
Improving the Performance of the PSDNS Pseudo-Spectral Turbulence
Application on Blue Waters using Coarray Fortran and Task Placement

Robert A. Fiedler, Nathan Wichmann, Stephen

Whalen

Cray, Inc.

St. Paul, MN, USA

rfiedler@cray.com

Dmitry Pekurovsky

University of California, San Diego

San Diego Supercomputing Center

La Jolla, CA, USA

Abstract—The PSDNS turbulence application performs many

3D FFTs per time step, which entail frequently transposing

distributed 3D arrays. These transposes are achieved via multiple

concurrent All-to-All communication operations, which dominate

the overall execution time at large scales. We improve the All-to-

All times for benchmarks on 3072 to 12288 nodes using three

main strategies: 1) eliminating off-node communication for one

of the two sets of transposes by assigning one sheet of the 3D

Cartesian grid to each node (35% speedup), 2) placing tasks on

nodes that are distributed randomly throughout the gemini

network in order to maximize the All-to-All bandwidth that can

be utilized by the job's nodes (21% speedup), and 3) reducing

contention and overhead by replacing calls to MPI_AlltoAll with

a drop-in library written in Coarray Fortran (33% speedup). We

also describe how this library is implemented and integrated

efficiently in PSDNS.

Keywords—3D FFTs, transposes, All-to-All communication

optimization, CAF

I. INTRODUCTION

The National Science Foundation’s request for proposals
for a sustained petascale supercomputer (now known as Blue
Waters) included an acceptance benchmark for direct
numerical simulation (DNS) of homogeneous isotropic
turbulence in which the pseudo-spectral method is to be used
on a domain with 12288 grid points in each of 3 dimensions
[1]. This paper describes how we improved the performance of
the PSDNS turbulence application [2] that we selected for this
benchmark by a factor of 2.8 from its initial value on large
Cray XE6/XK7 systems with gemini interconnection networks
[3].

Pseudo-spectral methods based on Fourier or orthogonal
polynomial expansions are well known for accuracy and
efficiency in solving partial differential equations [4, 5]. In
simulating systems in which a wide range of physical scales is
present, such as Direct Numerical Simulation (DNS) of
Turbulence, pseudo-spectral methods are far superior to those
relying on approximations based on finite differences, finite
volumes, or interpolation. DNS studies aim to solve the
Navier-Stokes equations without approximation, and pseudo-
spectral algorithms are very popular in DNS codes. Time
integration is usually done by an explicit scheme in the
transformed space, where the solution variables at different
modes are formally decoupled, allowing each processor to

operate on its own data independently. However, pseudo-
spectral methods require the evaluation of many discrete
forward and inverse multidimensional Fast Fourier Transforms
(FFTs) of the field variables per time step, which entails far
more communication than most other methods, especially
those with primarily nearest-neighbor communication patterns
[6].

Multidimensional FFTs are performed efficiently as
successive one-dimensional FFTs along each dimension of the
computational grid. For 3D flows, the domain is often
decomposed into either 1D slabs or 2D pencils (i.e., bundles of
lines of grid points having rectangular cross section that span
the entire domain along one dimension; see Fig. 1) so that 1D
FFTs along different lines can be computed by each task
concurrently using a serial algorithm [7]. After the first set of
1D FFTs (along the x direction) is completed, the 3D global
field variable arrays must be transposed in xy planes so that
each task owns a pencil that lies along the y dimension.
Thereafter, the second set of 1D FFTs can be computed. Next,
the field variable arrays are transposed in yz planes so that each
task owns a pencil along the z dimension and the third set of
1D FFTs can be completed.

PSDNS is used for numerical studies of turbulence and
turbulent mixing [8]. The code is written in Fortran and uses
the hybrid OpenMP/MPI parallel programming model. It
solves the Navier-Stokes equations using the pseudo-spectral
method, and has many capabilities for scientific discovery in
addition to those required for the petascale benchmark. The
benchmark also specifies the use of a fourth-order Runge-Kutta
explicit time-stepping scheme and double-precision
computations, which are available options in PSDNS.

A. Performance Model

A simple performance model of an application can be very
valuable in understanding where the time is spent, and in
identifying aspects of performance that appear to fall below
expectations.

For a typical time step, the PSDNS execution time can be
broken down into 2 main components:

1) Computational work that involves no communication,

including 1D FFTs, evaluating terms in the equations

of motion and updating the field variables, and

This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award

number OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort

of the University of Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications.

packing/unpacking send/receive buffers for the

transposes.

2) Communication for the transposes, not including

packing/unpacking buffers.

On most existing large systems, for typical physical
problem sizes the communication time is longer than the
computation time. We have ignored the time taken for any IO,
since little IO occurs during a typical time step. Most of the
data that PSDNS writes to disk consists of checkpoint files,
which are usually created only once every 50-200 typical time
steps.

There are 2 distinct sets of transposes, which we refer to as
xy and yz. The xy transposes are confined to xy planes in the
3D computational grid, and the yz transposes are confined to
yz planes. For the xy transposes, a separate communicator is
created for each row of pencils as shown in Fig. 1, and each
task belongs to only one of these “row” communicators. An
All-to-All communication call is invoked for each row
communicator simultaneously. Thus, the communication
pattern consists of multiple concurrent All-to-Alls on disjoint
sets of tasks.

The yz transposes are treated in a manner analogous to the
xy transposes, but the yz transposes are confined to columns of
pencils instead of rows. The number of tasks in the column
communicators is typically much larger than the number of
tasks in the row communicators, which is often set equal to the
number of tasks per node (as discussed in detail below).

The message sizes for the All-to-Alls determines whether
or not network latency is significant. Calculating message sizes
for PSDNS is complicated somewhat by the fact that the
implementation uses a cylindrical cutoff radius in the spectral
space (equal to 2

(1/2)
/3 times the domain size). This creates a

load imbalance in the column transpose. While message sizes
are close to uniform within each column communicator, their
values vary across different columns. Since the All-to-All
transposes within columns happen simultaneously, columns
with smaller message sizes complete their communication
sooner than do those with larger messages. This load
imbalance is handled by placing tasks with both small and
large workloads on the same node, which balances out the
differences since the tasks share the memory and interconnect
bandwidths of their assigned nodes. Consequently, there is a
range of message sizes. If V is the size in Bytes of a 3D global
data array, N is the total number of tasks, and M is the number
of members in the column communicator, the largest message
size can be found from

V/(N *M)

For a problem domain with 12288
3
 grid points and double-

precision data running on 12288 nodes, if we use 16 tasks per
node, the message sizes are:

12288
3
 * 8 Bytes / ((12288*16) * 12288) = 6144 Bytes.

PSDNS optionally combines messages for several field
variables/components (up to 5 for the petascale benchmark). If
this option is used, messages can be as large as 30 kB, but 6 kB
is already large enough that latency contributes little to the
communication time. While the above message sizes are the
maximum values, most of the other message sizes are a
significant fraction thereof. Even though the smallest message
sizes can be sensitive to latency, such messages are not
expected to comprise a significant portion of the
communication time. Thus, our model assumes that bandwidth
(and not latency) determines communication performance.

Although the code optionally uses the hybrid OpenMP/MPI
model, because the messages are rather large there is relatively
little to be gained in terms of latency reduction when multiple
OpenMP threads are used, and experiments on a dedicated
system at large scales have validated this expectation.

B. Gemini interconnect

Applying the performance model described above requires
an understanding of the nodes and interconnect in the platform
on which the application runs. Here we describe the key
aspects of the Blue Waters Cray XE6/XK7 system [9].

The Blue Waters interconnect is a 3D torus with 23 gemini
[3] routers in the x direction, 24 in y, and 24 in z. Two nodes
are attached to each gemini. There are 3072 XK7 compute
nodes with 8x8x24 geminis embedded in this fabric. Each XK7
node has one 2.3 GHz AMD Interlagos processor with 8
“Bulldozer” compute units and one nVidia Kepler GPU. The
rest of the ~22752 compute nodes are XE6, each with two
Interlagos processors like the one in the XK7 nodes. There are
also ~672 service nodes in various locations throughout the
torus that perform functions such as IO, job launching, etc. The

Fig. 1. Example PSDNS domain decomposition with 4

rows of pencils containing 8x2x2 grid cells. Each row

communicator contains 4 pencils of similar color.

service nodes are not directly allocated to user jobs, but they do
relay messages between compute nodes on behalf of user jobs.

User jobs are assigned on a per-node basis, i.e., different
batch jobs do not share nodes. For optimum performance, it is
best if a given job is running on both nodes attached to each
gemini in the batch job reservation. If one of the nodes on a
gemini is down or assigned to another job, a communication
load imbalance may result. A user can avoid this situation by
requesting more nodes than are needed to run the job and using
our node-list randomization script (described below) or other
means to avoid actually running on such nodes.

Although the two nodes attached to a given gemini use the
router to exchange messages, that traffic does not traverse the
links between geminis, and therefore is not considered to use
the interconnect. We estimate that the application-realizable
All-to-All bandwidth between same-gemini nodes ~12 GB/s,
which is higher than the bandwidth of any of the individual
links to neighboring nodes.

Links in the x direction of the torus consist of cables
connecting different rows of cabinets. The z direction runs
across the 24 boards in any given cabinet. Each cabinet has 3
cages containing 8 boards on a backplane with higher
bandwidth than the cables connecting the backplanes together.
These cables are the same capacity as those used for the x
direction, and they determine the effective bandwidth across
any set of nodes that spans more than one cage. In the y
direction, the connections between different boards have only
half the bandwidth of the cables used in the x and z directions.
There are two geminis on each board, and the bandwidth
between geminis on the same board is much higher than the
bandwidth along y between boards.

Below we show how one can take advantage of the faster
links in the x and z directions through careful node selection, in
order to maximize the effective bisection bandwidth available
to PSDNS for a given node count.

II. OPTIMIZATION STRATEGIES

A. Optimizing the computation time

Although we know that for PSDNS the computation time is
typically less than the communication time, it makes sense to
examine the performance profile to determine whether some
simple changes to the code, or how the executable is built and
run, might lead to substantial reductions in the computation
time.

The computation time includes not only packing and
unpacking send/receive buffers, but also the time spent
allocating and deallocating them whenever the transpose
routines are called. When the PGI or gnu compilers are used, a
speedup of the computation time by up to ~20% for typical
problem sizes and node counts can be obtained at the cost of
using somewhat more memory by setting the environment
variables [10]:

MALLOC_MMAP_MAX_ = 0

MALLOC_TRIM_THRESHOLD_ = 536870912

Setting MALLOC_MMAP_MAX_ to 0 prevents a program
from using the system’s mmap routine and ensures most
memory is allocated from the heap. The
MALLOC_TRIM_THRESHOLD_ variable specifies the
amount of free space at the top of the heap (after memory is
freed) that is required for malloc to return the memory to the
operating system. The default value of 128 kB can result in
excessive overhead through frequent system calls for memory
management.

For a domain with 8k
3
 grid points on 4k XE nodes (16 tasks

per node on the first socket only), the total run time (including
both computation and communication) was reduced by 1.13X.

When the Cray compiler is used, the values of these
environment variables are set as above by default. All of the
other improvements described in this paper pertain to reducing
the communication time.

B. Improving the communication time

1) Domain Decomposition
For typical physical problem sizes on systems having nodes

with sufficiently large numbers of cores and amounts of
memory, it is possible to assign one or more xy planes of the
grid to a single node. Doing so eliminates all off-node
communication for the xy transposes. This should be
advantageous on any platform for which the communication
time is dominated by effective bisection bandwidth, rather than
message injection bandwidth, since it reduces the volume of
data that must be transferred over the interconnect.

Although PSDNS uses a 2D-pencil decomposition rather
than a slab decomposition, one can obtain a “slab-on-node”
decomposition without any source code changes. In a PSDNS
input file, one specifies the numbers of tasks in the row and
column communicators. If the number of row communicator
tasks is set to the number of cores per node, and the number of
column communicator tasks is set to the number of nodes, then
each node will get one complete xy plane of the grid, and each
column communicator will have just one task on each node. If
there are an integer multiple fewer nodes than there are xy
planes in the grid, then multiple xy planes are assigned to each
node.

Table 1 presents results for a 6144
3
 grid running on 3072

XE nodes (using 16 tasks per node on only the first socket as
though they were XK nodes) of a dedicated system (an early
portion of Blue Waters with 4512 XE nodes) for different
domain decompositions. For the 16x3072 decomposition, 2
complete xy planes of the grid are assigned to each node, and
off-node communication is minimized. For the 24x2048
decomposition, each set of 3 xy planes are divided into 24
pencils, which means one node gets 2/3 of the pencils, and the
other 1/3 are placed on another node, often one that is on
another gemini. Consequently, considerable communication
for the xy transposes must go off node and total run times are
1.47X longer than the 16x3072 decomposition.

For the 32x1536 decomposition, each node gets half of the
pencils in a set of 4 xy planes, even more of the
communication must go off node, and the total run time is
1.72X longer than 16x3072. In the (16+16)x1536 case, we

ensured that the two sets of 4 pencils are placed onto the two
nodes attached to the same gemini, which eliminates
communication between geminis for xy planes and reduces the
total run time to only 1.10X longer than that of the 16x3072
case. Randomizing the node list as described later was also
applied and improved the bisection bandwidth per node,
contributing to the 1.57X total run time performance
improvement over the 32x1536 case.

TABLE I. EFFECT OF DOMAIN DECOMPOSITION

Decomposition (row tasks x column tasks) Time per step ratio

16x3072 1.00

24x2048 1.47

32x1536 1.72

(16+16)x1536 1.10

2) Bisection bandwidth and node selection

The time for the off-gemini All-to-All communication

required to complete yz transposes of the 3D global field
variables is inversely proportional to the effective bisection
bandwidth provided by the geminis directly involved in the
job, as well as any additional geminis that relay messages on
behalf of the job. The contribution to the effective bisection
bandwidth from geminis outside of the job’s allocation can be
significant.

The bisection bandwidth of a system is defined as being
proportional to the lowest possible value of the capacity of the
links crossing any plane bisecting the interconnect. We can
represent the torus as a cube as shown in Fig. 2, but note that
because it is a torus rather than a mesh, any cut-plane will
bisect the links along any dimension two times, not just once.
For the Blue Waters system with topology 23x24x24, the cut-
plane with the least bandwidth intersects the y-link cables
between any 2 boards, and therefore the bisection bandwidth is
proportional to 2 times the number of y-links times their per-
link capacity, By, which works out to be equal to 23*24*2*By,
or 23*24*Bx, where Bx is the capacity of an x-link cable.

For the petascale benchmark, it would be best to run on
nearly all compute nodes to directly utilize as many geminis as
possible for maximum bisection bandwidth. Blue Waters has
more than 24k compute nodes, but 3072 of them are XK nodes,
and PSDNS is not designed to use the GPU in such nodes. We
could use only the first socket in the XK and XE nodes in order
to run PSDNS on 24k nodes (without changing the source code
to somehow handle nodes with different core counts in the
same job). Using only the first socket would leave half of the
processors on the XE nodes idle, but since the communication
time dominates, and the communication time depends on the
number of geminis in use, running on one socket per node
could be expected to provide the best overall run times. To do
so, each xy plane of the 12k

3
 domain would be assigned to one

node pair, as discussed in the previous section, eliminating
communication between geminis for the xy transposes.

In actuality, the petascale benchmark was run on 12k XE
nodes using both sockets per node. With judicious node
selection and task placement we were able to obtain overall
per-step run times only 1.09X longer on 12k nodes than on 24k
nodes, and we also recognized that using 2X fewer nodes
should translate into 2X more time between node failures. The
Blue Waters petascale benchmark was interpreted to include
setbacks due to node failures (i.e., the time to restart from the
last checkpoint and repeat any steps taken beyond that point),
so the number of such failures had to be minimized. Our
analysis and efforts described below to complete the
benchmark as quickly as possible on only about half of the
nodes in the system are probably more relevant to most of the
user community than are full-system runs.

To maximize the effective bisection bandwidth available to
a subset of the nodes in the system, consider a section of Blue
Waters containing just 6 xz planes of the torus as shown in Fig.
3. Since routing always takes the shortest path, messages never
go outside the 23x6x24 section, i.e., the “topology” for this
section of the system is a mesh in the y direction and a torus in
x and z. Comparing the bandwidth of the links crossing cut-
planes normal to x, y, and z, we find that the bisection
bandwidth is proportional to 23*6*2*Bz, where Bz = Bx is the
capacity of the cables along z. This is one half of the bisection
bandwidth of the entire system (assuming the constants of
proportionality are the same), but involves only 1/4th of the
compute nodes. Thus, a 23x6x24-gemini section delivers twice
the bisection bandwidth per node as the full system.

If a user is charged on the basis of node-hours consumed,
then the most economical way to run a job requiring a fixed
number of nodes would be to obtain a node allocation that
maximizes the effective bisection bandwidth per node. It turns
out that 23xNx24 gives the highest bisection bandwidth per
node for 1 < N < 7. Increasing N beyond 6 adds nothing to the
bisection bandwidth, and therefore the bisection bandwidth per
node drops in proportion to the number of nodes until N=12,
when it equals the value for the full system. Beyond N=12,

Fig. 2. Schematic of bisection bandwidth calculation for

the full Blue Waters system.

some traffic wraps around the torus in the y direction, but the
bisection bandwidth per node has a minimum for N = 13. For
12 < N < 24. Because only N out of 24 nodes along y are
actively used in the computation, we find (by counting
messages in each direction) that the bisection bandwidth is
proportional to:

23*24*2*(N-1)/(24-1)*By.

If we were to run the petascale benchmark in a 23x12x24
section, the bisection bandwidth (not per node) would be half
that of the full system, and we would see 2X longer
communication times than we would obtain on 24k nodes. The
default placement for 12k nodes is close to 12x24x24, which
gives the same bisection bandwidth per node as does
23x12x24. Due to the 8x8x24-gemini XK region on Blue
Waters, default placement for 12k XE nodes gives the layout
shown in Fig. 4.

Because we could choose any 12k nodes in the system for
the benchmark, we were able to utilize nearly the full system
bisection bandwidth by distributing the 12k nodes actively
running the benchmark as much as possible throughout the
torus. This was done by means of a perl script (randomizer.pl)
that randomizes the list of nodes in the reservation obtained,
for example, by using the command:

aprun -B -D0x10000 /bin/true | head -1

within the batch job. The randomized list is optionally grouped
in pairs so that 2 adjacent sets of tasks are placed on the two
nodes attached to the same gemini. This option also eliminates
from the list any nodes whose partner on the same gemini is
unavailable. Using nodes with an unavailable partner could
introduce a load imbalance, and if xy planes of the grid are to
be split between nodes on the same gemini, it would also
prevent us from placing those neighboring groups of tasks as
intended.

The aprun command to launch PSDNS is issued with either
the “-l <node_list_file_name>” or the “-L <node_list_string>”

option to use the first 12k nodes in the randomized list. Note
that our batch job reservation contained nearly all compute
nodes in the system, allowing us to select whichever nodes we
wished to use for the benchmark. The 12k randomized XE
compute nodes used by our job are depicted in Fig. 5. For the
pure MPI version of PSDNS, the total time per time step for
the randomized 12k node list was 1.46X shorter than the
corresponding time for the default layout in Fig. 4.

Fig. 3. Schematic of bisection bandwidth calculation for a

23x6x24-hub section of Blue Waters.

Fig. 5. Hubs used (blue spheres) for a 12k

3
 grid on 12k XE

nodes selected using the randomizer.pl script. Spreading

the active nodes throughout the torus enables the job to

utilize nearly the full bisection bandwidth of the full

system.

Fig. 4. Hubs used (blue spheres) for a 12k

3
 grid on 12k XE

nodes with default placement. Service node hubs are

represented by yellow spheres and XK node hubs are

marked by red spheres.

In practice, a user who is charged by the node-hour would
not benefit very much from randomizing the node list, since a
much larger than desired number of nodes must be in the
reservation than the minimum needed to run the job for this
tactic to increase the bisection bandwidth per node
significantly. However, Blue Waters users could obtain optimal
bisection bandwidth per node in a section of size 23xNx24 (as
shown in Fig. 6), with N between 2 and 6. Note that the
bisection bandwidth per node of a section of size Nx24x24
(Fig. 7) is only half that of a 23xNx24 section for this range of
N. PSDNS runs using a domain with a 6k

3
 grid on 6k nodes

took 1.64X less time when run in the 23x6x24 section than
when run in the 6x24x24 section.

III. COARRAY FORTRAN ALL-TO-ALL

Coarrays [11] are included in the Fortran 2008 standard
[12] and implemented in the current Cray ftn compiler.
Coarray Fortran (CAF) enables parallel programming by
means of a simple syntax for distributed arrays.
Communication is implicit and one-sided, while
synchronization is mostly invoked explicitly by the user.
Coarrays of the same size and shape exist on each “image”
(task), and subscripts in square brackets are used to refer to
specific images.

Compared to MPI, messages passed by the lower-level
communication libraries on behalf of CAF can have smaller
headers (due to one-sidedness) and therefore can carry more
data per packet for slightly higher bandwidth. In addition,
latencies for short messages from coarray-related
communication can be significantly lower than they are for the
same message sizes with MPI. Finally, the user can more easily
implement and hand-tune customized collective operations in
CAF, such as the repeated concurrent All-to-Alls for two
alternating sets of images (communicators) in PSDNS. All of
these advantages lead one to anticipate better All-to-All

performance from a hand-tuned CAF implementation
compared to the MPI All-to-All version.

In order to ease integration of CAF with existing MPI
codes that make extensive use of All-to-All collectives, we
implemented and optimized a stand-alone library in CAF that
enables application developers to directly substitute existing
calls to MPI AlltoAll with very similar calls to a CAF version
(called “compi_alltoall”). No other changes to the PSDNS
source were needed, although we did introduce some additional
code to verify (if desired) that all of the CAF calls produce
exactly the same results as the MPI calls.

On each image (task), the compi_alltoall library statically
allocates a single coarray whose size is at least 512 Bytes times
the number of images in the column communicator. For the
petascale benchmark on 12k nodes, the coarray size required is
6 MB. This allows the library to handle any message size
without wasting too much memory for small messages,
running out of memory for large messages, or
allocating/deallocating the coarray on every call to
compi_alltoall. Note that allocation/deallocation of a coarray
can be rather time consuming, especially at large scales, since
doing so also triggers implicit synchronization.

To perform the All-to-All communication, we proceed as
indicated in the pseudo-code in Fig. 8. The messages are
broken up into 512 Byte chunks. We begin by copying the first
chunk of each message from the send buffer to the coarray
called co_bucket. Next, an MPI barrier ensures that this
copying step has completed on all images in the communicator
before we attempt to access data in any of the remote images.
After the barrier, we copy (pull) the chunk for the local image
from the remote coarray images into the receive buffer. These
pull operations are performed in a different fixed random order
on each image, which significantly reduces the occurrence of
hot spots on the interconnect. A similar concept is also used in

Fig. 6. Default placement of 6k XE computes (blue

spheres) in a 23x6x24-hub box. This box has optimal

bisection bandwidth per node.

Fig. 7. Default placement for 6k XE compute nodes in a

6x24x24-hub box. This box has 1/2 of the bisection

bandwidth per node of the box shown in Fig. 6 due to the

slower links along the y direction.

Cray’s MPI AlltoAll library implementation, but for MPI it is
not advantageous to break the messages into such small
chunks. Finally, we issue a “sync memory” call and then
another MPI barrier to ensure that the data in the coarrays has
been copied to the receive buffers before being overwritten.
These two calls entail less overhead than a “sync all” because
this barrier pertains only to the images in the communicator,
rather than to all images, and sync memory entails no direct
synchronization effect. We then move on to the next 512 Byte
chunk of the messages and repeat the copy/pull operations until
all of the data in all of the messages has been transmitted.

We found that the 512 Byte chunk size gives the best
performance on Blue Waters (as well as other systems with
gemini interconnects) by experimenting with different chunk
sizes for a wide range of message sizes and task counts.

Two other optimization details are worth mentioning here.
The first time compi_alltoall is called with a communicator
that it has not previously encountered, it determines and saves
a mapping between the MPI ranks and CAF images in that
communicator. It also computes and saves the random
orderings that will be used by each image as it pulls data from
the other images in that communicator.

Using the compi_alltoall library with PSDNS on 12288
nodes reduces the overall run time by 1.33X compared to the
current MPI library.

We also evaluated an alternative implementation that uses
CAF directly integrated into the PSDNS code by declaring the
send buffers as coarrays (allocated only once per run), rather
than calling the compi_alltoall library, wherein the send buffers
are copied to the internal coarray, which we determined

consumes a non-negligible amount of time. We found in a
simplified test code that the run time for the integrated CAF
version was at best only about 5% faster than the library call. A
plausible explanation for this is that the small coarray in
compi_alltoall fits in cache on each image, and therefore the
subsequent loop performing the communication can reuse that
data rather than going to memory. In the more integrated
implementation, the send buffer coarray is much too large to fit
in any level of cache, and the data being transferred between
images is not in contiguous blocks.

IV. CONCLUSIONS AND FUTURE WORK

Estimating the impact of each optimization applied to
PSDNS described in this work for a fixed 12k^3 grid problem
on 12k nodes, we have:

 1.1X for memory management (environment variables
or switch to Cray compiler),

 1.4X for the slab-on-node decomposition,

 1.4X for randomizing the node list, and

 1.3X for the compi_alltoall library,

leading to a 2.8X overall decrease in the total wall clock time

per time step.
The memory management optimization (or simply

allocating arrays only once per run) pertains to many types of
applications, as does the concept of minimizing the amount of
off-node or off-node-pair communication [13].

Randomizing the node list is a technique that can benefit
applications with All-to-All and random-pair communication
patterns, especially if the user has dedicated access to at least a
section of the system. Such a section should have a shape
which optimizes the bisection bandwidth per node, such as
23xNx24, where 1 < N < 7. Nodes whose partner on the same
gemini is unavailable should not be used, especially if one is
relying on two sets of neighboring partitions to be placed on
node pairs. This would currently require requesting either a
specific set of good nodes or more nodes than the job actually
needs to run. In principle, some of the extra nodes could be
used as spares to replace failed nodes and continue a run within
the same batch job from the last checkpoint on the same
number of active nodes.

The compi_alltoall library is available by request to users
of Cray XE/XK systems, and should benefit any application
that uses MPI_AlltoAll or MPI_AlltoAllV without any need
for substantial code changes. Although All-to-All operations
coded with CAF significantly outperform the equivalent MPI
versions at this time on Cray XE/Xk systems with Gemini
interconnects, Cray’s MPI developers are continually working
to close the gap to the extent that it is practical to do so.

Future work for PSDNS includes exploring overlapping
communication for one component of a vector quantity
undergoing a 3D FFT with computation for the next
component. This has become easier to do using MPI with the
recent inclusion of non-blocking collectives in Cray’s MPI
library. To get substantial overlap and a concomitant reduction
in run time, messages need to be fairly large (at least 8kB) so

! My image is my_im.
! The random_order array reorders the images.
Do i=1,n_chunks ! Number of 512 Byte chunks in msg.

i_start = 1 + (i-1)*512/8 ! 8 Bytes per word

 Do j=1,n_images ! Number of images
 co_bucket(1:512/8, j) =
 sendbuf(i_start:i_start-1+512/8, j)
 End do ! images

 MPI barrier (communicator, ierr)

 Do j=1,n_images
 Set k = random_order (j)
 recvbuf(i_start:i_start-1+512/8, k) =
 co_bucket(1:512/8,my_im)[k] ! Pull
 End do ! images

 Sync memory ! Ensures correct results
 MPI barrier (communicator, ierr)
End do ! chunks

Fig. 8. Simplified psuedo-code for CAF All-to-All.

that the Block Transfer Engine can be utilized effectively [14].
Getting good overlap requires 8 or fewer tasks per node.
Therefore, we will need to use sufficiently large per-node
problem sizes and 2 or more OpenMP threads per task.

REFERENCES

[1] National Science Foundation Solicitation NSF 06-573, “Leadership-
Class System Acquisition - Creating a Petascale Computing
Environment for Science and Engineering”,

http://www.nsf.gov/pubs/2006/nsf06573/nsf06573.html, 2006.

[2] D. A. Donzis, P. K. Yeung, & D. Pekurovsky, “Turbulence simulations
on O(104) processors”. In TeraGrid 2008 Conference Proceedings, Las
Vegas, NV, USA.

[3] R. Alverson, D. Roweth, and L. Kaplan, "The Gemini System
Interconnect," in International Symposium on High Performance
Interconnect, Aug. 2010, pp. 83 -87.

[4] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. and Zang, Spectral
Methods in Fluid Dynamics, Springer-Verlag, 1988.

[5] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second edition,
Dover, New York, 2001.

[6] A. Averbuch, L. Ioffe, M. Israeli, and L. Vozovoi, “Multidimensional
Parallel Spectral Solver for Navier-Stokes Equations”, in IMA Volumes
in Mathematics and its Applications, vol. 120, Parallel Solution of

Partial Differential Equations, P. Bjorstad and M. Luskin, eds., Springer-
Verlag, New York, NY, USA, 2000.

[7] D. Pekurovsky, “P3DFFT: a framework for parallel computations of
Fourier transforms in three dimensions”, SIAM Journal on Scientific
Computing, Vol. 34, No. 4, pp. C192-C209, 2012.

[8] D. A. Donzis, K. R. Sreenivasan, and P. K. Yeung, “The Batchelor
spectrum for mixing of passive scalars in isotropic turbulence”, Flow,
Turbulence, and Combustion 85, 549-566, 2010.

[9] Blue Waters main Web page, http://www.ncsa.illinois.edu/BlueWaters/.

[10] David Whitaker, 2012, private communication.

[11] J. Reid, ”Coarrays in the Next Fortran Standard,

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf, 2010

[12] Fortran 2008 [Final Draft International Standard (FDIS)],

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf, 2010

[13] R. Fiedler and S. Whalen, “Improving task placement for applications
with 2D, 3D, and 4D virtual Cartesian topologies on 3D torus networks
with service nodes”, CUG 2013, May 6-9, 20123 Napa, CA, USA.

[14] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging the
Cray Linux environment core specialization to realize MPI
asynchronous progress on Cray XE systems”, CUG 2012, April 29 -
May 3, 2012, Stuttgart, Germany,

https://cug.org/proceedings/attendee_program_cug2012/includes/files/pa
p115.pdf.

http://www.nsf.gov/pubs/2006/nsf06573/nsf06573.html
http://www.ncsa.illinois.edu/BlueWaters
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf

