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Abstract— In this report, we analyze readiness of the code 
development and execution environment for adaptive 
supercomputers where a processing node is composed of 
heterogeneous computing and memory architectures.  Current 
instances of such a system are Cray XK6 and XK7 compute 
nodes, which are composed of x86_64 CPU and NVIDIA GPU 
devices and DDR3 and GDDR5 memories respectively. 
Specifically, we focus on the integration of the CPU and 
accelerator programming environments, tools, MPI, numerical 
libraries as well as operational features such as resource 
monitoring, and system maintainability and upgradability.  We 
highlight portable, platform independent technologies that 
exist for the Cray XE and XK, and XC30 platforms and 
discuss dependencies in the CPU, GPU and network tool 
chains that lead to current challenges for integrated solutions.  
This discussion enables us to formulate requirements for a 
future, adaptive supercomputing platform, which could 
contain a diverse set of node architectures. 

Keywords-Cray XK7, Cray XE6, Cray XC30, GPU, Xeon Phi, 
Adaptive computing, OpenACC, MPI, portability 

I.  INTRODUCTION 
Several years ago, Cray introduced a vision of adaptive 

supercomputing, where diverse heterogeneous computing 
and memory subsystems would be integrated in a unified 
architecture.  Such a system may include massively-
multithreaded systems by Cray, FPGAs and recent instances 
of accelerator devices such as GPUs and Intel Xeon Phi.  In 
fact, the most recent generation of Cray system called 
Cascade would support contemporary accelerator 
technologies. 1   There have been announcements for the 
support of NVIDIA GPU devices and Intel Xeon Phi [5] 
accelerators.  Even today, Cray XK series platforms combine 
two sets of memory and processor architectures within a 
single node and system design.  The Cray XK6 platform 
contains NVIDIA Fermi accelerators while the Cray XK7 
platform has NVIDIA Kepler accelerators [6][12].  Using the 
Cray XK7 platform as a reference, in this report we analyze 
readiness of a unified programming and operational interface 
for the next generation of hybrid architectures. 

CSCS has recently upgraded a 3-cabinets Cray XK6 
system to an XK7 platform by upgrading the accelerator 
devices, NVIDIA Tesla GPUs.  Cray has incorporated 

                                                             
1 Cray News release dated Nov 08, 2012 
http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-
newsArticle&ID=1755982 

NVIDIA driver, programming and runtime interfaces into its 
Cray XE series operating and programming environment.  
Cray XK7 system now contains an accelerator device called 
NVIDIA Kepler K20X, which can deliver over 1.3 TFlops 
(double-precision) performance.  This is about a factor of 
two improvement compared to the previous generation 
device, NVIDIA Fermi X2090.  There have been no changes 
to the processor and memory configuration of the node.  
Together with the hardware upgrade, NVIDIA updated the 
programming interface to CUDA 5 and introduced new 
features such as HyperQ, dynamic parallelism, GPUDirect-
RDMA and Tesla Deployment Kit [7].   Cray operating 
system namely CLE and the programming environment (PE) 
have also been updated together with the device upgrade, 
however, not all new features of the device are currently 
available on the system.   In this report, we provide details on 
the integration challenges and analyze possible hardware and 
software dependencies. 

The integration challenges of the Cray XK7 platforms 
provide us opportunities to characterize code development, 
execution and operational requirements of an adaptive 
supercomputing platform. A unified architecture should 
provide a common interface for: 

 
•  Code development and refactoring 
•  Compilation 
•  Tuning 
•  Debugging 
•  Scaling  
•  Production runs  
•  Management and operations 
•  Maintainability and upgradability 
  
There should be a migration path for not only between 

different Cray platforms but also for applications that are 
being developed at local servers and clusters to the Cray 
environment.   Figure 1 shows how different components of 
the system need to be adapted to provide a unified interface 
across multiple systems.  There is an overlap between the 
components that are required for code porting, development 
and tuning, and for an environment where users submit 
production level jobs.  Likewise, there are some tools that are 
unique for system administrators such as system-wide 
monitoring and diagnostics but then there are some resource 
management interfaces that will be required by both 
production level users and system administrators.   



 
 

Figure 1: A high level view of code development, production and operational needs for an adaptive supercomputing platform, which may be composed of 
homogenous and heterogenous multi-core resources.  Overlapping components for individual needs have been shown in the figure. 

 
A thorough discussion on each individual component 

listed in Figure 1 is beyond the scope of this paper.  In this 
paper, we attempt to highlight technologies that are portable 
across x86_64, NVIDIA GPU and Intel Xeon Phi systems 
and provide early experiences, status and results.  We present 
the status of the technologies on the Cray XE6, Cray XK7 
and Cray XC30 platforms [15][19].  Cray XC30 is the new 
generation of Cray system, which is composed of Intel 
processors, a new interconnect technology called Aries and a 
new topology named dragonfly [14].  Unlike the Cray XK 
series systems where the interface to the PCIe based 
accelerator technology is provided through a custom 
interface to the CPU, the Cray XC30 and its hybrid variants 
can be considered similar to a standard Linux cluster, where 
both accelerator and network interface is PCIe.   Therefore, 
the Cray XC30 based hybrid processing nodes may provide a 
path to adaptive supercomputing or unified programming 
and execution environment.  In this paper, we evaluate the 
requirements for two hypothetical systems with nodes 
containing either NVIDIA Kepler GPUs or Intel Xeon Phi 
accelerators and then discuss readiness of the Cray 
environment, only in the context of portable technologies. 

The portable technologies presented and discussed in this 
paper are as follows: 

 
• OpenACC/OpenMP 
• OpenCL 
• Libsci 
• Accelerator aware MPI 
• Performance tools (perftools) 
• Debugger 
• Resource management 

 
The most widely used programming language for GPU 

devices namely NVIDIA CUDA has not been discussed 
because it is currently not portable to other devices.  
Similarly, CUDA related performance and debugging tools 
that are available within the NVIDIA SDK are not discussed 
in detail in this paper.  Integration on external toolsets such 
as NVIDIA SDK into the Cray programming and execution 

environment is an important topic of discussion but it is 
beyond the scope of this paper.  

The paper is organized as follows:  section 2 provides a 
background to the Cray XK7 platform, portable technologies 
and current status.  In section 3, we provide details on 
portable programming interfaces, multi-platform tools and 
utilities.  A brief analysis for Intel Xeon Phi programming 
and execution environment is provided in section 4, together 
with a discussion on requirements for an adaptive 
supercomputing environment.  We then summarize our 
findings in section 5 and provide a plan of work for the next 
steps, which are necessary for developing a unified 
architecture for future hybrid and non-hybrid Cray systems. 

 

II. CRAY XK7 PLATFORM AND PORTABLE 
TECHNOLOGIES 

A Cray XK7 node is composed of an AMD Interlagos 
processor socket, DDR3 memory, an NVIDIA K20X GPU 
and a Cray Gemini network interface.  An AMD Interlagos 
processor is composed of 16 Opteron cores or 8 compute 
modules.  The CSCS Cray XK7 system has 32 GBytes of 
DDR3-1600 memory.  The K20X device is composed of  6 
GBytes (non-EC) GDDR5 memory and has 14 SMX units.  
The device and the CPU are connected via a PCIe-
Hypertransport bridge chip.  The network connection is also 
via the Hypertransport link.  A Cray XE6 node, in 
comparison, has two Interlagos sockets, has same amount of 
memory but twice the memory bandwidth.  Two Cray XK7 
and Cray XE6 nodes are connected to a single Gemnin chip.  
The schematic of the two systems is shown in figure 2.   

 In contrast, a Cray XC30 node is composed of two Intel 
Sandy Bridge sockets and a PCIe 3.0, 16x connection to the 
Aries interface chip.  The CSCS Cray XC30 system has 32 
GBytes of DDR3-1600 memory.  Unlike the Cray XK7 and 
XE6 platforms, four compute nodes are connected to a single 
Aries chip.  The network topology is also different.  The 
Cray XC30 system has a dragonfly topology with optical 
connections.  The operating environment on the two 
platforms is also different, CLE 4.x vs. CLE 5.x. 
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Figure 2: Comparison of Cray XE6 and Cray XK7 blades, each with two compute nodes and a Gemini interconnect chip [13]. 

  
The similarities and differences of the Cray XE6 and 

Cray XK7 platforms are shown in Figure 2.  In terms of 
the software stack for programming and execution 
environment, there are a number of similarities and 
difference.  Figure 3 shows the overlap and new features 
of the Cray XE6, Cray XK7 and Cray XC30 programming 
environment.  Cray XK7 and Cray XE6 share the same 
CLE and I/O stack but differ in programming environment 
including the Cray numerical libraries (libsci), MPI and 
tools, which have extensions for the GPU devices.  In 
other words, Cray XK7 platform offers a complete 
software stack of a Cray XE6 platform to allows for the 
multi-core only programming.  To enable the GPU 
devices, NVIDIA GPU driver and CUDA SDK have been 
included.  These in turn interface with other Cray and third 
part compilers and tools.  Details on the portable 
components are provided in the next section.   

 

 
Figure 3: Comparison of software stack for Cray XE6, Cray XK7 and 

Cray XC30 platforms.  Cray XE6 and Cray XC30 are homogenous 
multi-core platforms with distinct hardware and software stack. 

As indicated earlier, the Cray XC30 programming and 
execution environment is similar to the Cray XE6 
platform, but has been updated for the Intel processors and 
the Aries interconnect.  The CLE and kernel are different 
and MPI has been tuned for Aries network topology and 
routing.  In addition, there is Hyperthreading available on 
the processor nodes. 

Table 1 provides the status and availability of the 
portable system components.  OpenACC and OpenMP for 
accelerators are considered as incremental programming 
approaches for multi-core and hybrid multi-core systems 
such as NVIDIA GPU and Intel Xeon Phi [8][9].  
OpenACC offers a set of standard directives and compilers 
are available from Cray, PGI and HMPP.  The OpenMP 
consortium is currently reviewing extensions for 
accelerator devices.  OpenCL is a platform independent 
API for multi-core and accelerator devices.  There is a 
standard and device vendors such as NVIDIA, AMD and 
Intel provide OpenCL compilers for their respective 
devices.  Libsci is a tuned numerical library from Cray, 
which has been extended as libsci_acc for GPU aware 
implementation of the BLAS routines [4].  Cray has also 
extended the MPI library such that MPI calls can be 
directly made onto the GPU pointers.  In addition to 
programming languages, libraries and MPI, Cray 
performance tools called perftools have incorporated 
features that allow users to analyze and investigate issues 
that influence performance of accelerated codes.  
Specifically, there have been extensions for the 
investigation of OpenACC codes that have been developed 
using the Cray OpenACC compiler.  CSCS has the Allinea 
DDT debugger for both scalable and accelerated code 
debugging [1].  DDT has also been extended for CUDA 
and OpenACC applications.  It can also be used for multi-
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core only MPI and OpenMP debugging, and Allinea has 
announced support for the Intel Xeon Phi [2].  On the 
CSCS Cray XK7 system, users automatically have access 
to the GPU resource.  However, CSCS is interested in 
managing GPU devices and other accelerators as 
individual resources and would like to understand usage of 
GPU resources for accounting and resource allocation 
purposes.  CSCS currently use SLURM as a resource 
manager and scheduler for all systems including the Cray 
XE6, Cray XK7 and Cray XC30 platforms.  Currently 
GPU usage has not been requested and reported through 
the Cray ALPS interface to the SLURM database.   

TABLE I.  STATUS OF PLATFORM INDEPDENT TECHNOLOGIES 
WITHIN THE CRAY COMPILER ENVIRONMENT (CCE) AND THIRD PARTY 

TOOLS ON MULTICORE CRAY XE6 AND XC30 AND HYBRID MULTICORE 
CRAY XK7 PLATFORM WITH GPU DEVICES  

 
Status and details 

Cray XK7 Cray XE6 Cray XC30 

OpenACC  CCE, PGI & 
CAPS PGI§ no 

OpenMP for 
accelerators* No  No  No 

OpenCL CPU + GPU CPU§ No 

Numerical libraries libsci_acc/libsci libsci libsci 
Accelerator aware 
MPI CCE MPT —  — 

OpenACC debugger Allinea DDT — — 
Performance tools 
(Cray perftools, 
Vampir and TAU) 

MPI, OpenMP, 
OpenACC, 
CUDA 

MPI, 
OpenMP 

MPI, 
OpenMP 

Resource 
management & 
accouting (SLURM) 

CPU only CPU CPU 

* proposed extensions is currently under review 
§ possible but currently not available 

III. EVALUATION OF CRAY XK7 PLATFORM 
INDEPENDENT TECHNOLOGIES 

A. OpenACC Accelerator Directives 
In order to facilitate an incremental adoption of the 

accelerator devices, a few directive-based standards have 
been introduced.  Cray compiler environment (CCE) 
provides support for the latest standard for accelerator 
programming called OpenACC. The OpenACC directives 
provide control for the following functionalities:  regions 
of code to accelerate, data to be transferred to and from the 
device, and compiler hints for loop scheduling and cache 
usage.  In the simplest form, an OpenACC code may 
comprise of a couple of additional statements: 

 
!$acc parallel loop 
DO i = 1,N 
a(i) = i 
ENDDO 
!$acc end parallel loop 
 
CSCS has been deeply involved in a number of 

programming models for heterogeneous node 

architectures.  From our perspective, directive-based 
approaches (e.g. OpenACC) are one of the many tools in 
the toolbox that can help developers with porting their 
codes to future node architectures.  For some of the 
parallel applications running at CSCS, there are clear 
benefits for retaining the original overall code structure 
and adding directives to control data movement and 
expose parallelism.  Two examples of OpenACC success 
stories that run on CSCS systems include the COSMO 
weather code and the ICON climate model -- both of these 
prototype applications have shown significant speedups 
compared to their CPU implementations.   

At CSCS, we provide application developers with all 
three commercial OpenACC compiler implementations:  
CAPS HMPP, the Cray Compiling Environment (CCE), 
and PGI Accelerator.  Being able to swap between each 
vendor's implementation has proven to be invaluable 
during periods of heavy OpenACC application 
development.  We have found that each vendor's 
implementation has its own strengths and weaknesses 
within the context of a given application.   

Here are some of the challenges that we have 
experienced with using OpenACC on multi-node GPU 
applications:   

 
• Multiple developers have inquired about utilizing 

OpenACC in their C++ codes.  The upcoming 
OpenACC v2.0 standard is expected to provide 
some key support in terms of unstructured data 
lifetimes (e.g. for controlling data on the 
accelerator in constructors and destructors).  
Future support for deep copies will also be highly 
useful in this situation.   

• One of our user's applications requires the ability 
to integrate separate CUDA and OpenACC 
components together in the same executable.  For 
this, OpenACC's "host_data" clause is essential to 
make the OpenACC device array addresses 
available to CUDA.  However, PGI has not yet 
fully supported this feature that is part of the 
OpenACC v1.0 standard.   

• Lack of support for multi-dimensional C arrays 
required an application to be heavily modified to 
linearize its array accesses.  Solutions to this 
general issue are currently being discussed and 
implemented by the compiler vendors. 

• Getting access to elements of Fortran derived 
types within accelerator regions caused compile-
time errors in an application.  A workaround was 
found for CCE, but not for the other compiler 
tested.  The compiler vendors are currently 
working on a general solution.   

• A performance portability situation in one 
application has been identified where the 
developers had to fork their code into a CPU 
implementation and an OpenACC 
implementation.  The developers found that 
widespread loop optimizations for the port to 



OpenACC had a negative impact on the same 
code running on CPU targets.  Along with some 
manual loop fusion, it seems likely that adding an 
OpenACC loop interchange directive to the 
standard would help with performance portability 
in some circumstances.   

• Hardware portability questions: PGI and CAPS 
have announced support for architectures beyond 
Nvidia GPUs, but CCE hasn't announced any 
future plans for alternative accelerator targets.  
Also, it would be useful to developers if CCE 
was additionally available on local workstations.   

 
Finally, one of the long-term goals of OpenACC is to 

lead to a more robust OpenMP standard for accelerator 
computing.  If a future version of OpenMP includes 
sufficient support for a variety of accelerator architectures 
(which is currently unclear!), we believe that OpenACC-
ported applications will be very well positioned to 
transition to the future version of OpenMP. 

B. OpenCL 
OpenCL is a set of open standards that have been 

introduced for developing programs for systems with 
heterogeneous compute units.  Hardware vendors provide 
the standard conformant drivers.  Hence, OpenCL codes 
can be executed on both CPU and accelerators.  The 
programming model allows for both data and task 
parallelism.  Like CUDA, there is a concept of parallel 
programming for a device where concurrent tasks can be 
grouped into work-items.  OpenCL memory model is also 
somewhat similar to the CUDA memory model, where 
memory access options depend on how a data structure has 
been declared. 

The Cray XK7 includes a standard CUDA 5 software 
development kit; from a software development perspective 
the main difference between the XK7 installation and 
standard Linux clusters is the fact that the nvcc compiler is 
not able to find the C/C++ host compiler specified by the 
loaded modules, it is therefore required for users to 
explicitly set the host compiler to use through the  -ccbin 
<directory path of gcc executable>.   

The SDK from NVIDIA also provides OpenCL 
implementation, which conforms to the 1.1 OpenCL 
standard and it is 32-bit only.  It has to be noted that all the 
other OpenCL implementations currently available from 
other vendors such as AMD (CPU and GPU), and Intel 
(CPU, GPU and Xeon Phi) are 64-bit and 1.2 conformant.  
The HyperQ feature of CUDA 5 is also not available for 
OpenCL applications.  On CSCS Cray XK7 platform, 
OpenCL is available for both CPU and GPU devices.  We 
also provide a custom fix to imitate HyperQ behavior by 
allowing multiple MPI tasks or processes connect to a 
single GPU. 

Our experience with OpenCL on different platforms 
indicates that on platforms other than the Intel Xeon Phi 
performance portability can usually be achieved by 
changing the kernel launch configuration (total number of 
threads and number of threads per work-item) and the size 

of data buffers without major changes to the kernel code.   
On the Intel Xeon Phi optimizations that work on both 
GPU and CPU like caching into __local memory do not 
seem to apply.   

C. Numerical Libraries 
The Cray Scientific Libraries package, LibSci, is a 

collection of numerical routines optimized for the targeted 
Cray platforms [4].  A subset of the routines are extended 
for accelerators, namely libsci_acc. The Cray LibSci 
collection contains the following libraries, which are 
automatically called when libsci is loaded: 

 
• BLAS (Basic Linear Algebra Subroutines, 

including routines from the University of Texas 
64-bit libGoto library) 

• BLACS (Basic Linear Algebra Communication 
Subprograms) 

• LAPACK (Linear Algebra Routines, including 
routines from the University of Texas 64-bit 
libGoto library) 

• ScaLAPACK (Scalable LAPACK) 
• IRT (Iterative Refinement Toolkit), linear solvers 

using 32-bit factorizations that preserve accuracy 
through mixed-precision iterative refinement 

• CRAFFT (Cray Adaptive Fast Fourier Transform 
Routines) 

• FFT (Fast Fourier Transform Routines) 
 
In order to harness the full potential of hybrid systems, 

it is crucial to rely on routines that take advantage of both 
the CPU (e.g the SIMD unit) and the accelerator 
processing power (e.g GPGPU or Xeon Phi). However, 
because of the heterogeneous configuration of hybrid 
systems, hand-tuning routines can be extremely difficult or 
tedious, even for very simple algorithms like GEMM. 
Fortunately, Cray provides an accelerated numerical 
library (libsci and libsci_acc), which includes some 
functions that have been optimized to run in hybrid host, 
multithreaded and GPU accelerated configurations. The 
library has been designed to work in different modes: it 
can work without any code modifications where data 
transfers to and from the device are hidden from users and 
it allows modifications to enable code developers to hide 
data transfer latencies. For example, a user can make the 
following call (using the normal Lapack interface): 

 
dgetrf(M, N, A, lda, ipiv, &info)  
 
Depending on the size of A, libsci will either run the 

dgetrf routine on the host, the device or both so that total 
performance will be maximized on the node. If instead of 
CPU, the GPU device pointers are being passed the code 
will execute on the device:  

 
dgetrf(M, N, d_A, lda, ipiv, &info) 
 
Data must be transferred to the GPU prior to the call to 

improve performance. Finally, each routine has a device 



(_acc suffix) and a host (_cpu suffix) interface to give a 
higher degree of control to the user. For instance, calling 
dgetrf_acc (resp. dgetrf_cpu) will force the execution on 
the device (resp. the host).  The libsci accelerator interface 
can also be invoked within the directives environment: 

 
!$acc data copy(c), copyin(a,b) 
!$acc host_data use_device(a,b,c) 
call 

dgemm_acc('n','n',m,n,k,alpha,a,lda,b,l
db,beta,c,ldc) 

!$acc end host_data 
!$acc end data 

 
Table II lists the performance of libsci for the DGEMM 
routines, which has been highly tuned for different target 
platforms.   

TABLE II.  STATUS OF PLATFORM INDEPDENT TECHNOLOGIES 
WITHIN THE CRAY COMPILER ENVIRONMENT (CCE) AND THIRD PARTY 

TOOLS 

Platform 
Peak floating-point 

performance (double-
precision GFLOPS/s) 

DGEMM 
performance using 

libsci/libsci_acc 
Cray XE6 (dual-
socket AMD 
Interlagos) 

269 228 

Cray XK6 
(NVIDIA X2090) 665 450 

Cray XK7 
(NVIDIA K20X) 1311 1180 

Cray XC30 (dual-
socket Intel Sandy 
Bridge) 

333 315 

 

D. Accelerator Aware MPI 
MPI libraries such as MVAPICH2 [20], OpenMPI and 

recently Cray MPI have added support for CUDA memory 
pointers such that code developers do not need to 
explicitly transfer data between host and device memories.  
Like any platform specific MPI library from Cray, this 
MPI library provides an optimal interface to transfer data 
between the GPU devices over the high-speed 
interconnect.   We provide details of a project that 
successfully exploit this feature. 

Many HPC applications use domain decomposition to 
distribute the work among different processing elements. 
To manage synchronization overheads, decomposed sub-
domains overlap at the boundaries and are updated with 
neighbor values before the computation begins. A subset 
of applications using domain decomposition is finite 
difference kernels on regular grids, which are also referred 
to as stencil computations, and the overlapping regions are 
called ghost or halo regions. Typically, these applications 
make use of MPI Cartesian grids and each process handles 
a regular multi-dimensional array of elements with halo 
elements. 

Even though the data exchange pattern (neighbor 
exchange) is clearly defined when the Cartesian 
computing grid is defined, at application level there are 

many parameters that can vary: One is the mapping 
between the coordinates of the elements in the domain and 
the directions of the coordinates of the computing grids; 
the data layout of the domains themselves; the type of the 
elements in the domain; the periodicities in the computing 
grids to manage the case in which certain dimensions wrap 
around or not. Additionally, when we want to deal with 
accelerators, which typically have their own address space, 
we need also to specify where the data is placed.  

While these parameters are application dependent, 
others are architecture/platform dependent. Other degrees 
of freedom are related to how to perform communication 
(e.g., asynchronous versus synchronous), what mechanism 
to use to gather and scatter data (halos) from the domains, 
etc. All these variables make the specification of a halo 
exchange collective operation quite complex. For this 
reason we have developed the Generic Communication 
Layer (GCL) to provide a C++ library of communication 
patterns directly usable by application programmers and 
matching their requirements flexibly. At the moment, GCL 
provides a rich halo exchange pattern and a generic all-to-
all exchange pattern that allows specifying arbitrary data 
exchange but it is not fully optimized. 

GCL has been designed as multi-layer software. At 
bottom layer (L3) the definition of a communication 
pattern involves only data exchange considerations, in 
which each process knows what to send to every other 
process involved. Above L3 there is a more application 
oriented pattern specification (L2), which deals with user 
data structures. For instance, the halo exchange 
communication pattern at level L2 can process any 2D or 
3D arrays, of arbitrary element types, halo widths, and 
periodicities. To deal with more arbitrary data structures 
and applications, another layer (L1) had been devised to 
use high order functions to collect data and communicate, 
but this level has not been implemented yet and requires 
careful design, that we would like to engage with other 
partners. The interface at level L1 would resemble others 
found in [16][17][18]. 

We show here the comparison between XE6 and XK7 
machines. We compare two halo-exchange patterns at 
level L2: halo_exchange_dynamic_ut and 
halo_exchange_generic. The first pattern assumes an 
arbitrary number of equally shaped arrays with same 
element types, halo widths and periodicities to be 
exchanged, but the address of memory will be known only 
when the data exchange will be executed. The user then 
needs to specify at pattern instantiation time: 

 
1. The element types and number of dimensions of 

the arrays; 
2. The memory layout of the arrays; 
3. The mapping between dimensions of the arrays 

and the dimensions of the computing grid; 
4. Where the data is stored (either host or GPU 

memory); 
5. The description of the halos of the arrays in each 

dimension (in an order specified by the programmer 
convention specified by the layout of the arrays); 



 
Figure 4: Comparison of Cray XE6 and Cray XK7 blades, each with two compute nodes and a Gemini interconnect chip. 

 
The second pattern, halo_exchange_generic is more 

relaxed and allows the user to exchange arrays with 
arbitrary shapes, layouts, element types, and halos widths. 
For this reason at instantiation time the only information 
needed at instantiation time is the layout of the computing 
grid, the number of dimensions of the computing grid, the 
placement of the data (host or GPU), and an upper bound 
on the sizes of the arrays and halos, in order to allocate a 
sufficient amount of memory for gathering and 
exchanging data. At the moment of the exchange each 
array will be passed to the pattern as a field descriptor, 
which indicates the actual sizes for the data to be 
exchanged. Next Figure 4 shows the comparison of a data 
exchange on XK7 (Tödi) and XE6 (Rosa) when 
performing halo exchange on three 250x250x250 arrays, 
with halo width of 3 elements. The time shown includes 
gathering and scattering of data and the actual exchange 
(from array to array). As can be seen, even though XK7 
MPI is not fully optimized for GPU handling, the time for 
collecting and placing data, makes the GPU performance 
very interesting in terms of performance. Rosa results 
shows also the results for two mechanisms for collecting 
and placing data, namely hand written loops and calls to 
MPI_Pack functions. In this case MPI_Pack (and the use 
of MPI_Datatypes) gives the best performance, but on 
XK7 this mechanism cannot be used when data is on the 
GPU. In this case, handwritten CUDA kernels are used to 
collect at source, and to place the data at the destination. 

CUDA memory copies are performed from/to host 
memory so to use MPI send and receive routines to 
exchange data. Other MPI implementations allow the use 
of GPU memory pointers, which make it possible to 
simplify the library code and improve performance by 
employing pipelining between GPU memory transfers and 
network injection. 

 

E. Debuggers 
We have had some success using the Allinea DDT and 

TotalView debuggers at scale on CPU-based systems at 
CSCS [1][10].  For example, there was a recent situation 
where a hybrid MPI+OpenMP application was hanging 10 
minutes into its run across the full 12 cabinets of our Cray 
XC30 system.  To troubleshoot this issue, we were able to 
attach DDT to the application in its hung-state.  DDT's 
parallel call-stack feature pointed to an abnormal situation 
where thousands of processes were waiting at a barrier for 
a single process to finish work in a recursive function.  
Given this information, application developers were able 
to find the underlying cause of the problem.   

Moving forward, we would like this success story to 
continue into the realm of heterogeneous computing.  
Allinea currently has support for Nvidia GPUs, and they 
have announced support for the Intel Xeon Phi 
architecture.   

 



 
 

 
 

Figure 5: Output of the Allinea DDT debugger for an MPI+OpenACC application 

 
To debug a multi-node GPU application, DDT gives 

the ability to step into GPU kernels and to inspect memory 
on the GPU.  At CSCS, we have already had some luck 
using DDT to debug MPI+GPU applications.  As a simple 
example, when investigating optimizations to the 
MPI+OpenACC version of the Mantevo miniGhost 
benchmark, 2  we were able to use DDT to pause the 
execution and inspect the variables directly before the 
code crashed on the GPUs, which is shown in Figure 5. 

However, we have also had a number of challenges 
with debugging GPU applications over the past year.  One 
example was related to the debugger freezing when 
attempting to step past CUDA API calls -- this was fixed 
with an updated version of Nvidia's cuda-gdb packaged 
within DDT 4.0.  A currently unresolved issue involves an 
MPI+CUDA+OpenACC application that returns a 
"CUDA_ERROR_INVALID_DEVICE" error solely when 
running within the debugger.  While more investigation is 
required, these types of errors have typically required 
timely updates to the Nvidia drivers on Cray systems.  
Additionally, there are ongoing OpenACC-specific 
debugging challenges -- CCE provides full device 
DWARF debug support, while the other vendors provide 
only partial support.  Finally, users who want to debug 

                                                             
2 http://www.mantevo.org/ 

their scalar non-MPI GPU codes on Cray systems run into 
DDT/aprun errors; the workaround is to add a dummy 
MPI_Init call in the code, but these types of usability 
issues may inhibit first-time users.   

F. Performance Tools 
 
Profiling tools are essential for hybrid computing 

because the additional complexity of both host and device 
computation makes analysis of application performance 
more challenging. Some of the tools discussed below, like 
CrayPAT and Vampir [11], use PAPI3 to access hardware 
counters. Thus, these tools can be extended to provide 
hardware counter information for architectures that are 
supported by PAPI. This is currently the case for NVIDIA 
GPUs, which PAPI accesses via the CUPTI interface 
provided by NVIDIA. Support for Xeon Phi was added to 
PAPI 5.1.0, however we have been unable to test this 
support on the Xeon Phi test cluster at CSCS because the 
Xeon Phi devices require a kernel patch, which is 
incompatible with recent releases of the Xeon Phi software 
stack. Nonetheless, once these issues are resolved, 
profiling tools that use PAPI will naturally extend to 
support Xeon Phi. 

                                                             
3 http://icl.cs.utk.edu/papi/ 



 

 
 

Figure 6:Timeline-style performance analysis of asynchronous operations between multiple host CPUs and accelerators. 

 
A hybrid application that utilizes accelerators like 

GPUs or Xeon Phi may have several asynchronous events 
to keep track of: asynchronous MPI communication, 
asynchronous transfer of data between host and device, 
and asynchronous execution of kernels on host and device. 
Timeline-style profiling tools are particularly useful for 
gaining insight into asynchronous events as illustrated in 
Figure 6. While the tracing experiments performed by 
these tools are generally less scalable than profiling 
experiments, the information gathered from timeline-style 
performance tools at small to moderate node counts can be 
difficult to obtain by other methods. The two products 
used at CSCS, Vampir and TAU,4 have had support for 
GPUs for some time already, and support for Xeon Phi 
should be possible by virtue of both tools also being based 
on PAPI. 

Highly scalable tools like CrayPAT provide with an 
overview of where the code is spending its time. CrayPAT 
is very easy to use for GPU applications and can be run 
efficiently on thousands of nodes.  Currently, support is 
best for OpenACC. CUDA applications are supported by 
CrayPAT; however, at least in the past, the visibility of the 
CUDA kernels was constrained to the surrounding 
function call (i.e. a single function containing multiple 
CUDA kernel launches will only show the single function 
in the profile and not the separate kernels). Additionally, 
CrayPAT supports accelerator hardware counters. 

NVIDIA and Intel provide GUI-based performance 
analysis tools, namely Visual Profiler and VTune, that are 
familiar to developers on GPUs a Xeon Phi. These tools 
allow users to quickly gather and display useful device-

                                                             
4 http://www.cs.uoregon.edu/research/tau/home.php 

specific performance data, in a format that is tailored to the 
accelerator. The visual feedback provided is very useful 
for understanding the aforementioned asynchronous 
processes, along with features unavailable from their 
command line equivalents (e.g. derived performance 
counter metrics in Visual Profiler). However, these tools 
require cluster compatibility mode (CCM), which is 
incompatible with the SLURM scheduling software used 
at CSCS. We hope to resolve these issues, because device-
specific profiling tools are important. 

G. Resource Managament, Accounting and Monitoring 
An HPC center that deploys homogenous and 

heterogeneous computing platforms, integrating all 
platforms into its ecosystem for management and 
monitoring purposes within a 24/7 production environment 
is critical.  Resource management and accounting is also 
central to users within a production environment where 
resources are allocated on a project by project basis.  
CSCS uses SLURM resource management system, which 
is deployed on all of its Cray and non-Cray platforms.  
Currently, on the non-Cray platforms, users can declare 
their intent by using the gres parameter in their job 
submission scripts.  On the Cray systems, it is not required 
as there is a custom interface on compute node called 
ALPS.  Furthermore, the GPU devices do not record usage 
statistics and cannot be managed like CPU devices for fine 
grain core and memory allocation.  GPU devices are now 
gradually integrated into monitoring systems such as 
Nagios.5   

                                                             
5 http://www.nagios.org/ 



IV. REQUIREMENTS ANALYSIS AND READINESS 
Now we consider readiness of the current Cray XK7 

platform together with two hypothetical configurations of 
the Cray Cascade XC30 system, one with NVIDIA GPU 
devices and another with Intel Xeon Phi.  We assume that 
the host CPU will be similar to a homogenous multi-core 
XC30 platform.  The readiness of different platform-
independent technologies is listed in Table III.  Note that 
we only list technologies that are publicly available at the 
time of writing this report.  For example, PGI and CAPS 
[3] have announced OpenACC compilers for the Intel 
Xeon Phi devices; however, currently PGI compilers are 
not available on the XC30 platform and we have not tested 
the functionality on a non-Cray, Intel Xeon Phi cluster.  
Likewise, only Intel MPI is available to use on a non-Cray 
cluster with Xeon Phi accelerators.  We are unable to 
confirm whether Cray MPI will be extended to support all 
execution modes of the Intel Xeon Phi processors.  In 
short, for the platform independent technologies listed in 
Table III, there is not enough evidence to establish how 
these will be transparently supported on two different 
heterogeneous XC30 platforms.  Based on the publicly 
available information and experiences on the Cray XK7 
and a non-Cray Intel Xeon Phi cluster, a substantial effort 
will be required to realize a unified environment across 
multiple platforms. 

TABLE III.  READINESS OF THE CRAY XK7 SYSTEM AND 
HYPOTHETICAL CRAY XC30 SYSTEM WITH GPU AND XEON PHI FOR 

PORTABLE SOFTWARE SOLUTIONS (EXCLUDING CUDA AND INTEL 
OFFLOAD AND INTRINSICS TECHNOLOGIES). AVAILABILITY OF GPU 

TOOLS IS EXTRAPOLATED FROM CRAY XK7 PLATFORM. 

 
Readiness of technologies 

Cray XK7 Cray XC30 
+ GPUδ 

Cray XC30 + 
Xeon Phiδ 

OpenACC  Yes Yes Noξ 
OpenMP for 
accelerators* No No No 

OpenCL Yes Yes Yes  

Numerical libraries Yes Yes No 
Accelerator aware 
MPI Yes Yes No 

OpenACC debugger Yes  Yes  Noξ 
Performance tools 
(Cray perftools, 
Vampir and TAU) 

Yes Yes Yesξ  

Resource 
management and 
accounting (SLURM) 

No No No 

* proposed extensions is currently under review 
δ  hypothetical configuration 
ξ  products announced but currently unavailable 

V. SUMMARY AND THE NEXT STEPS 
Using Cray XK7 as a reference platform, Cray XE6 

and Cray XC30 experiences and insights that have been 
gathered on non-Cray platforms with NVIDIA GPU and 
Intel Xeon Phi devices, we presented an overview of 
subset of platform independent, portable technologies that 

are central to code development environment and 
operational readiness of production platforms.  While Cray 
XK7 and potentially a hypothetical Cray XC30 with GPU 
devices are on target to support the software stack for code 
development and execution environment, challenges 
remain in fully supporting integration of these systems into 
ecosystem and operational environment of an HPC center.  
We will therefore continue exploring options for 
completing the missing platform-specific components for 
an adaptive supercomputing environment both for Cray 
and non-Cray platforms.  Our near term focus is support 
for OpenACC tool chain and tuned, accelerator aware MPI 
as well as integration of resource usage and monitoring 
utilities on the Cray XK7 platform.  In addition, we would 
like to investigate how platform specific code development 
and execution toolsets can be fully integrated and 
supported on Cray platforms to allow for efficient 
migration from standard servers and Linux clusters with 
accelerator devices.   
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