
in Section VI. Future work is discussed in Section VII and
Section VIII concludes the paper.

II. DIRECTLY ACCESSING THE GEMINI TILE COUNTERS

Our first step was to gain direct access to the Gemini
counters from application code. At the time, CrayPat [3] had
the ability to access Gemini network interface counters but had
no support for accessing the Gemini router tile counters. Since
our main interest was in the tile counters and we wanted to
avoid the extra steps needed to use CrayPat, we began looking
for other options.

Fortunately our search was not long. While looking through
the Gemini Linux kernel driver source code,1 we found the
source code for the Gemini Performance Counter Daemon
(GPCD) kernel module and some example code showing how
to access its interface from user-level. This is presumably the
same interface that CrayPat uses. We converted the sample
user-level code into a library, wrote a test program, and verified
that we could access the tile counters.

Figure 1 shows an example of using the GPCD library.
The first step is to create a counter context that includes the six
fixed counters for each tile (lines 8 through 18). The code uses
the counter’s human readable name (line 14) to look up the
memory mapped register descriptor for the counter (line 16).
The descriptor is then added to the context (line 17). Overall,
288 counters are added to the context, since there are 48 tiles
and each tile has six fixed counters. The next step is to read
the counter values into the context (line 21). Internally, this
makes an ioctl() call to the GPCD kernel module, the kernel
module reads the counter values specified in the context, and
then returns the values to user space. The counter values are
stored in the context itself. The last step is to print the counter
values by walking the descriptor list stored in the context (lines
24-26).

The six per-tile fixed counters are briefly mentioned in
Cray’s documentation [2]. However, the mapping between the
counter names in the documentation and the GPCD library
counter names is not specified. We performed a set of simple
experiments similar to those described in Section V to deter-
mine the mapping is as shown in Table I. The table also gives
a brief description of each tile counter.

III. AGGREGATING TILE COUNTERS TO LINK COUNTERS

Our next step was to figure out how to aggregate the
individual tile counters into logical link counters. For our
purposes the router tiles were just an implementation detail–
what we really cared about were the network links connecting
the Geminis together in the 3-D torus and the host link
connecting the Gemini to its two local hosts. Each of these
logical links is made up of a set of tiles.

We were not able to find a way to determine the tile to link
mapping from a login node or compute node. Instead, we used
Cray’s rtr tool that is available on the Service Management
Workstation (SMW) to dump out the mapping to a text file:

rtr --interconnect > interconnect.txt

1For the Cray 4.0.36 release, this source code is available in cray-gni-1.0-
1.0400.4123.8.8.gem.src.rpm and is licensed under GPLv2.



TABLE I: Mapping of tile counter names used in Cray’s Gemini documentation [2] to the names used in the GPCD interface.

Cray Documentation Name GPCD Library Name Description
GM TILE PERF VC0 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 0 Request virtual channel phit count.
GM TILE PERF VC1 PHIT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 1 Response virtual channel phit count

(phit = 3 bytes)
GM TILE PERF VC0 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 2 Request virtual channel packet count
GM TILE PERF VC1 PKT CNT:n:m GM n m TILE PERFORMANCE COUNTERS 3 Response virtual channel packet count

(packet = 8 to 32 phits)
GM TILE PERF INQ STALL:n:m GM n m TILE PERFORMANCE COUNTERS 4 Count of input stall cycles
GM TILE PERF CREDIT STALL:n:m GM n m TILE PERFORMANCE COUNTERS 5 Count of output stall cycles

(router operates at 800 MHz)

1 g p c d c o n t e x t t * c t x ;
2 gpcd mmr desc t * desc ;
3 g p c d m m r l i s t t *p ;
4 i n t i , j , k ;
5 char name [ 1 2 8 ] ;
6
7 / / Cr ea t e a c o u n t e r group , a l l t i l e c o u n t e r s
8 c t x = g p c d c r e a t e c o n t e x t ( ) ;
9 f o r ( i = 0 ; i < 6 ; i ++) / / TILE ROWS

10 f o r ( j = 0 ; j < 8 ; j ++) / / TILE COLS
11 f o r ( k = 0 ; k < 6 ; k ++) / / TILE COUNTERS
12 {
13 s p r i n t f ( name ,
14 ”GM %d %d TILE PERFORMANCE COUNTERS %d ” ,
15 i , j , k ) ;
16 desc = gpcd lookup mmr byname ( name ) ;
17 gpcd context add mmr ( c tx , de sc ) ;
18 }
19
20 / / Sample t h e t i l e c o u n t e r s
21 g p c d c o n t e x t r e a d m m r v a l s ( c t x ) ;
22
23 / / P r i n t t h e c o u n t e r v a l u e s
24 f o r ( p = c tx−> l i s t ; p ; p = p−>n e x t )
25 p r i n t f ( ” Coun te r %s : Value=%l u \n ” ,
26 p−>i tem−>name , p−>v a l u e ) ;

Fig. 1: Example user-level code showing how to sample and
print the six static counters from each of the Gemini’s 48 router
tiles using the native Gemini Performance Counter Daemon
interface.

This command requires administrative privileges to run. We
then copied the text file to a login node so that it was available
to our tools.

The rtr tool output contains one line per source tile to
destination tile connection (i.e., a connection between two
Gemini chips). Figure 2 shows an example of the tool’s output.
Each line includes the direction of the link (X+, X-, Y+, Y-
, Z+, Z-), the 3-D coordinate of the source and destination
Gemini, and the type of link (backplane, mezzanine, or cable).
Only information for the 40 network link tiles per Gemini is
included in the output. The eight tiles per Gemini that are not
included make up the host link that connects the Gemini to its
two hosts. For the 9216 node DOE/NNSA Cielo XE6 system,
the interconnect.txt file is about 14 MB and contains
184,320 lines (40 tiles * 4,608 Geminis = 184,320 lines).

Figure 3 graphically shows an example tile to logical
link mapping for a node in Cielo. Other large XE and XK
systems will use a similar mapping, with eight tiles being
assigned to links in the X and Z dimensions and four tiles

0
Z+

Backplane

1
Z+

Backplane

2
X+

Cable

3
X+

Cable

4
X-

Cable

5
X-

Cable

6
Z-

Cable

7
Z-

Cable

8
Z+

Backplane

9
Z+

Backplane

10
X+

Cable

11
X+

Cable

12
X-

Cable

13
X-

Cable

14
Z-

Cable

15
Z-

Cable

16
Z-

Cable

17
Z-

Cable

18
Z-

Cable
19
Host

20
Host

21
Z+

Backplane

22
Z+

Backplane

23
Z+

Backplane

24
X+

Cable

25
X+

Cable

26
Z-

Cable
27
Host

28
Host

29
Z+

Backplane

30
X-

Cable

31
X-

Cable

32
X+

Cable

33
X+

Cable

34
Y-

Cable
35
Host

36
Host

37
Y+

Mezzanine

38
X-

Cable

39
X-

Cable

40
Y-

Cable

41
Y-

Cable

42
Y-

Cable
43
Host

44
Host

45
Y+

Mezzanine

46
Y+

Mezzanine

47
Y+

Mezzanine

Fig. 3: Gemini tile to logical link mapping for the first node
defined in the interconnect.txt for Cielo. Links in the
X dimension are shown in orange, Y links in green, Z links
in blue, and host links in yellow.

being assigned to Y dimension links. In general, it is not
possible to assume that the mapping is identical on all nodes
of a given system because, at a minimum, the direction of
a given tile will be different on the source and destination
Geminis. For example, in Figure 3 tile 0 is assigned to the
Z+ link. This tile connects to tile 0 on the destination Gemini,
and is therefore associated with the Z- link. The link type
assigned to each Gemini also changes from node to node,
depending on the Gemini’s position in the 3-D torus. Our tools
parse the full interconnect.txt file so these differences
are automatically picked up without having to make any
assumptions.

Table II lists the bandwidth of each link type. This is useful
for calculating the aggregate bandwidth of a logical link. For
example, in Figure 3 there are eight tiles making up the X+
logical link, each using a cable link. The aggregate bandwidth
of the link is therefore 8∗1.17 = 9.4 GBytes/s (uni-directional,
18.8 GB/s bi-directional). For large XE and XK systems, all
X links are cable based with bandwidth 9.4 GB/s. Links in the
Y dimension alternate every other between mezzanine (within
a board) and cable (between boards) links, with bandwidths
4 ∗ 2.34 = 9.4 GB/s and 4 ∗ 1.17 = 4.7 GB/s, respectively.
Links in the Z dimension are mostly backplane links (within
a cage) with bandwidth 8 ∗ 1.88 = 15 GB/s. Every eighth
link in the Z dimension is a cable link (between cages) with



c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c1-0c0s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c1-0c0s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X- -> c2-0c0s0g0l41[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l05[(0,0,0)] X- -> c2-0c0s0g0l31[(15,0,0)] LinkType: cable18x
c0-0c0s0g0l06[(0,0,0)] Z- -> c0-0c2s7g0l26[(0,0,23)] LinkType: cable15z
c0-0c0s0g0l07[(0,0,0)] Z- -> c0-0c2s7g0l35[(0,0,23)] LinkType: cable15z

Fig. 2: First 8 lines of the interconnect.txt file for Cielo (16x12x24 topology).

TABLE II: Tile link type to bandwidth conversions.

Link Type Bandwidth
Mezzanine 2.34 GB/s
Backplane 1.88 GB/s
Cable 1.17 GB/s
Host 1.33 GB/s (est.)

bandwidth 8 ∗ 1.17 = 9.4 GB/s. As can be seen, there is a
fairly heterogeneous distribution of interconnect link speeds
on Gemini based systems.

IV. GATHERING JOB-WIDE INFORMATION

Once we understood how to aggregate the tile counters
into logical links, our next step was to develop a higher-
level MPI library to aggregate the counter information across
an entire application run. This library, which we named the
Gemini monitor library (libgm.a), gets linked with the target
application to be profiled and provides a simple API for
sampling and printing application-wide counter information.
Currently there are three API calls:

// Initialize the library
gemini_init_state(comm, &state)

// Sample the gemini counters
gemini_read_counters(comm, &state)

// Output delta of last two samples
gemini_print_counters(comm, &state)

A typical usage scenario would be to surround a code
region of interest with calls gemini_read_counters()
and then call gemini_print_counters() to output the
counter difference from the start to the end of the region.

Internally, the library forms an MPI communicator with one
process per Gemini, which we call the leader process. Reading
the counters from multiple processes per Gemini would be
redundant and add unnecessary overhead. Each Gemini leader
process parses the interconnect.txt information (rank
0 broadcasts the file to all Gemini leader processes) to find its
own tile to logical link mapping. No information about other
Geminis is retained. When an application requests that the
counters be sampled, the individual tile counters are aggregated
to logical link counters, as described in Section III. Each
Gemini leader stores multiple logical link counter samples.

When the application requests that the counters be output,
each Gemini leader calculates the delta between the last two
counter samples and sends the result to rank 0 using an
MPI_Gather() collective. Rank 0 then outputs the aggre-
gated counter information to a text file.

Figure 4 shows an example of the library’s output. The first
two comment lines are included for convenience, and are not
normally included in the output. Each Gemini block begins
with a line indicating the Gemini’s coordinate in the 3-D torus
and is followed by up to seven lines, one per logical link
(including the host link, HH). Each logical link line includes
the direction of the link, the coordinate of the Gemini at the
remote end of the link, the speed of the link in Gbytes/s,
and the values of the six fixed tile counters for the link (the
delta between the last two samples). To allow for maximum
flexibility for post processing, we chose to output the full six
counters for each of the seven logical links on each Gemini,
rather than trying to condense or summarize the information
within the library.

We have tested the library on up to 131,072 process runs,
comprised of 8,192 nodes running 16 processes per node. We
found that the Gemini leader process communicator size is
typically slightly larger than half the number of nodes for
a given run, due to the Cray node allocator sometimes only
allocating one of a Gemini’s two nodes to the job (e.g., for
all of the 131,072 process runs, the same 4,118 Geminis
were used). The memory overhead of the library on non-
rank 0 processes is very small, since only local information
is stored. The rank 0 process requires some buffer space to
gather information from all Gemini leader processes. This
overhead grows linearly with the number of Geminis and is
approximately 6 MBytes for a hypothetical system with 10,000
Geminis.

V. SONAR EXPERIMENTS

We performed a number of simple tests to better understand
the operation of the Gemini tile counters. The basic theme of
these experiments was to send out a known “ping”, such as
a single MPI message of known size, and then inspect the
tile counters to determine what happened – the “pong” echo.
These experiments gave us a clear picture of what was actually
transmitted on the wire for put and get transactions, revealed
the directionality of the tile counters, helped us understand the
routing scheme used on our system, and allowed us to measure
the bandwidth efficiency of the Gemini network for MPI point-
to-point messages. These topics are discussed in the following
sections.



# DEST_COORD
# SRC_COORD GB/s VC0_PHITS VC1_PHITS VC0_PKTS VC1_PKTS INQ_STALLS OUTQ_STALLS

( 0, 1, 1 )
X+ ( 1, 1, 1) 9.38 1626452284 304999266 101662806 101666422 3533598961 2689080952
X- (15, 1, 1) 9.38 100506 38796 9780 12932 83 0
Y+ ( 0, 2, 1) 4.69 1627257610 305156760 101726643 101718920 1702270109 0
Y- ( 0, 0, 1) 9.38 1153554135 216313236 72105559 72104412 1925883229 2366983378
Z+ ( 0, 1, 2) 15.00 815234359 152948952 50988260 50982984 133047991 776502961
Z- ( 0, 1, 0) 15.00 1743043 378399 156635 126133 580 992022669
HH ( 0, 1, 1) 10.40 1834489368 344019696 114672167 114673232 10585723107 2263990777

( 0, 0, 1 )
X+ ( 1, 0, 1) 9.38 1966685020 368797209 122929393 122932403 3317929506 3063532486
X- (15, 0, 1) 9.38 122194 43005 11983 14335 9 0
Y+ ( 0, 1, 1) 9.38 1154016206 216417552 72141025 72139184 3589170400 1097189607
Y- ( 0,11, 1) 4.69 96911 20538 9646 6846 56244 0
Z+ ( 0, 0, 2) 15.00 2477453033 458007486 153779007 152669162 952487628 2209098748
Z- ( 0, 0, 0) 15.00 2071415 3684912 128723 1228304 464902 387186094
HH ( 0, 0, 1) 10.40 2174662127 407809092 135934105 135936364 10604254673 2216827070

Fig. 4: Example output of the Gemini Monitor library for two Geminis, (0, 1, 1) and (0, 0, 1).

A. Put and Get Transactions

As described in the Cray’s Gemini white paper [4], every
network transaction is a single “request” packet from source
to destination, followed by a single “response” packet from
destination to source. The maximum transaction contains 64
bytes of user data payload. Everything is built on top of these
small transactions. For example, a large MPI message will
get broken down into many individual 64 byte transactions.
Request packets always are sent on virtual channel 0 (VC0)
and response packets are always sent on virtual channel 1
(VC1).

A typical PUT transaction that sends 64 bytes of data from
a source to a destination consists of a 32 phit request packet
(96 bytes) followed by a 3 phit response packet (9 bytes) from
destination to source. The total traffic on the network is 96 +
9 = 105 bytes. A typical GET transaction requesting 64 bytes
of data from a remote node consists of a 8 phit request packet
(24 bytes) followed by a 27 phit response packet (81 bytes).
Total traffic on the network is 24 + 81 = 105 bytes, which is
the same as for PUT transactions.

We performed a series of experiments to confirm that the
tile phit counters were correctly measuring the expected values
for PUT and GET transactions, as just described. Our original
test consisted of sending a 1 MB message from a source to
a destination, sampling the tile counters before and after to
calculate the delta. The results we got were confusing at first.
While the packet counts were consistent with a PUT based
protocol, the phit counters were much too low, by about a
factor of three.

After discussing the issue with Cray, it turns out that the
Gemini compresses packets with runs of zero bits or runs
of one bits. Our benchmark was sending a zeroed message,
leading to the confusing phit counts. After we initialized
our test message to a random bit pattern, the phit counters
measured the expected values. This compression is something
to be aware of when using the Gemini’s tile counters.

B. Tile Counter Directionality

The documentation provided by Cray did not discuss the
directionality of the tile counters. It was not clear if the phit and
packet counters measured incoming or outgoing transmissions,
or whether the directionality of the VC0 and VC1 counters
were the same. Our experiments revealed that the VC0 and
VC1 counters both measured packets and phits coming into
the Gemini tile (i.e., they measure packets and phits that arrive
at the destination end of a network link). This means that
the traffic flowing into a Gemini router can be determined
with only local information. Remote tile counter information
from neighboring Geminis is needed to understand the traffic
flowing out of a given Gemini.

Like the packet and phit counters, the input stall counter
measures stall cycles for incoming packets. These stall cycles
occur when a packet is not able to move to the destination tile’s
output queue, due to lack of credits or some other Gemini-
internal resource being unavailable. The output stall counter
measures stall cycles for outgoing packets. This occurs when
a tile’s output queue does not have enough credits for the
destination Gemini tile’s input queue.

C. Routing

Gemini based systems use a static routing scheme where
all traffic from a given source to a given destination follows
the same path through the 3-D torus interconnect. While this is
obvious in retrospect, our experiments revealed that the path
taken by a given transaction’s request packet is, in general,
different from the path taken by the response packet. The
request packet will use the static route from the source to the
destination. The response packet will return via the static route
from the destination to the source. It is important to be aware
of this since PUT ACK response and GET REPLY response
traffic is significant. System models that attempt to calculate
the load on a given link should also consider the induced PUT



ACK and GET REPLY traffic on the return route from the
destination.

Our experiments also revealed that the routing scheme used
on our systems is performed by traversing the X dimension
first, Y next, then Z last. All hops needed in a given dimension
are completed before moving onto the next dimension. The
shortest number of hops possible is taken in each dimension
(i.e., either by traversing in the positive or negative direction).
The systems that we examined had no network link failures. It
is likely that the routing algorithm is more flexible when there
are link failures that must be routed around, but we did not
perform experiments to examine this.

D. MPI Bandwidth Efficiency

As a final experiment, we used the host tile counters to
measure the actual number of bytes transferred for MPI point-
to-point messages of varying sizes. This revealed the different
protocols used by Cray’s MPI implementation and allowed
us to quantify the overall bandwidth efficiency of the system
(MPI-Message-Size / Bytes-Transferred). We were surprised
by the precision of the tile phit and packet counters. Even
for the smallest messages sizes, we observed the counts to be
nearly identical from run to run and for the values obtained to
be appropriate given the test message size.

The results of the experiment are shown in Figure 5. The
plot on the left (Fig. 5a) only includes the bytes injected into
the network by the host on the source Gemini, either as PUT
requests or GET reply responses. It does not include the the
PUT acknowledgments or GET request packets received by
the source Gemini. The plot on the right (Fig. 5b) considers
the total number of bytes injected and received by the source
Gemini due to the MPI message being sent, including PUT
acknowledgments and GET requests received by the source.
The calculated bandwidth efficiency percentage is shown as
the purple line and corresponds to the scale on the right Y axis.
For large MPI messages, the overall bandwidth efficiency is
calculated based on the empirical tile counters to be approx-
imately 61%, which corresponds to the expected value (105
bytes transferred for every 64 bytes of the MPI message). For
smaller messages, the MPI header appears to be around 64
bytes, resulting in low bandwidth efficiency until this cost is
amortized.

By examining the jumps in the graph as well as the distri-
bution of traffic over VC0 and VC1, the results suggest that
Cray’s MPI implementation is using four different protocols
depending on message size. The first protocol is for messages
from 1 to 16 bytes and is based on PUT transactions from
source to destination. Messages from 32 bytes to 4 KB also
use a PUT based protocol, but multiple transactions are used,
as indicated by the rising number of VC0 bytes received.
Messages from 8 KB to 256 KB use a GET based protocol
where the destination node pulls the message data from the
source using GET transactions. This is indicated by the high
VC1 traffic at the source. Finally, 512 KB messages and larger
again use a PUT based protocol. The increasing number of
VC1 bytes shown on the left plot indicates that a small number
of destination to source GET transactions are used in this
protocol, but most of the data is transmitted using source
to destination PUT transactions. The Gemini’s block transfer

engine, which is optimized for large transfers, is likely used
by this protocol.

VI. LARGE-SCALE MINIGHOST EXPERIMENTS

Our original motivation for using the Gemini’s performance
counters was to understand why the MiniGhost [5], [6] miniapp
from Sandia’s Mantevo project [7] was not scaling well on
Cielo. MiniGhost is a proxy application, meaning it is designed
to be a simpler version of a real application, that implements
an explicit time-stepping scheme where the communication is
synchronous and is needed to update ghost cells for a 27 point
stencil across a regular 3-D grid. Performance benchmarking
showed that MiniGhost configured for weak scaling (constant
problem size per process) scaled well up to 16K processes
running 16 processes per node (1K nodes total), but poorly for
larger runs. Runtime was increasing significantly with process
count when it should have been staying relatively constant.
Our thought was that the Gemini performance counters could
tell us if network congestion in the 3-D torus was becoming
an issue for large scale runs.

Before we got our Gemini performance counter tools
up and running, we discovered that a simple remapping of
MiniGhost processes to physical compute nodes could produce
much better scaling results. Originally a 1x1x16 group of
processes in the overall MiniGhost input problem 3-D grid
was distributed to each node. The remapping scheme changed
this to place a 2x2x4 group of processes on each node, which
intuitively reduces the surface area that must be communicated
with neighboring nodes. We used the Gemini tile performance
counters to confirm this intuition. Figure 6 shows the number
of bytes injected into the interconnect by each Gemini for three
different MiniGhost process mapping schemes. The Random
scheme randomly assigns MiniGhost processes to physical
nodes, No-Remap is the default 1x1x16 mapping, and Remap
is the improved 2x2x4 mapping. As can be seen in the figure,
Random results in by far the most remote communication
and the Remap scheme results in more than a factor of two
reduction in remote communication compared to No-Remap.
This confirmed our intuition with empirical evidence.

Access to the tile counters also gave us an opportunity
to understand overall network congestion by using the input
and output stall counters. Figure 7 shows the observed stall
counters for MiniGhost running on 128K processes with 16
processes per node (8,192 nodes). The left plot (Fig. 7a) shows
the input stall counters, which count the cycles a packet must
wait in a Gemini tile’s input queue before it can move to
the destination tile’s output queue. The right plot (Fig. 7b)
shows the output stall counters, which count the cycles a packet
must wait in a tile’s output queue before it can move to the
destination remote Gemini.

Both input and output stalls are typically due to some form
of flow control, which is a side-effect of network congestion.
The left plot shows that the host links experience a high
number of input stalls due to network congestion making it
harder to inject packets into the network. The right plot shows
that host links experience a low number of output stalls, which
is because destination nodes are always able to sink packets
from the network quickly.



8

64

512

4K

32K

256K

2M

16M

8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
y
te

s
 o

n
 W

ir
e

B
a

n
d

w
id

th
 %

E
ff

ic
ie

n
c
y

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(a) Initiator Transmit Only

1

8

64

512

4K

32K

256K

2M

16M

1 8 64 512 4K 32K 256K 2M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
y
te

s
 o

n
 W

ir
e

B
a

n
d

w
id

th
 %

E
ff

ic
ie

n
c
y

MPI Message Size in Bytes

Ideal
VC0 (Request VC)

VC1 (Response VC)
VC0+VC1

%Efficiency

(b) Overall (Transmit + Receive)

Fig. 5: Measured bandwidth efficiency for MPI point-to-point messages.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

16K 32K 64K 128K

B
y
te

s

Processes (16 Processes/Node)

Random
No-Remap

Remap

Fig. 6: MiniGhost per-Gemini bytes injected on host links.
Filled bars represent the average per-Gemini remote commu-
nication for all Geminis in a run. The error bars represent the
Gemini with the most remote communication.

The plots show that X dimension network links encounter
the highest maximum congestion. We believe this is due to the
routing algorithm traversing the X dimension first, resulting in
added contention with traffic waiting to move into the Y and
Z dimensions. For all dimensions (X, Y, and Z), the Remap
scheme results in about a factor of two reduction in maximum
congestion compared to the No-Remap case. This correlates
with the observed decrease in MiniGhost communication time.
The maximum congestion on any link is the bottleneck for
MiniGhost, since it is a bulk-synchronous parallel application.
For X dimension output stalls, the average stall count actually
increases slightly for the Remap scheme, but the reduction in
maximum link congestion significantly improves MiniGhost
performance.

VII. FUTURE WORK

Now that we understand the Gemini’s router tile per-
formance counters and have tools for analyzing them, we
plan to use the capability to quantify the benefit of different
task mapping strategies with respect to network congestion.
Specifically, we would like to make use of MPI scalable
graph topology communicators [8] along with existing and new
topology mapping algorithms [9] to improve the performance
of DOE applications running on Cray Gemini and Aries based
systems. Cray has recently added support for Gemini and Aries
performance counters to PAPI [10], so we will be investigating
whether our tools can use this interface rather than the low-
level GPCD library described in Section II. A longer term goal
is to create a portable interface for accessing and aggregating
network performance counter information available on high-
end HPC systems [2], [11], and apply this information for
dynamic task mapping based on network congestion.

VIII. CONCLUSION

In this paper we have described our method for accessing
the router tile performance counters available on the Cray
Gemini network processing unit. This included a description
of how to directly access the counters from a user application,
aggregate the individual tile counters into logical links, and
gather application-wide counter information. We presented
the results of several experiments designed to understand the
meaning of the counters, including their directionality, and
to understand the operation of the system as a whole in
terms of network transactions, routing, and MPI point-to-point
messaging. Finally, we demonstrated the use of the Gemini’s
performance counters to quantify the reduction in network
congestion due to an improved process mapping scheme for
the MiniGhost miniapp. We plan to perform similar studies for
other applications and task mapping algorithms in the future.

ACKNOWLEDGMENT

The authors would like to thank Bob Alverson at Cray for
his assistance in understanding the Gemini tile counters.



 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

Overall Host X Y Z

In
p

u
t 

Q
u

e
u

e
 S

ta
ll 

C
y
c
le

s

Link Type

Random
No-Remap

Remap

(a) Input Stalls

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

Overall Host X Y Z

O
u

tp
u

t 
Q

u
e

u
e

 S
ta

ll 
C

y
c
le

s

Link Type

Random
No-Remap

Remap

(b) Output Stalls

Fig. 7: Measured network congestion for MiniGhost running on 128K processes. Filled bars represent the average per-Gemini
stall counts for all Geminis in a run. The error bars represent the Gemini with the highest stall count.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system inter-
connect,” in High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, 2010, pp. 83–87.

[2] Using the Cray Gemini Hardware Counters, Cray Inc., 2010. [Online].
Available: http://docs.cray.com/books/S-0025-10/

[3] Using Cray Performance Measurement and Analysis Tools, Cray Inc.,
2013. [Online]. Available: http://docs.cray.com/books/S-2376-610/

[4] “The Gemini Network,” Cray Inc., Tech. Rep., Aug.
2010. [Online]. Available: http://wiki.ci.uchicago.edu/pub/Beagle/
SystemSpecs/Gemini whitepaper.pdf

[5] R. F. Barrett, C. T. Vaughan, and M. A. Herox, “Minighost: A miniapp
for exploring boundary exchange strategies using stencil computations
in scientific parallel computing,” Sandia National Laboratories, Tech.
Rep. SAND 2011-5294832, May 2011.

[6] R. F. Barrett, P. S. Crozier, D. W. Doerfler, S. D. Hammond, M. A.
Heroux, H. K. Thornquist, T. G. Trucano, and C. T. Vaughan, “Summary
of work for ASC L2 milestone 4465: Characterize the role of the
mini-application in predicting key performance characteristics of real
applications,” Sandia National Laboratories, Tech. Rep. SAND 2012-
4667, Jun. 2012.

[7] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H. Edwards,
A. Williams, M. Rajan, E. Keiter, H. Thornquist, and R. Numrich,
“Improving performance via mini-applications,” Sandia National Lab-
oratories, Tech. Rep. SAND2009-5574, Sep. 2009.

[8] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur,
and J. L. Traeff, “The scalable process topology interface of mpi 2.2,”
Concurrency and Computation: Practice and Experience, vol. 23, no. 4,
pp. 293–310, Aug. 2010.

[9] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in ACM International Conference on
Supercomputing (ICS’11), Jun. 2011.

[10] Using the PAPI Cray NPU Component, Cray Inc., Mar. 2013. [Online].
Available: http://docs.cray.com/books/S-0046-10/

[11] H. Jagode, S. Moore, and D. Terpstra, “Performance Counter Monitor-
ing for the Blue Gene/Q Architecture,” in The 18th Annual Meeting of
ScicomP, the IBM HPC Systems Scientific Computing User Group, ser.
ScicomP’12, May 2012.


