
Improving the Performance of the PSDNS Pseudo-Spectral Turbulence 
Application on Blue Waters using Coarray Fortran and Task Placement 

 

Robert A. Fiedler, Nathan Wichmann, Stephen 

Whalen 

Cray, Inc. 

St. Paul, MN, USA 

rfiedler@cray.com 

Dmitry Pekurovsky 

University of California, San Diego 

San Diego Supercomputing Center 

La Jolla, CA, USA 

 

 
Abstract—The PSDNS turbulence application performs many 

3D FFTs per time step, which entail frequently transposing 

distributed 3D arrays. These transposes are achieved via multiple 

concurrent All-to-All communication operations, which dominate 

the overall execution time at large scales. We improve the All-to-

All times for benchmarks on 3072 to 12288 nodes using three 

main strategies: 1) eliminating off-node communication for one 

of the two sets of transposes by assigning one sheet of the 3D 

Cartesian grid to each node (35% speedup), 2) placing tasks on 

nodes that are distributed randomly throughout the gemini 

network in order to maximize the All-to-All bandwidth that can 

be utilized by the job's nodes (21% speedup), and 3) reducing 

contention and overhead by replacing calls to MPI_AlltoAll with 

a drop-in library written in Coarray Fortran (33% speedup). We 

also describe how this library is implemented and integrated 

efficiently in PSDNS. 

Keywords—3D FFTs, transposes, All-to-All communication 

optimization, CAF 

I. INTRODUCTION 

The National Science Foundation’s request for proposals 
for a sustained petascale supercomputer (now known as Blue 
Waters) included an acceptance benchmark for direct 
numerical simulation (DNS) of homogeneous isotropic 
turbulence in which the pseudo-spectral method is to be used 
on a domain with 12288 grid points in each of 3 dimensions 
[1]. This paper describes how we improved the performance of 
the PSDNS turbulence application [2] that we selected for this 
benchmark by a factor of 2.8 from its initial value on large 
Cray XE6/XK7 systems with gemini interconnection networks 
[3]. 

Pseudo-spectral methods based on Fourier or orthogonal 
polynomial expansions are well known for accuracy and 
efficiency in solving partial differential equations [4, 5]. In 
simulating systems in which a wide range of physical scales is 
present, such as Direct Numerical Simulation (DNS) of 
Turbulence, pseudo-spectral methods are far superior to those 
relying on approximations based on finite differences, finite 
volumes, or interpolation. DNS studies aim to solve the 
Navier-Stokes equations without approximation, and pseudo-
spectral algorithms are very popular in DNS codes. Time 
integration is usually done by an explicit scheme in the 
transformed space, where the solution variables at different 
modes are formally decoupled, allowing each processor to 

operate on its own data independently. However, pseudo-
spectral methods require the evaluation of many discrete 
forward and inverse multidimensional Fast Fourier Transforms 
(FFTs) of the field variables per time step, which entails far 
more communication than most other methods, especially 
those with primarily nearest-neighbor communication patterns 
[6]. 

Multidimensional FFTs are performed efficiently as 
successive one-dimensional FFTs along each dimension of the 
computational grid. For 3D flows, the domain is often 
decomposed into either 1D slabs or 2D pencils (i.e., bundles of 
lines of grid points having rectangular cross section that span 
the entire domain along one dimension; see Fig. 1) so that 1D 
FFTs along different lines can be computed by each task 
concurrently using a serial algorithm [7]. After the first set of 
1D FFTs (along the x direction) is completed, the 3D global 
field variable arrays must be transposed in xy planes so that 
each task owns a pencil that lies along the y dimension. 
Thereafter, the second set of 1D FFTs can be computed. Next, 
the field variable arrays are transposed in yz planes so that each 
task owns a pencil along the z dimension and the third set of 
1D FFTs can be completed. 

PSDNS is used for numerical studies of turbulence and 
turbulent mixing [8]. The code is written in Fortran and uses 
the hybrid OpenMP/MPI parallel programming model. It 
solves the Navier-Stokes equations using the pseudo-spectral 
method, and has many capabilities for scientific discovery in 
addition to those required for the petascale benchmark. The 
benchmark also specifies the use of a fourth-order Runge-Kutta 
explicit time-stepping scheme and double-precision 
computations, which are available options in PSDNS. 

A. Performance Model 

A simple performance model of an application can be very 
valuable in understanding where the time is spent, and in 
identifying aspects of performance that appear to fall below 
expectations. 

For a typical time step, the PSDNS execution time can be 
broken down into 2 main components: 

1) Computational work that involves no communication, 

including 1D FFTs, evaluating terms in the equations 

of motion and updating the field variables, and 
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packing/unpacking send/receive buffers for the 

transposes. 

2) Communication for the transposes, not including 

packing/unpacking buffers.  

On most existing large systems, for typical physical 
problem sizes the communication time is longer than the 
computation time. We have ignored the time taken for any IO, 
since little IO occurs during a typical time step. Most of the 
data that PSDNS writes to disk consists of checkpoint files, 
which are usually created only once every 50-200 typical time 
steps.  

There are 2 distinct sets of transposes, which we refer to as 
xy and yz. The xy transposes are confined to xy planes in the 
3D computational grid, and the yz transposes are confined to 
yz planes. For the xy transposes, a separate communicator is 
created for each row of pencils as shown in Fig. 1, and each 
task belongs to only one of these “row” communicators. An 
All-to-All communication call is invoked for each row 
communicator simultaneously. Thus, the communication 
pattern consists of multiple concurrent All-to-Alls on disjoint 
sets of tasks.  

The yz transposes are treated in a manner analogous to the 
xy transposes, but the yz transposes are confined to columns of 
pencils instead of rows. The number of tasks in the column 
communicators is typically much larger than the number of 
tasks in the row communicators, which is often set equal to the 
number of tasks per node (as discussed in detail below).  

The message sizes for the All-to-Alls determines whether 
or not network latency is significant. Calculating message sizes 
for PSDNS is complicated somewhat by the fact that the 
implementation uses a cylindrical cutoff radius in the spectral 
space (equal to 2

(1/2)
/3 times the domain size). This creates a 

load imbalance in the column transpose. While message sizes 
are close to uniform within each column communicator, their 
values vary across different columns. Since the All-to-All 
transposes within columns happen simultaneously, columns 
with smaller message sizes complete their communication 
sooner than do those with larger messages. This load 
imbalance is handled by placing tasks with both small and 
large workloads on the same node, which balances out the 
differences since the tasks share the memory and interconnect 
bandwidths of their assigned nodes. Consequently, there is a 
range of message sizes. If V is the size in Bytes of a 3D global 
data array, N is the total number of tasks, and M is the number 
of members in the column communicator, the largest message 
size can be found from 

V/(N *M) 

For a problem domain with 12288
3
 grid points and double-

precision data running on 12288 nodes, if we use 16 tasks per 
node, the message sizes are:  

12288
3
 * 8 Bytes / ((12288*16) * 12288) = 6144 Bytes.  

PSDNS optionally combines messages for several field 
variables/components (up to 5 for the petascale benchmark).  If 
this option is used, messages can be as large as 30 kB, but 6 kB 
is already large enough that latency contributes little to the 
communication time. While the above message sizes are the 
maximum values, most of the other message sizes are a 
significant fraction thereof. Even though the smallest message 
sizes can be sensitive to latency, such messages are not 
expected to comprise a significant portion of the 
communication time. Thus, our model assumes that bandwidth 
(and not latency) determines communication performance.  

Although the code optionally uses the hybrid OpenMP/MPI 
model, because the messages are rather large there is relatively 
little to be gained in terms of latency reduction when multiple 
OpenMP threads are used, and experiments on a dedicated 
system at large scales have validated this expectation.  

B. Gemini interconnect 

Applying the performance model described above requires 
an understanding of the nodes and interconnect in the platform 
on which the application runs. Here we describe the key 
aspects of the Blue Waters Cray XE6/XK7 system [9].  

The Blue Waters interconnect is a 3D torus with 23 gemini 
[3] routers in the x direction, 24 in y, and 24 in z. Two nodes 
are attached to each gemini. There are 3072 XK7 compute 
nodes with 8x8x24 geminis embedded in this fabric. Each XK7 
node has one 2.3 GHz AMD Interlagos processor with 8 
“Bulldozer” compute units and one nVidia Kepler GPU. The 
rest of the ~22752 compute nodes are XE6, each with two 
Interlagos processors like the one in the XK7 nodes. There are 
also ~672 service nodes in various locations throughout the 
torus that perform functions such as IO, job launching, etc. The 

 
Fig. 1. Example PSDNS domain decomposition with 4 

rows of pencils containing 8x2x2 grid cells. Each row 

communicator contains 4 pencils of similar color.  



service nodes are not directly allocated to user jobs, but they do 
relay messages between compute nodes on behalf of user jobs.  

User jobs are assigned on a per-node basis, i.e., different 
batch jobs do not share nodes. For optimum performance, it is 
best if a given job is running on both nodes attached to each 
gemini in the batch job reservation. If one of the nodes on a 
gemini is down or assigned to another job, a communication 
load imbalance may result. A user can avoid this situation by 
requesting more nodes than are needed to run the job and using 
our node-list randomization script (described below) or other 
means to avoid actually running on such nodes.  

Although the two nodes attached to a given gemini use the 
router to exchange messages, that traffic does not traverse the 
links between geminis, and therefore is not considered to use 
the interconnect. We estimate that the application-realizable 
All-to-All bandwidth between same-gemini nodes ~12 GB/s, 
which is higher than the bandwidth of any of the individual 
links to neighboring nodes.  

Links in the x direction of the torus consist of cables 
connecting different rows of cabinets. The z direction runs 
across the 24 boards in any given cabinet. Each cabinet has 3 
cages containing 8 boards on a backplane with higher 
bandwidth than the cables connecting the backplanes together. 
These cables are the same capacity as those used for the x 
direction, and they determine the effective bandwidth across 
any set of nodes that spans more than one cage. In the y 
direction, the connections between different boards have only 
half the bandwidth of the cables used in the x and z directions. 
There are two geminis on each board, and the bandwidth 
between geminis on the same board is much higher than the 
bandwidth along y between boards.  

Below we show how one can take advantage of the faster 
links in the x and z directions through careful node selection, in 
order to maximize the effective bisection bandwidth available 
to PSDNS for a given node count.  

II. OPTIMIZATION STRATEGIES 

A. Optimizing the computation time 

Although we know that for PSDNS the computation time is 
typically less than the communication time, it makes sense to 
examine the performance profile to determine whether some 
simple changes to the code, or how the executable is built and 
run, might lead to substantial reductions in the computation 
time. 

The computation time includes not only packing and 
unpacking send/receive buffers, but also the time spent 
allocating and deallocating them whenever the transpose 
routines are called. When the PGI or gnu compilers are used, a 
speedup of the computation time by up to ~20% for typical 
problem sizes and node counts can be obtained at the cost of 
using somewhat more memory by setting the environment 
variables [10]:  

MALLOC_MMAP_MAX_ = 0 

MALLOC_TRIM_THRESHOLD_ = 536870912 

Setting MALLOC_MMAP_MAX_ to 0 prevents a program 
from using the system’s mmap routine and ensures most 
memory is allocated from the heap. The 
MALLOC_TRIM_THRESHOLD_ variable specifies the 
amount of free space at the top of the heap (after memory is 
freed) that is required for malloc to return the memory to the 
operating system. The default value of 128 kB can result in 
excessive overhead through frequent system calls for memory 
management.  

For a domain with 8k
3
 grid points on 4k XE nodes (16 tasks 

per node on the first socket only), the total run time (including 
both computation and communication) was reduced by 1.13X.  

When the Cray compiler is used, the values of these 
environment variables are set as above by default. All of the 
other improvements described in this paper pertain to reducing 
the communication time.  

B. Improving the communication time 

1) Domain Decomposition 
For typical physical problem sizes on systems having nodes 

with sufficiently large numbers of cores and amounts of 
memory, it is possible to assign one or more xy planes of the 
grid to a single node. Doing so eliminates all off-node 
communication for the xy transposes. This should be 
advantageous on any platform for which the communication 
time is dominated by effective bisection bandwidth, rather than 
message injection bandwidth, since it reduces the volume of 
data that must be transferred over the interconnect.  

Although PSDNS uses a 2D-pencil decomposition rather 
than a slab decomposition, one can obtain a “slab-on-node” 
decomposition without any source code changes. In a PSDNS 
input file, one specifies the numbers of tasks in the row and 
column communicators. If the number of row communicator 
tasks is set to the number of cores per node, and the number of 
column communicator tasks is set to the number of nodes, then 
each node will get one complete xy plane of the grid, and each 
column communicator will have just one task on each node. If 
there are an integer multiple fewer nodes than there are xy 
planes in the grid, then multiple xy planes are assigned to each 
node.  

Table 1 presents results for a 6144
3
 grid running on 3072 

XE nodes (using 16 tasks per node on only the first socket as 
though they were XK nodes) of a dedicated system (an early 
portion of Blue Waters with 4512 XE nodes) for different 
domain decompositions. For the 16x3072 decomposition, 2 
complete xy planes of the grid are assigned to each node, and 
off-node communication is minimized. For the 24x2048 
decomposition, each set of 3 xy planes are divided into 24 
pencils, which means one node gets 2/3 of the pencils, and the 
other 1/3 are placed on another node, often one that is on 
another gemini. Consequently, considerable communication 
for the xy transposes must go off node and total run times are 
1.47X longer than the 16x3072 decomposition.  

For the 32x1536 decomposition, each node gets half of the 
pencils in a set of 4 xy planes, even more of the 
communication must go off node, and the total run time is 
1.72X longer than 16x3072. In the (16+16)x1536 case, we 



ensured that the two sets of 4 pencils are placed onto the two 
nodes attached to the same gemini, which eliminates 
communication between geminis for xy planes and reduces the 
total run time to only 1.10X longer than that of the 16x3072 
case. Randomizing the node list as described later was also 
applied and improved the bisection bandwidth per node, 
contributing to the 1.57X total run time performance 
improvement over the 32x1536 case. 

TABLE I.  EFFECT OF DOMAIN DECOMPOSITION 

Decomposition (row tasks x column tasks) Time per step ratio 

16x3072 1.00 

24x2048 1.47 

32x1536 1.72 

(16+16)x1536 1.10 

 

2) Bisection bandwidth and node selection 

 
The time for the off-gemini All-to-All communication 

required to complete yz transposes of the 3D global field 
variables is inversely proportional to the effective bisection 
bandwidth provided by the geminis directly involved in the 
job, as well as any additional geminis that relay messages on 
behalf of the job. The contribution to the effective bisection 
bandwidth from geminis outside of the job’s allocation can be 
significant.  

The bisection bandwidth of a system is defined as being 
proportional to the lowest possible value of the capacity of the 
links crossing any plane bisecting the interconnect. We can 
represent the torus as a cube as shown in Fig. 2, but note that 
because it is a torus rather than a mesh, any cut-plane will 
bisect the links along any dimension two times, not just once. 
For the Blue Waters system with topology 23x24x24, the cut-
plane with the least bandwidth intersects the y-link cables 
between any 2 boards, and therefore the bisection bandwidth is 
proportional to 2 times the number of y-links times their per-
link capacity, By, which works out to be equal to 23*24*2*By, 
or 23*24*Bx, where Bx is the capacity of an x-link cable.  

For the petascale benchmark, it would be best to run on 
nearly all compute nodes to directly utilize as many geminis as 
possible for maximum bisection bandwidth. Blue Waters has 
more than 24k compute nodes, but 3072 of them are XK nodes, 
and PSDNS is not designed to use the GPU in such nodes. We 
could use only the first socket in the XK and XE nodes in order 
to run PSDNS on 24k nodes (without changing the source code 
to somehow handle nodes with different core counts in the 
same job). Using only the first socket would leave half of the 
processors on the XE nodes idle, but since the communication 
time dominates, and the communication time depends on the 
number of geminis in use, running on one socket per node 
could be expected to provide the best overall run times. To do 
so, each xy plane of the 12k

3
 domain would be assigned to one 

node pair, as discussed in the previous section, eliminating 
communication between geminis for the xy transposes.  

In actuality, the petascale benchmark was run on 12k XE 
nodes using both sockets per node. With judicious node 
selection and task placement we were able to obtain overall 
per-step run times only 1.09X longer on 12k nodes than on 24k 
nodes, and we also recognized that using 2X fewer nodes 
should translate into 2X more time between node failures. The 
Blue Waters petascale benchmark was interpreted to include 
setbacks due to node failures (i.e., the time to restart from the 
last checkpoint and repeat any steps taken beyond that point), 
so the number of such failures had to be minimized. Our 
analysis and efforts described below to complete the 
benchmark as quickly as possible on only about half of the 
nodes in the system are probably more relevant to most of the 
user community than are full-system runs.  

To maximize the effective bisection bandwidth available to 
a subset of the nodes in the system, consider a section of Blue 
Waters containing just 6 xz planes of the torus as shown in Fig. 
3. Since routing always takes the shortest path, messages never 
go outside the 23x6x24 section, i.e., the “topology” for this 
section of the system is a mesh in the y direction and a torus in 
x and z. Comparing the bandwidth of the links crossing cut-
planes normal to x, y, and z, we find that the bisection 
bandwidth is proportional to 23*6*2*Bz, where Bz = Bx is the 
capacity of the cables along z. This is one half of the bisection 
bandwidth of the entire system (assuming the constants of 
proportionality are the same), but involves only 1/4th of the 
compute nodes. Thus, a 23x6x24-gemini section delivers twice 
the bisection bandwidth per node as the full system.  

If a user is charged on the basis of node-hours consumed, 
then the most economical way to run a job requiring a fixed 
number of nodes would be to obtain a node allocation that 
maximizes the effective bisection bandwidth per node. It turns 
out that 23xNx24 gives the highest bisection bandwidth per 
node for 1 < N < 7. Increasing N beyond 6 adds nothing to the 
bisection bandwidth, and therefore the bisection bandwidth per 
node drops in proportion to the number of nodes until N=12, 
when it equals the value for the full system. Beyond N=12, 

 

 

 
Fig. 2. Schematic of bisection bandwidth calculation for 

the full Blue Waters system. 



some traffic wraps around the torus in the y direction, but the 
bisection bandwidth per node has a minimum for N = 13. For 
12 < N < 24. Because only N out of 24 nodes along y are 
actively used in the computation, we find (by counting 
messages in each direction) that the bisection bandwidth is 
proportional to:  

23*24*2*(N-1)/(24-1)*By. 

If we were to run the petascale benchmark in a 23x12x24 
section, the bisection bandwidth (not per node) would be half 
that of the full system, and we would see 2X longer 
communication times than we would obtain on 24k nodes. The 
default placement for 12k nodes is close to 12x24x24, which 
gives the same bisection bandwidth per node as does 
23x12x24. Due to the 8x8x24-gemini XK region on Blue 
Waters, default placement for 12k XE nodes gives the layout 
shown in Fig. 4.  

Because we could choose any 12k nodes in the system for 
the benchmark, we were able to utilize nearly the full system 
bisection bandwidth by distributing the 12k nodes actively 
running the benchmark as much as possible throughout the 
torus. This was done by means of a perl script (randomizer.pl) 
that randomizes the list of nodes in the reservation obtained, 
for example, by using the command: 

aprun -B -D0x10000 /bin/true | head -1 

within the batch job. The randomized list is optionally grouped 
in pairs so that 2 adjacent sets of tasks are placed on the two 
nodes attached to the same gemini. This option also eliminates 
from the list any nodes whose partner on the same gemini is 
unavailable. Using nodes with an unavailable partner could 
introduce a load imbalance, and if xy planes of the grid are to 
be split between nodes on the same gemini, it would also 
prevent us from placing those neighboring groups of tasks as 
intended.  

The aprun command to launch PSDNS is issued with either 
the “-l <node_list_file_name>” or the “-L <node_list_string>” 

option to use the first 12k nodes in the randomized list. Note 
that our batch job reservation contained nearly all compute 
nodes in the system, allowing us to select whichever nodes we 
wished to use for the benchmark. The 12k randomized XE 
compute nodes used by our job are depicted in Fig. 5. For the 
pure MPI version of PSDNS, the total time per time step for 
the randomized 12k node list was 1.46X shorter than the 
corresponding time for the default layout in Fig. 4.  

 

 

 
Fig. 3. Schematic of bisection bandwidth calculation for a 

23x6x24-hub section of Blue Waters. 

 
Fig. 5. Hubs used (blue spheres) for a 12k

3
 grid on 12k XE 

nodes selected using the randomizer.pl script. Spreading 

the active nodes throughout the torus enables the job to 

utilize nearly the full bisection bandwidth of the full 

system. 

 
Fig. 4. Hubs used (blue spheres) for a 12k

3
 grid on 12k XE 

nodes with default placement. Service node hubs are 

represented by yellow spheres and XK node hubs are 

marked by red spheres. 



In practice, a user who is charged by the node-hour would 
not benefit very much from randomizing the node list, since a 
much larger than desired number of nodes must be in the 
reservation than the minimum needed to run the job for this 
tactic to increase the bisection bandwidth per node 
significantly. However, Blue Waters users could obtain optimal 
bisection bandwidth per node in a section of size 23xNx24 (as 
shown in Fig. 6), with N between 2 and 6. Note that the 
bisection bandwidth per node of a section of size Nx24x24 
(Fig. 7) is only half that of a 23xNx24 section for this range of 
N. PSDNS runs using a domain with a 6k

3
 grid on 6k nodes 

took 1.64X less time when run in the 23x6x24 section than 
when run in the 6x24x24 section.  

III. COARRAY FORTRAN ALL-TO-ALL 

Coarrays [11] are included in the Fortran 2008 standard 
[12] and implemented in the current Cray ftn compiler. 
Coarray Fortran (CAF) enables parallel programming by 
means of a simple syntax for distributed arrays. 
Communication is implicit and one-sided, while 
synchronization is mostly invoked explicitly by the user. 
Coarrays of the same size and shape exist on each “image” 
(task), and subscripts in square brackets are used to refer to 
specific images.  

Compared to MPI, messages passed by the lower-level 
communication libraries on behalf of CAF can have smaller 
headers (due to one-sidedness) and therefore can carry more 
data per packet for slightly higher bandwidth. In addition, 
latencies for short messages from coarray-related 
communication can be significantly lower than they are for the 
same message sizes with MPI. Finally, the user can more easily 
implement and hand-tune customized collective operations in 
CAF, such as the repeated concurrent All-to-Alls for two 
alternating sets of images (communicators) in PSDNS. All of 
these advantages lead one to anticipate better All-to-All 

performance from a hand-tuned CAF implementation 
compared to the MPI All-to-All version.  

In order to ease integration of CAF with existing MPI 
codes that make extensive use of All-to-All collectives, we 
implemented and optimized a stand-alone library in CAF that 
enables application developers to directly substitute existing 
calls to MPI AlltoAll with very similar calls to a CAF version 
(called “compi_alltoall”). No other changes to the PSDNS 
source were needed, although we did introduce some additional 
code to verify (if desired) that all of the CAF calls produce 
exactly the same results as the MPI calls.  

On each image (task), the compi_alltoall library statically 
allocates a single coarray whose size is at least 512 Bytes times 
the number of images in the column communicator. For the 
petascale benchmark on 12k nodes, the coarray size required is 
6 MB. This allows the library to handle any message size 
without wasting too much memory for small messages, 
running out of memory for large messages, or 
allocating/deallocating the coarray on every call to 
compi_alltoall. Note that allocation/deallocation of a coarray 
can be rather time consuming, especially at large scales, since 
doing so also triggers implicit synchronization.  

To perform the All-to-All communication, we proceed as 
indicated in the pseudo-code in Fig. 8. The messages are 
broken up into 512 Byte chunks. We begin by copying the first 
chunk of each message from the send buffer to the coarray 
called co_bucket. Next, an MPI barrier ensures that this 
copying step has completed on all images in the communicator 
before we attempt to access data in any of the remote images. 
After the barrier, we copy (pull) the chunk for the local image 
from the remote coarray images into the receive buffer. These 
pull operations are performed in a different fixed random order 
on each image, which significantly reduces the occurrence of 
hot spots on the interconnect. A similar concept is also used in 

 
Fig. 6. Default placement of 6k XE computes (blue 

spheres) in a 23x6x24-hub box. This box has optimal 

bisection bandwidth per node. 

 
Fig. 7. Default placement for 6k XE compute nodes in a 

6x24x24-hub box. This box has 1/2 of the bisection 

bandwidth per node of the box shown in Fig. 6 due to the 

slower links along the y direction. 



Cray’s MPI AlltoAll library implementation, but for MPI it is 
not advantageous to break the messages into such small 
chunks. Finally, we issue a “sync memory” call and then 
another MPI barrier to ensure that the data in the coarrays has 
been copied to the receive buffers before being overwritten. 
These two calls entail less overhead than a “sync all” because 
this barrier pertains only to the images in the communicator, 
rather than to all images, and sync memory entails no direct 
synchronization effect. We then move on to the next 512 Byte 
chunk of the messages and repeat the copy/pull operations until 
all of the data in all of the messages has been transmitted.  

We found that the 512 Byte chunk size gives the best 
performance on Blue Waters (as well as other systems with 
gemini interconnects) by experimenting with different chunk 
sizes for a wide range of message sizes and task counts.  

Two other optimization details are worth mentioning here. 
The first time compi_alltoall is called with a communicator 
that it has not previously encountered, it determines and saves 
a mapping between the MPI ranks and CAF images in that 
communicator. It also computes and saves the random 
orderings that will be used by each image as it pulls data from 
the other images in that communicator.  

Using the compi_alltoall library with PSDNS on 12288 
nodes reduces the overall run time by 1.33X compared to the 
current MPI library.  

We also evaluated an alternative implementation that uses 
CAF directly integrated into the PSDNS code by declaring the 
send buffers as coarrays (allocated only once per run), rather 
than calling the compi_alltoall library, wherein the send buffers 
are copied to the internal coarray, which we determined 

consumes a non-negligible amount of time. We found in a 
simplified test code that the run time for the integrated CAF 
version was at best only about 5% faster than the library call. A 
plausible explanation for this is that the small coarray in 
compi_alltoall fits in cache on each image, and therefore the 
subsequent loop performing the communication can reuse that 
data rather than going to memory. In the more integrated 
implementation, the send buffer coarray is much too large to fit 
in any level of cache, and the data being transferred between 
images is not in contiguous blocks.  

IV. CONCLUSIONS AND FUTURE WORK 

Estimating the impact of each optimization applied to 
PSDNS described in this work for a fixed 12k^3 grid problem 
on 12k nodes, we have:  

 1.1X for memory management (environment variables 
or switch to Cray compiler),  

 1.4X for the slab-on-node decomposition,  

 1.4X for randomizing the node list, and  

 1.3X for the compi_alltoall library,  

leading to a 2.8X overall decrease in the total wall clock time 

per time step. 
The memory management optimization (or simply 

allocating arrays only once per run) pertains to many types of 
applications, as does the concept of minimizing the amount of 
off-node or off-node-pair communication [13].  

Randomizing the node list is a technique that can benefit 
applications with All-to-All and random-pair communication 
patterns, especially if the user has dedicated access to at least a 
section of the system. Such a section should have a shape 
which optimizes the bisection bandwidth per node, such as 
23xNx24, where 1 < N < 7. Nodes whose partner on the same 
gemini is unavailable should not be used, especially if one is 
relying on two sets of neighboring partitions to be placed on 
node pairs. This would currently require requesting either a 
specific set of good nodes or more nodes than the job actually 
needs to run. In principle, some of the extra nodes could be 
used as spares to replace failed nodes and continue a run within 
the same batch job from the last checkpoint on the same 
number of active nodes.  

The compi_alltoall library is available by request to users 
of Cray XE/XK systems, and should benefit any application 
that uses MPI_AlltoAll or MPI_AlltoAllV without any need 
for substantial code changes. Although All-to-All operations 
coded with CAF significantly outperform the equivalent MPI 
versions at this time on Cray XE/Xk systems with Gemini 
interconnects, Cray’s MPI developers are continually working 
to close the gap to the extent that it is practical to do so.  

Future work for PSDNS includes exploring overlapping 
communication for one component of a vector quantity 
undergoing a 3D FFT with computation for the next 
component. This has become easier to do using MPI with the 
recent inclusion of non-blocking collectives in Cray’s MPI 
library. To get substantial overlap and a concomitant reduction 
in run time, messages need to be fairly large (at least 8kB) so 

! My image is my_im. 
! The random_order array reorders the images. 
Do i=1,n_chunks  ! Number of 512 Byte chunks in msg. 

i_start = 1 + (i-1)*512/8  ! 8 Bytes per word 
 
 Do j=1,n_images  ! Number of images 
  co_bucket(1:512/8, j) =  
  sendbuf(i_start:i_start-1+512/8, j) 
 End do  ! images 
 
 MPI barrier (communicator, ierr) 
 
 Do j=1,n_images 
  Set k = random_order ( j ) 
  recvbuf(i_start:i_start-1+512/8, k) =  
  co_bucket(1:512/8,my_im)[k]  ! Pull  
 End do  ! images 
 
 Sync memory  ! Ensures correct results 
 MPI barrier (communicator, ierr) 
End do  ! chunks 
 

 

Fig. 8. Simplified psuedo-code for CAF All-to-All. 



that the Block Transfer Engine can be utilized effectively [14]. 
Getting good overlap requires 8 or fewer tasks per node. 
Therefore, we will need to use sufficiently large per-node 
problem sizes and 2 or more OpenMP threads per task.  
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