
Improving the Performance of the
PSDNS Pseudo-Spectral

Turbulence Application on Blue
Waters using Coarray Fortran and

Task Placement

CUG 2013

R. Fiedler, N. Wichmann, & S.

Whalen, (Cray), and D. Pekurovsky
(SDSC)

4/30/2013

1

Outline

4/30/2013

● Blue Waters petascale acceptance benchmark

● Background

● Cray gemini network

● Bisection bandwidth

● Algorithm & performance model

● Memory allocation optimization

● Communication optimizations

● Minimize off-node communication

● Choose best layout of tasks on system

● Use Coarray Fortran for All-to-All

● Summary and future work

2

Blue Waters petascale acceptance benchmark

4/30/2013

Direct Numerical Simulation of isotropic turbulence

● Pseudo-spectral method (3D FFTs)

● Domain has 12288^3 grid points

● 4th order Runge-Kutta time stepping, 10000 steps

● Double precision, 50 output dumps (74 TB each)

● Original plan: run on 2*12288 nodes (1 socket)

● Selected application

● PSDNS (D. Donzis, P. K. Yeung, D. Pekurovsky)

● Initial assessment on smaller problem & system:

● Performance as of 3/2012 was well below model prediction

3

Background

4/30/2013

Blue Waters Interconnect

● Topology is 23x24x24 gemini
routers

● 2 nodes per gemini, 2
geminis along y per blade

● 8x8x24 XK geminis (red)

● Service blades randomly
distributed (yellow)

● x and z-links have 2X
bandwidth of y-links
between blades
● 2 nodes on same gemini don’t

use interconnect to exchange
messages

● Routing algorithm is x, then
y, then z

4

Background

4/10/2013

● Routing takes shortest

path

● If using > 1/2 of geminis in

any dimension, traffic may

wrap around the torus

through geminis not

assigned to job

● Jobs share interconnect

for application

communication, IO

● Run times affected by task

placement, other running

jobs

5

Task Placement and Interference

4/30/2013

● Applications that perform more

communication are more sensitive to

placement and interference

● Applications with All-to-All communication patterns

compete more with other jobs

● Applications with only nearest-neighbor

communication in their virtual topology, if

poorly placed, actually perform pairwise

communication between randomly located

nodes

● Thus, analysis below of bisection bandwidth for All-

to-All is relevant to many types of applications

6

Optimal

Poor

Bisection Bandwidth

4/30/2013

● Bisection bandwidth of nodes in use determines run time

for All-to-All

● Bisection bandwidth is defined as lowest bandwidth

through any bisecting plane

● BW topology is 23x24x24 geminis

● Bisection bandwidth through cross section:

● Normal to x: 24*24*x-link-bw*2 for torus

● Normal to y: 23*24*y-link-bw*2 for torus

● Normal to z: 23*24*z-link-bw*2 for tours

● Y-link bandwidth ~ 1/2 x-link or z-link bandwidth

● Bisection bandwidth normal to y ~ 23*24*x-link-bw, limits All-to-All

y

7

● Consider subset of nodes: 23x6x24

● Contains ¼ of all nodes

● Bisection bandwidth through cross section:

● Normal to x: 6*24*x-link-bw*2 for torus ~ 12x24*x-link-bw

● Normal to y: 23*24*y-link-bw ~ 23x12*x-link-bw

● Normal to z: 23*6*z-link-bw*2 for tours = 23x12 x-link-bw

● Bisection bandwidth normal to y ~ EQUALS that of other

directions

● Bisection bandwidth for this subset is ~1/2 of bisection

bandwidth for full system

● Gives highest possible bandwidth per node for All-to-All

communication for > 2000 nodes

Bisection Bandwidth

4/30/2013
8

Bisection Bandwidth

4/30/2013

● 23x6x24 gemini subsection best for ~ 6k nodes
● 23x4x24 best for ~ 4k nodes

● Consider smaller node counts, e.g., 11x6x12 so no
wrapping around torus (shortest route is used)
● 1584 nodes, ~1/16 of all nodes in system

● Bisection bandwidth through cross section:
● Normal to x: 6*12*x-link-bw ~ 12*6*x-link-bw

● Normal to y: 11*12*y-link-bw ~ 11*6*x-link-bw

● Normal to z: 11*6*z-link-bw = 11*6 x-link-bw

● Bisection bandwidth normal to y ~ EQUALS that of other
directions

● Bisection bandwidth for subset ~ 1/8 of bisection
bandwidth for full system
● This shape also gives maximum bandwidth per node

9

PSDNS Algorithm & Performance Model

4/30/2013

CFD Using Pseudo-Spectral Method
● Uses 3D FFTs of fluid variables to compute spatial

derivatives
● Implementation uses 2D pencil decomposition
● For 3D FFT, must transpose full 3D arrays twice:

● Begin with partitions spanning domain in x

● 1D FFTs along x

● Transpose within xy planes so each partition spans
domain in y

● 1D FFTs along y

● Transpose within yz planes so each partition spans
domain in z

● 1D FFTs along z

● After some calculations requiring no
communication, inverse 3D FFTs are performed in
similar fashion
● Dozens of forward and inverse 3D FFTs per time step

● Transposes comprise 50-75% of run time
● Compute time includes local field variable updates,

packing/unpacking communication buffers, 1D FFTs

10

Single-Task Optimizations

4/30/2013

Improving “Compute” Time

● PSDNS allocates/deallocates buffer arrays for

communication every time it performs All-to-All operations

● For PGI (maybe GNU) compiler, a 10-20% improvement in

run time was obtained by setting environment variables:

● MALLOC_MMAP_MAX_=0

● MALLOC_TRIM_THRESHOLD_=512MiB

● Cray compiler by default manages memory better, so

setting these variables does not help

● Avoiding repeated allocation/deallocation of the same

arrays may reduce overhead for many applications

11

Communication Optimizations

4/30/2013

Minimize off-node communication

● Transposes require All-to-All communication
within each row (column) of pencils
● Multiple concurrent All-to-Alls on all rows

(columns), not global All-to-All

● Eliminate inter-nodal communication for xy
transposes
● Place 1 or more full xy planes of domain per node

● Each node has an entire row (16 or 32) of pencils

● In benchmark runs with a 6k^3 grid on 3072
nodes, this strategy reduced the overall run
time by up to 1.72X!

● Possible to place 1 row of pencils per gemini
(node pair), but must ensure both nodes are
available on all geminis used

12

Communication Optimizations

4/30/2013

Improving Transposes, II

● yz Transposes require off-node communication

● One process per node in each column communicator

● Communication time depends on effective All-to-All bandwidth for

nodes in job, plus any additional nodes relaying messages

● Two approaches to increasing effective All-to-all

bandwidth via placement

1. Request specific nodes & wait – works in shared batch mode

● qsub -l hostlist=`cat node_list | sed -e 's/-/+/g' | sed -e 's/,/+/g'` job_script

2. Run on a randomly distributed (spread out) set of nodes

● Most useful on dedicated system (or node pool)

● For a 6k^3 grid on 3072 nodes of ESS (~4500 nodes total), this strategy

reduced the overall run time by ~21%

13

Sensitivity to Placement

● 6144 XE nodes, 8 non-IO steps, 2 IO steps

● 6k-node job in 6x24x24 XE Region

● Ave max time per non-IO step: 35.3 s

● Ave max time per IO step: 67.9 s

● 6k-node job in 23x6x24 XE region

● Ave max time per non-IO step: 21.5 s

● Ave max time per IO step: 48.0 s

● Step on slab normal to x takes 1.64X (1.41X for

IO step) longer than on slab normal to y

Communication Optimizations

4/30/2013

X

Y

Z

14

Communication Optimizations

4/30/2013

Ensuring both nodes on each gemini are up

● Request more nodes than needed (1% & up)
● Could use extra nodes for fault tolerance

● At run time in batch script
● Get the list of nodes in reservation:

aprun -B -D0x10000 /bin/true | head -1 > node_list

● Node IDs on same gemini are consecutive even-
odd integers

● Randomization script can eliminate nodes with
down partners:

cat node_list | randomize.pl --block=2 >
random_nodes
aprun –l random_nodes …

● Petascale benchmark on 12k nodes
● PSDNS on randomized nodes is 1.46X faster.

15

Communication Optimizations

4/30/2013

Improving Transposes, III

● Replace calls to MPI_AlltoAll with library routine in co-

array Fortran (CAF)

● CAF has one-sided communication, lower latency, smaller headers

● Library routine copies messages to/from 6 MB statically allocated co-

array “bucket” on each image

● Breaks messages into 512 B chunks

● Pulls chunks from other images in different random order for each

image

● Reduces network congestion

● Source code available on request

● Tunable for specific application

● Saves image-to-rank map & random orderings for row and column

communicators

● Reduces overall run time by ~33% on 4096 nodes

16

Simplified CAF All-to-All Pseudo-Code

4/30/2013

! My image is my_im

Do i=1,n_chunks ! Number of 512 Byte chunks in messages

 i_start = 1 + (i-1)*512/8 ! 8 Bytes per word

 Do j=1,n_images ! Number of images

 co_bucket(1:512/8, j) = sendbuf(i_start:i_start-1+512/8, j)

 End do ! images

 MPI barrier (communicator, ierr)

 Do j=1,n_images

 Set k = random_order (j)

 recvbuf(i_start:i_start-1+512/8, k) =

 co_bucket(1:512/8,my_im)[k] ! Pull from remote im.

 End do ! images

 Sync memory ! Ensures compiled code gives correct results

 MPI barrier (communicator, ierr)

End do ! chunks

 17

CAF in PSDNS

4/30/2013

● Library expects mpi_byte data type

● Gets precision from PSDNS module (header file)

● Easily customized/generalized for other applications

#ifdef CAF

 call compi_alltoall(sendbuf,recvbuf,items,mpi_comm_col)

#else

 call mpi_alltoall(sendbuf,items,mpi_byte,

 & recvbuf,items,mpi_byte,mpi_comm_col,ierr)

#endif

● compi_alltoallv also available, nearly as efficient

18

Summary and Future Work

4/30/2013

● Overall run time improvement on 12k nodes
1.1X for memory management (environment variables or switch to Cray
compiler)

1.4X for slab-on-node decomposition

1.4X for randomizing node list, using node pairs with both partners available

1.3X for CAF All-to-All library,

2.8X overall (Conservative estimate, not directly measured)

● Further PSDNS optimizations possible
● Eliminate extra copy to bucket in library by putting CAF directly in PSDNS

● Coarray send buffers allocated just once

● Test code shows only up to 5% improvement – bucket fits in L3 cache

● Overlap communication for 1 vector component with computation for next
component (2 out of 3 can be overlapped)

● Try non-blocking MPI collectives

● Need to use Block Transfer Engine, core specialization, 8 senders/node

● Figure out best way to do this in CAF

● Cray is improving MPI_AlltoAll (closer to CAF)

19

