
Requirements Analysis for Adaptive Supercomputing using
Cray XK7 as a Case Study

Sadaf R Alam, Mauro Bianco, Benjamin Cumming, Gilles Fourestey, Jeffrey Poznanvic, Ugo Varetto
Swiss National Supercomputing Centre

Lugano, Switzerland
{alam, mbianco, bcumming, fourestey, pozanavic, uvaretto@cscs.ch}

Abstract— In this report, we analyze readiness of the code
development and execution environment for adaptive
supercomputers where a processing node is composed of
heterogeneous computing and memory architectures. Current
instances of such a system are Cray XK6 and XK7 compute
nodes, which are composed of x86_64 CPU and NVIDIA GPU
devices and DDR3 and GDDR5 memories respectively.
Specifically, we focus on the integration of the CPU and
accelerator programming environments, tools, MPI, numerical
libraries as well as operational features such as resource
monitoring, and system maintainability and upgradability. We
highlight portable, platform independent technologies that
exist for the Cray XE and XK, and XC30 platforms and
discuss dependencies in the CPU, GPU and network tool
chains that lead to current challenges for integrated solutions.
This discussion enables us to formulate requirements for a
future, adaptive supercomputing platform, which could
contain a diverse set of node architectures.

Keywords-Cray XK7, Cray XE6, Cray XC30, GPU, Xeon Phi,
Adaptive computing, OpenACC, MPI, portability

I. INTRODUCTION
Several years ago, Cray introduced a vision of adaptive

supercomputing, where diverse heterogeneous computing
and memory subsystems would be integrated in a unified
architecture. Such a system may include massively-
multithreaded systems by Cray, FPGAs and recent instances
of accelerator devices such as GPUs and Intel Xeon Phi. In
fact, the most recent generation of Cray system called
Cascade would support contemporary accelerator
technologies. 1 There have been announcements for the
support of NVIDIA GPU devices and Intel Xeon Phi [5]
accelerators. Even today, Cray XK series platforms combine
two sets of memory and processor architectures within a
single node and system design. The Cray XK6 platform
contains NVIDIA Fermi accelerators while the Cray XK7
platform has NVIDIA Kepler accelerators [6][12]. Using the
Cray XK7 platform as a reference, in this report we analyze
readiness of a unified programming and operational interface
for the next generation of hybrid architectures.

CSCS has recently upgraded a 3-cabinets Cray XK6
system to an XK7 platform by upgrading the accelerator
devices, NVIDIA Tesla GPUs. Cray has incorporated

1 Cray News release dated Nov 08, 2012
http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-
newsArticle&ID=1755982

NVIDIA driver, programming and runtime interfaces into its
Cray XE series operating and programming environment.
Cray XK7 system now contains an accelerator device called
NVIDIA Kepler K20X, which can deliver over 1.3 TFlops
(double-precision) performance. This is about a factor of
two improvement compared to the previous generation
device, NVIDIA Fermi X2090. There have been no changes
to the processor and memory configuration of the node.
Together with the hardware upgrade, NVIDIA updated the
programming interface to CUDA 5 and introduced new
features such as HyperQ, dynamic parallelism, GPUDirect-
RDMA and Tesla Deployment Kit [7]. Cray operating
system namely CLE and the programming environment (PE)
have also been updated together with the device upgrade,
however, not all new features of the device are currently
available on the system. In this report, we provide details on
the integration challenges and analyze possible hardware and
software dependencies.

The integration challenges of the Cray XK7 platforms
provide us opportunities to characterize code development,
execution and operational requirements of an adaptive
supercomputing platform. A unified architecture should
provide a common interface for:

• Code development and refactoring
• Compilation
• Tuning
• Debugging
• Scaling
• Production runs
• Management and operations
• Maintainability and upgradability

There should be a migration path for not only between

different Cray platforms but also for applications that are
being developed at local servers and clusters to the Cray
environment. Figure 1 shows how different components of
the system need to be adapted to provide a unified interface
across multiple systems. There is an overlap between the
components that are required for code porting, development
and tuning, and for an environment where users submit
production level jobs. Likewise, there are some tools that are
unique for system administrators such as system-wide
monitoring and diagnostics but then there are some resource
management interfaces that will be required by both
production level users and system administrators.

Figure 1: A high level view of code development, production and operational needs for an adaptive supercomputing platform, which may be composed of
homogenous and heterogenous multi-core resources. Overlapping components for individual needs have been shown in the figure.

A thorough discussion on each individual component

listed in Figure 1 is beyond the scope of this paper. In this
paper, we attempt to highlight technologies that are portable
across x86_64, NVIDIA GPU and Intel Xeon Phi systems
and provide early experiences, status and results. We present
the status of the technologies on the Cray XE6, Cray XK7
and Cray XC30 platforms [15][19]. Cray XC30 is the new
generation of Cray system, which is composed of Intel
processors, a new interconnect technology called Aries and a
new topology named dragonfly [14]. Unlike the Cray XK
series systems where the interface to the PCIe based
accelerator technology is provided through a custom
interface to the CPU, the Cray XC30 and its hybrid variants
can be considered similar to a standard Linux cluster, where
both accelerator and network interface is PCIe. Therefore,
the Cray XC30 based hybrid processing nodes may provide a
path to adaptive supercomputing or unified programming
and execution environment. In this paper, we evaluate the
requirements for two hypothetical systems with nodes
containing either NVIDIA Kepler GPUs or Intel Xeon Phi
accelerators and then discuss readiness of the Cray
environment, only in the context of portable technologies.

The portable technologies presented and discussed in this
paper are as follows:

• OpenACC/OpenMP
• OpenCL
• Libsci
• Accelerator aware MPI
• Performance tools (perftools)
• Debugger
• Resource management

The most widely used programming language for GPU

devices namely NVIDIA CUDA has not been discussed
because it is currently not portable to other devices.
Similarly, CUDA related performance and debugging tools
that are available within the NVIDIA SDK are not discussed
in detail in this paper. Integration on external toolsets such
as NVIDIA SDK into the Cray programming and execution

environment is an important topic of discussion but it is
beyond the scope of this paper.

The paper is organized as follows: section 2 provides a
background to the Cray XK7 platform, portable technologies
and current status. In section 3, we provide details on
portable programming interfaces, multi-platform tools and
utilities. A brief analysis for Intel Xeon Phi programming
and execution environment is provided in section 4, together
with a discussion on requirements for an adaptive
supercomputing environment. We then summarize our
findings in section 5 and provide a plan of work for the next
steps, which are necessary for developing a unified
architecture for future hybrid and non-hybrid Cray systems.

II. CRAY XK7 PLATFORM AND PORTABLE
TECHNOLOGIES

A Cray XK7 node is composed of an AMD Interlagos
processor socket, DDR3 memory, an NVIDIA K20X GPU
and a Cray Gemini network interface. An AMD Interlagos
processor is composed of 16 Opteron cores or 8 compute
modules. The CSCS Cray XK7 system has 32 GBytes of
DDR3-1600 memory. The K20X device is composed of 6
GBytes (non-EC) GDDR5 memory and has 14 SMX units.
The device and the CPU are connected via a PCIe-
Hypertransport bridge chip. The network connection is also
via the Hypertransport link. A Cray XE6 node, in
comparison, has two Interlagos sockets, has same amount of
memory but twice the memory bandwidth. Two Cray XK7
and Cray XE6 nodes are connected to a single Gemnin chip.
The schematic of the two systems is shown in figure 2.

 In contrast, a Cray XC30 node is composed of two Intel
Sandy Bridge sockets and a PCIe 3.0, 16x connection to the
Aries interface chip. The CSCS Cray XC30 system has 32
GBytes of DDR3-1600 memory. Unlike the Cray XK7 and
XE6 platforms, four compute nodes are connected to a single
Aries chip. The network topology is also different. The
Cray XC30 system has a dragonfly topology with optical
connections. The operating environment on the two
platforms is also different, CLE 4.x vs. CLE 5.x.

!"#$%#$&$'"()$*+%
,*#%+-*.*/%

01"#-23"*4'$&$'%%
$5$2-3"*%$*&.1"*)$*+%

6($1,3"*7%,*#%
),*,/$)$*+%

01"/1,)).*/%
',*/-,/$7%

8.91,1.$7%
:$9-/%
+""'7%

0$1;"1),*2$%
+""'7%

<*+$/1,3"*%=%
.*+$1"($1,9.'.+>%

?$7"-12$%
),*,/$)$*+% @22"-*3*/%

A"*.+"1.*/%=%
#.,/*"7327%

Figure 2: Comparison of Cray XE6 and Cray XK7 blades, each with two compute nodes and a Gemini interconnect chip [13].

The similarities and differences of the Cray XE6 and

Cray XK7 platforms are shown in Figure 2. In terms of
the software stack for programming and execution
environment, there are a number of similarities and
difference. Figure 3 shows the overlap and new features
of the Cray XE6, Cray XK7 and Cray XC30 programming
environment. Cray XK7 and Cray XE6 share the same
CLE and I/O stack but differ in programming environment
including the Cray numerical libraries (libsci), MPI and
tools, which have extensions for the GPU devices. In
other words, Cray XK7 platform offers a complete
software stack of a Cray XE6 platform to allows for the
multi-core only programming. To enable the GPU
devices, NVIDIA GPU driver and CUDA SDK have been
included. These in turn interface with other Cray and third
part compilers and tools. Details on the portable
components are provided in the next section.

Figure 3: Comparison of software stack for Cray XE6, Cray XK7 and

Cray XC30 platforms. Cray XE6 and Cray XC30 are homogenous
multi-core platforms with distinct hardware and software stack.

As indicated earlier, the Cray XC30 programming and
execution environment is similar to the Cray XE6
platform, but has been updated for the Intel processors and
the Aries interconnect. The CLE and kernel are different
and MPI has been tuned for Aries network topology and
routing. In addition, there is Hyperthreading available on
the processor nodes.

Table 1 provides the status and availability of the
portable system components. OpenACC and OpenMP for
accelerators are considered as incremental programming
approaches for multi-core and hybrid multi-core systems
such as NVIDIA GPU and Intel Xeon Phi [8][9].
OpenACC offers a set of standard directives and compilers
are available from Cray, PGI and HMPP. The OpenMP
consortium is currently reviewing extensions for
accelerator devices. OpenCL is a platform independent
API for multi-core and accelerator devices. There is a
standard and device vendors such as NVIDIA, AMD and
Intel provide OpenCL compilers for their respective
devices. Libsci is a tuned numerical library from Cray,
which has been extended as libsci_acc for GPU aware
implementation of the BLAS routines [4]. Cray has also
extended the MPI library such that MPI calls can be
directly made onto the GPU pointers. In addition to
programming languages, libraries and MPI, Cray
performance tools called perftools have incorporated
features that allow users to analyze and investigate issues
that influence performance of accelerated codes.
Specifically, there have been extensions for the
investigation of OpenACC codes that have been developed
using the Cray OpenACC compiler. CSCS has the Allinea
DDT debugger for both scalable and accelerated code
debugging [1]. DDT has also been extended for CUDA
and OpenACC applications. It can also be used for multi-

!"#$%&'(%)*+,% !"#$%&'(%)*+,% !"#$%&-.%)*+,% !"#$%&-.%)*+,%

/0%12$3,4%
556/78(99%%%
:;3,"*<%
(0.0%

8(%12$3,4%
556/78(99%%%

:;3,"*<%
(0.0%

(%12$3,4%
1556=%

)>?5?@%
-09&%

core only MPI and OpenMP debugging, and Allinea has
announced support for the Intel Xeon Phi [2]. On the
CSCS Cray XK7 system, users automatically have access
to the GPU resource. However, CSCS is interested in
managing GPU devices and other accelerators as
individual resources and would like to understand usage of
GPU resources for accounting and resource allocation
purposes. CSCS currently use SLURM as a resource
manager and scheduler for all systems including the Cray
XE6, Cray XK7 and Cray XC30 platforms. Currently
GPU usage has not been requested and reported through
the Cray ALPS interface to the SLURM database.

TABLE I. STATUS OF PLATFORM INDEPDENT TECHNOLOGIES
WITHIN THE CRAY COMPILER ENVIRONMENT (CCE) AND THIRD PARTY

TOOLS ON MULTICORE CRAY XE6 AND XC30 AND HYBRID MULTICORE
CRAY XK7 PLATFORM WITH GPU DEVICES

Status and details

Cray XK7 Cray XE6 Cray XC30

OpenACC CCE, PGI &
CAPS PGI§ no

OpenMP for
accelerators* No No No

OpenCL CPU + GPU CPU§ No

Numerical libraries libsci_acc/libsci libsci libsci
Accelerator aware
MPI CCE MPT — —

OpenACC debugger Allinea DDT — —
Performance tools
(Cray perftools,
Vampir and TAU)

MPI, OpenMP,
OpenACC,
CUDA

MPI,
OpenMP

MPI,
OpenMP

Resource
management &
accouting (SLURM)

CPU only CPU CPU

* proposed extensions is currently under review
§ possible but currently not available

III. EVALUATION OF CRAY XK7 PLATFORM
INDEPENDENT TECHNOLOGIES

A. OpenACC Accelerator Directives
In order to facilitate an incremental adoption of the

accelerator devices, a few directive-based standards have
been introduced. Cray compiler environment (CCE)
provides support for the latest standard for accelerator
programming called OpenACC. The OpenACC directives
provide control for the following functionalities: regions
of code to accelerate, data to be transferred to and from the
device, and compiler hints for loop scheduling and cache
usage. In the simplest form, an OpenACC code may
comprise of a couple of additional statements:

!$acc parallel loop
DO i = 1,N
a(i) = i
ENDDO
!$acc end parallel loop

CSCS has been deeply involved in a number of

programming models for heterogeneous node

architectures. From our perspective, directive-based
approaches (e.g. OpenACC) are one of the many tools in
the toolbox that can help developers with porting their
codes to future node architectures. For some of the
parallel applications running at CSCS, there are clear
benefits for retaining the original overall code structure
and adding directives to control data movement and
expose parallelism. Two examples of OpenACC success
stories that run on CSCS systems include the COSMO
weather code and the ICON climate model -- both of these
prototype applications have shown significant speedups
compared to their CPU implementations.

At CSCS, we provide application developers with all
three commercial OpenACC compiler implementations:
CAPS HMPP, the Cray Compiling Environment (CCE),
and PGI Accelerator. Being able to swap between each
vendor's implementation has proven to be invaluable
during periods of heavy OpenACC application
development. We have found that each vendor's
implementation has its own strengths and weaknesses
within the context of a given application.

Here are some of the challenges that we have
experienced with using OpenACC on multi-node GPU
applications:

• Multiple developers have inquired about utilizing

OpenACC in their C++ codes. The upcoming
OpenACC v2.0 standard is expected to provide
some key support in terms of unstructured data
lifetimes (e.g. for controlling data on the
accelerator in constructors and destructors).
Future support for deep copies will also be highly
useful in this situation.

• One of our user's applications requires the ability
to integrate separate CUDA and OpenACC
components together in the same executable. For
this, OpenACC's "host_data" clause is essential to
make the OpenACC device array addresses
available to CUDA. However, PGI has not yet
fully supported this feature that is part of the
OpenACC v1.0 standard.

• Lack of support for multi-dimensional C arrays
required an application to be heavily modified to
linearize its array accesses. Solutions to this
general issue are currently being discussed and
implemented by the compiler vendors.

• Getting access to elements of Fortran derived
types within accelerator regions caused compile-
time errors in an application. A workaround was
found for CCE, but not for the other compiler
tested. The compiler vendors are currently
working on a general solution.

• A performance portability situation in one
application has been identified where the
developers had to fork their code into a CPU
implementation and an OpenACC
implementation. The developers found that
widespread loop optimizations for the port to

OpenACC had a negative impact on the same
code running on CPU targets. Along with some
manual loop fusion, it seems likely that adding an
OpenACC loop interchange directive to the
standard would help with performance portability
in some circumstances.

• Hardware portability questions: PGI and CAPS
have announced support for architectures beyond
Nvidia GPUs, but CCE hasn't announced any
future plans for alternative accelerator targets.
Also, it would be useful to developers if CCE
was additionally available on local workstations.

Finally, one of the long-term goals of OpenACC is to

lead to a more robust OpenMP standard for accelerator
computing. If a future version of OpenMP includes
sufficient support for a variety of accelerator architectures
(which is currently unclear!), we believe that OpenACC-
ported applications will be very well positioned to
transition to the future version of OpenMP.

B. OpenCL
OpenCL is a set of open standards that have been

introduced for developing programs for systems with
heterogeneous compute units. Hardware vendors provide
the standard conformant drivers. Hence, OpenCL codes
can be executed on both CPU and accelerators. The
programming model allows for both data and task
parallelism. Like CUDA, there is a concept of parallel
programming for a device where concurrent tasks can be
grouped into work-items. OpenCL memory model is also
somewhat similar to the CUDA memory model, where
memory access options depend on how a data structure has
been declared.

The Cray XK7 includes a standard CUDA 5 software
development kit; from a software development perspective
the main difference between the XK7 installation and
standard Linux clusters is the fact that the nvcc compiler is
not able to find the C/C++ host compiler specified by the
loaded modules, it is therefore required for users to
explicitly set the host compiler to use through the -ccbin
<directory path of gcc executable>.

The SDK from NVIDIA also provides OpenCL
implementation, which conforms to the 1.1 OpenCL
standard and it is 32-bit only. It has to be noted that all the
other OpenCL implementations currently available from
other vendors such as AMD (CPU and GPU), and Intel
(CPU, GPU and Xeon Phi) are 64-bit and 1.2 conformant.
The HyperQ feature of CUDA 5 is also not available for
OpenCL applications. On CSCS Cray XK7 platform,
OpenCL is available for both CPU and GPU devices. We
also provide a custom fix to imitate HyperQ behavior by
allowing multiple MPI tasks or processes connect to a
single GPU.

Our experience with OpenCL on different platforms
indicates that on platforms other than the Intel Xeon Phi
performance portability can usually be achieved by
changing the kernel launch configuration (total number of
threads and number of threads per work-item) and the size

of data buffers without major changes to the kernel code.
On the Intel Xeon Phi optimizations that work on both
GPU and CPU like caching into __local memory do not
seem to apply.

C. Numerical Libraries
The Cray Scientific Libraries package, LibSci, is a

collection of numerical routines optimized for the targeted
Cray platforms [4]. A subset of the routines are extended
for accelerators, namely libsci_acc. The Cray LibSci
collection contains the following libraries, which are
automatically called when libsci is loaded:

• BLAS (Basic Linear Algebra Subroutines,

including routines from the University of Texas
64-bit libGoto library)

• BLACS (Basic Linear Algebra Communication
Subprograms)

• LAPACK (Linear Algebra Routines, including
routines from the University of Texas 64-bit
libGoto library)

• ScaLAPACK (Scalable LAPACK)
• IRT (Iterative Refinement Toolkit), linear solvers

using 32-bit factorizations that preserve accuracy
through mixed-precision iterative refinement

• CRAFFT (Cray Adaptive Fast Fourier Transform
Routines)

• FFT (Fast Fourier Transform Routines)

In order to harness the full potential of hybrid systems,

it is crucial to rely on routines that take advantage of both
the CPU (e.g the SIMD unit) and the accelerator
processing power (e.g GPGPU or Xeon Phi). However,
because of the heterogeneous configuration of hybrid
systems, hand-tuning routines can be extremely difficult or
tedious, even for very simple algorithms like GEMM.
Fortunately, Cray provides an accelerated numerical
library (libsci and libsci_acc), which includes some
functions that have been optimized to run in hybrid host,
multithreaded and GPU accelerated configurations. The
library has been designed to work in different modes: it
can work without any code modifications where data
transfers to and from the device are hidden from users and
it allows modifications to enable code developers to hide
data transfer latencies. For example, a user can make the
following call (using the normal Lapack interface):

dgetrf(M, N, A, lda, ipiv, &info)

Depending on the size of A, libsci will either run the

dgetrf routine on the host, the device or both so that total
performance will be maximized on the node. If instead of
CPU, the GPU device pointers are being passed the code
will execute on the device:

dgetrf(M, N, d_A, lda, ipiv, &info)

Data must be transferred to the GPU prior to the call to

improve performance. Finally, each routine has a device

(_acc suffix) and a host (_cpu suffix) interface to give a
higher degree of control to the user. For instance, calling
dgetrf_acc (resp. dgetrf_cpu) will force the execution on
the device (resp. the host). The libsci accelerator interface
can also be invoked within the directives environment:

!$acc data copy(c), copyin(a,b)
!$acc host_data use_device(a,b,c)
call

dgemm_acc('n','n',m,n,k,alpha,a,lda,b,l
db,beta,c,ldc)

!$acc end host_data
!$acc end data

Table II lists the performance of libsci for the DGEMM
routines, which has been highly tuned for different target
platforms.

TABLE II. STATUS OF PLATFORM INDEPDENT TECHNOLOGIES
WITHIN THE CRAY COMPILER ENVIRONMENT (CCE) AND THIRD PARTY

TOOLS

Platform
Peak floating-point

performance (double-
precision GFLOPS/s)

DGEMM
performance using

libsci/libsci_acc
Cray XE6 (dual-
socket AMD
Interlagos)

269 228

Cray XK6
(NVIDIA X2090) 665 450

Cray XK7
(NVIDIA K20X) 1311 1180

Cray XC30 (dual-
socket Intel Sandy
Bridge)

333 315

D. Accelerator Aware MPI
MPI libraries such as MVAPICH2 [20], OpenMPI and

recently Cray MPI have added support for CUDA memory
pointers such that code developers do not need to
explicitly transfer data between host and device memories.
Like any platform specific MPI library from Cray, this
MPI library provides an optimal interface to transfer data
between the GPU devices over the high-speed
interconnect. We provide details of a project that
successfully exploit this feature.

Many HPC applications use domain decomposition to
distribute the work among different processing elements.
To manage synchronization overheads, decomposed sub-
domains overlap at the boundaries and are updated with
neighbor values before the computation begins. A subset
of applications using domain decomposition is finite
difference kernels on regular grids, which are also referred
to as stencil computations, and the overlapping regions are
called ghost or halo regions. Typically, these applications
make use of MPI Cartesian grids and each process handles
a regular multi-dimensional array of elements with halo
elements.

Even though the data exchange pattern (neighbor
exchange) is clearly defined when the Cartesian
computing grid is defined, at application level there are

many parameters that can vary: One is the mapping
between the coordinates of the elements in the domain and
the directions of the coordinates of the computing grids;
the data layout of the domains themselves; the type of the
elements in the domain; the periodicities in the computing
grids to manage the case in which certain dimensions wrap
around or not. Additionally, when we want to deal with
accelerators, which typically have their own address space,
we need also to specify where the data is placed.

While these parameters are application dependent,
others are architecture/platform dependent. Other degrees
of freedom are related to how to perform communication
(e.g., asynchronous versus synchronous), what mechanism
to use to gather and scatter data (halos) from the domains,
etc. All these variables make the specification of a halo
exchange collective operation quite complex. For this
reason we have developed the Generic Communication
Layer (GCL) to provide a C++ library of communication
patterns directly usable by application programmers and
matching their requirements flexibly. At the moment, GCL
provides a rich halo exchange pattern and a generic all-to-
all exchange pattern that allows specifying arbitrary data
exchange but it is not fully optimized.

GCL has been designed as multi-layer software. At
bottom layer (L3) the definition of a communication
pattern involves only data exchange considerations, in
which each process knows what to send to every other
process involved. Above L3 there is a more application
oriented pattern specification (L2), which deals with user
data structures. For instance, the halo exchange
communication pattern at level L2 can process any 2D or
3D arrays, of arbitrary element types, halo widths, and
periodicities. To deal with more arbitrary data structures
and applications, another layer (L1) had been devised to
use high order functions to collect data and communicate,
but this level has not been implemented yet and requires
careful design, that we would like to engage with other
partners. The interface at level L1 would resemble others
found in [16][17][18].

We show here the comparison between XE6 and XK7
machines. We compare two halo-exchange patterns at
level L2: halo_exchange_dynamic_ut and
halo_exchange_generic. The first pattern assumes an
arbitrary number of equally shaped arrays with same
element types, halo widths and periodicities to be
exchanged, but the address of memory will be known only
when the data exchange will be executed. The user then
needs to specify at pattern instantiation time:

1. The element types and number of dimensions of

the arrays;
2. The memory layout of the arrays;
3. The mapping between dimensions of the arrays

and the dimensions of the computing grid;
4. Where the data is stored (either host or GPU

memory);
5. The description of the halos of the arrays in each

dimension (in an order specified by the programmer
convention specified by the layout of the arrays);

Figure 4: Comparison of Cray XE6 and Cray XK7 blades, each with two compute nodes and a Gemini interconnect chip.

The second pattern, halo_exchange_generic is more

relaxed and allows the user to exchange arrays with
arbitrary shapes, layouts, element types, and halos widths.
For this reason at instantiation time the only information
needed at instantiation time is the layout of the computing
grid, the number of dimensions of the computing grid, the
placement of the data (host or GPU), and an upper bound
on the sizes of the arrays and halos, in order to allocate a
sufficient amount of memory for gathering and
exchanging data. At the moment of the exchange each
array will be passed to the pattern as a field descriptor,
which indicates the actual sizes for the data to be
exchanged. Next Figure 4 shows the comparison of a data
exchange on XK7 (Tödi) and XE6 (Rosa) when
performing halo exchange on three 250x250x250 arrays,
with halo width of 3 elements. The time shown includes
gathering and scattering of data and the actual exchange
(from array to array). As can be seen, even though XK7
MPI is not fully optimized for GPU handling, the time for
collecting and placing data, makes the GPU performance
very interesting in terms of performance. Rosa results
shows also the results for two mechanisms for collecting
and placing data, namely hand written loops and calls to
MPI_Pack functions. In this case MPI_Pack (and the use
of MPI_Datatypes) gives the best performance, but on
XK7 this mechanism cannot be used when data is on the
GPU. In this case, handwritten CUDA kernels are used to
collect at source, and to place the data at the destination.

CUDA memory copies are performed from/to host
memory so to use MPI send and receive routines to
exchange data. Other MPI implementations allow the use
of GPU memory pointers, which make it possible to
simplify the library code and improve performance by
employing pipelining between GPU memory transfers and
network injection.

E. Debuggers
We have had some success using the Allinea DDT and

TotalView debuggers at scale on CPU-based systems at
CSCS [1][10]. For example, there was a recent situation
where a hybrid MPI+OpenMP application was hanging 10
minutes into its run across the full 12 cabinets of our Cray
XC30 system. To troubleshoot this issue, we were able to
attach DDT to the application in its hung-state. DDT's
parallel call-stack feature pointed to an abnormal situation
where thousands of processes were waiting at a barrier for
a single process to finish work in a recursive function.
Given this information, application developers were able
to find the underlying cause of the problem.

Moving forward, we would like this success story to
continue into the realm of heterogeneous computing.
Allinea currently has support for Nvidia GPUs, and they
have announced support for the Intel Xeon Phi
architecture.

Figure 5: Output of the Allinea DDT debugger for an MPI+OpenACC application

To debug a multi-node GPU application, DDT gives

the ability to step into GPU kernels and to inspect memory
on the GPU. At CSCS, we have already had some luck
using DDT to debug MPI+GPU applications. As a simple
example, when investigating optimizations to the
MPI+OpenACC version of the Mantevo miniGhost
benchmark, 2 we were able to use DDT to pause the
execution and inspect the variables directly before the
code crashed on the GPUs, which is shown in Figure 5.

However, we have also had a number of challenges
with debugging GPU applications over the past year. One
example was related to the debugger freezing when
attempting to step past CUDA API calls -- this was fixed
with an updated version of Nvidia's cuda-gdb packaged
within DDT 4.0. A currently unresolved issue involves an
MPI+CUDA+OpenACC application that returns a
"CUDA_ERROR_INVALID_DEVICE" error solely when
running within the debugger. While more investigation is
required, these types of errors have typically required
timely updates to the Nvidia drivers on Cray systems.
Additionally, there are ongoing OpenACC-specific
debugging challenges -- CCE provides full device
DWARF debug support, while the other vendors provide
only partial support. Finally, users who want to debug

2 http://www.mantevo.org/

their scalar non-MPI GPU codes on Cray systems run into
DDT/aprun errors; the workaround is to add a dummy
MPI_Init call in the code, but these types of usability
issues may inhibit first-time users.

F. Performance Tools

Profiling tools are essential for hybrid computing

because the additional complexity of both host and device
computation makes analysis of application performance
more challenging. Some of the tools discussed below, like
CrayPAT and Vampir [11], use PAPI3 to access hardware
counters. Thus, these tools can be extended to provide
hardware counter information for architectures that are
supported by PAPI. This is currently the case for NVIDIA
GPUs, which PAPI accesses via the CUPTI interface
provided by NVIDIA. Support for Xeon Phi was added to
PAPI 5.1.0, however we have been unable to test this
support on the Xeon Phi test cluster at CSCS because the
Xeon Phi devices require a kernel patch, which is
incompatible with recent releases of the Xeon Phi software
stack. Nonetheless, once these issues are resolved,
profiling tools that use PAPI will naturally extend to
support Xeon Phi.

3 http://icl.cs.utk.edu/papi/

Figure 6:Timeline-style performance analysis of asynchronous operations between multiple host CPUs and accelerators.

A hybrid application that utilizes accelerators like

GPUs or Xeon Phi may have several asynchronous events
to keep track of: asynchronous MPI communication,
asynchronous transfer of data between host and device,
and asynchronous execution of kernels on host and device.
Timeline-style profiling tools are particularly useful for
gaining insight into asynchronous events as illustrated in
Figure 6. While the tracing experiments performed by
these tools are generally less scalable than profiling
experiments, the information gathered from timeline-style
performance tools at small to moderate node counts can be
difficult to obtain by other methods. The two products
used at CSCS, Vampir and TAU,4 have had support for
GPUs for some time already, and support for Xeon Phi
should be possible by virtue of both tools also being based
on PAPI.

Highly scalable tools like CrayPAT provide with an
overview of where the code is spending its time. CrayPAT
is very easy to use for GPU applications and can be run
efficiently on thousands of nodes. Currently, support is
best for OpenACC. CUDA applications are supported by
CrayPAT; however, at least in the past, the visibility of the
CUDA kernels was constrained to the surrounding
function call (i.e. a single function containing multiple
CUDA kernel launches will only show the single function
in the profile and not the separate kernels). Additionally,
CrayPAT supports accelerator hardware counters.

NVIDIA and Intel provide GUI-based performance
analysis tools, namely Visual Profiler and VTune, that are
familiar to developers on GPUs a Xeon Phi. These tools
allow users to quickly gather and display useful device-

4 http://www.cs.uoregon.edu/research/tau/home.php

specific performance data, in a format that is tailored to the
accelerator. The visual feedback provided is very useful
for understanding the aforementioned asynchronous
processes, along with features unavailable from their
command line equivalents (e.g. derived performance
counter metrics in Visual Profiler). However, these tools
require cluster compatibility mode (CCM), which is
incompatible with the SLURM scheduling software used
at CSCS. We hope to resolve these issues, because device-
specific profiling tools are important.

G. Resource Managament, Accounting and Monitoring
An HPC center that deploys homogenous and

heterogeneous computing platforms, integrating all
platforms into its ecosystem for management and
monitoring purposes within a 24/7 production environment
is critical. Resource management and accounting is also
central to users within a production environment where
resources are allocated on a project by project basis.
CSCS uses SLURM resource management system, which
is deployed on all of its Cray and non-Cray platforms.
Currently, on the non-Cray platforms, users can declare
their intent by using the gres parameter in their job
submission scripts. On the Cray systems, it is not required
as there is a custom interface on compute node called
ALPS. Furthermore, the GPU devices do not record usage
statistics and cannot be managed like CPU devices for fine
grain core and memory allocation. GPU devices are now
gradually integrated into monitoring systems such as
Nagios.5

5 http://www.nagios.org/

IV. REQUIREMENTS ANALYSIS AND READINESS
Now we consider readiness of the current Cray XK7

platform together with two hypothetical configurations of
the Cray Cascade XC30 system, one with NVIDIA GPU
devices and another with Intel Xeon Phi. We assume that
the host CPU will be similar to a homogenous multi-core
XC30 platform. The readiness of different platform-
independent technologies is listed in Table III. Note that
we only list technologies that are publicly available at the
time of writing this report. For example, PGI and CAPS
[3] have announced OpenACC compilers for the Intel
Xeon Phi devices; however, currently PGI compilers are
not available on the XC30 platform and we have not tested
the functionality on a non-Cray, Intel Xeon Phi cluster.
Likewise, only Intel MPI is available to use on a non-Cray
cluster with Xeon Phi accelerators. We are unable to
confirm whether Cray MPI will be extended to support all
execution modes of the Intel Xeon Phi processors. In
short, for the platform independent technologies listed in
Table III, there is not enough evidence to establish how
these will be transparently supported on two different
heterogeneous XC30 platforms. Based on the publicly
available information and experiences on the Cray XK7
and a non-Cray Intel Xeon Phi cluster, a substantial effort
will be required to realize a unified environment across
multiple platforms.

TABLE III. READINESS OF THE CRAY XK7 SYSTEM AND
HYPOTHETICAL CRAY XC30 SYSTEM WITH GPU AND XEON PHI FOR

PORTABLE SOFTWARE SOLUTIONS (EXCLUDING CUDA AND INTEL
OFFLOAD AND INTRINSICS TECHNOLOGIES). AVAILABILITY OF GPU

TOOLS IS EXTRAPOLATED FROM CRAY XK7 PLATFORM.

Readiness of technologies

Cray XK7 Cray XC30
+ GPUδ

Cray XC30 +
Xeon Phiδ

OpenACC Yes Yes Noξ
OpenMP for
accelerators* No No No

OpenCL Yes Yes Yes

Numerical libraries Yes Yes No
Accelerator aware
MPI Yes Yes No

OpenACC debugger Yes Yes Noξ
Performance tools
(Cray perftools,
Vampir and TAU)

Yes Yes Yesξ

Resource
management and
accounting (SLURM)

No No No

* proposed extensions is currently under review
δ hypothetical configuration
ξ products announced but currently unavailable

V. SUMMARY AND THE NEXT STEPS
Using Cray XK7 as a reference platform, Cray XE6

and Cray XC30 experiences and insights that have been
gathered on non-Cray platforms with NVIDIA GPU and
Intel Xeon Phi devices, we presented an overview of
subset of platform independent, portable technologies that

are central to code development environment and
operational readiness of production platforms. While Cray
XK7 and potentially a hypothetical Cray XC30 with GPU
devices are on target to support the software stack for code
development and execution environment, challenges
remain in fully supporting integration of these systems into
ecosystem and operational environment of an HPC center.
We will therefore continue exploring options for
completing the missing platform-specific components for
an adaptive supercomputing environment both for Cray
and non-Cray platforms. Our near term focus is support
for OpenACC tool chain and tuned, accelerator aware MPI
as well as integration of resource usage and monitoring
utilities on the Cray XK7 platform. In addition, we would
like to investigate how platform specific code development
and execution toolsets can be fully integrated and
supported on Cray platforms to allow for efficient
migration from standard servers and Linux clusters with
accelerator devices.

REFERENCES
[1] http://www.allinea.com/products/ddt/
[2] http://www.allinea.com/news/bid/88837/Allinea-releases-tools-for-

Intel-Xeon-Phi-Coprocessor-developers
[3] http://kb.caps-entreprise.com/how-to-i-use-a-xeon-phi-with-caps-

compiler/
[4] Cray libsci, http://docs.cray.com/books/S-2310-50/html-S-2310-

50/z1026396697smg.html
[5] www.intel.com/xeonphi
[6] Kepler GK110 white paper available from www.nvidia.com
[7] http://www.nvidia.com/object/cuda_home_new.html
[8] http://www.openacc.org/
[9] http://www.openmp.org/mp-documents/TR1_167.pdf
[10] http://www.roguewave.com/products/totalview
[11] http://www.vampir.eu/
[12] Sadaf R. Alam, Jeffrey Poznanovic, Ugo Varetto, Nicola Bianchi,

Antonio Penya, Nina Suvanphim. Early experiences with the Cray
XK6 hybrid CPU and GPU MPP platform, In Proc. CUG 2012.

[13] Alverson, B., Roweth, D., Kaplan, L.: The Gemini System
Interconnect. High Performance Interconnects Symposium. 2010.

[14] Alverson, B., Froese, E., Roweth, D., Kaplan, L.: Cray XC Series
Network. Technical report WP-Aries01-112, Cray Inc. 2012.

[15] Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E.,
Alverson, B., Johnson, T., Kopnick, J., Higgins, M., Reinhard, J.:
Cray cascade: a scalable HPC system based on a Dragonfly
network. Proc. International Conference on High Performance
Computing, Networking, Storage and Analysis (SC '12). 2012.

[16] Nick Edmonds, Douglas Gregor, and Andrew Lumsdaine
http://www.boost.org/doc/libs/1_53_0/libs/graph_parallel/doc/html
/index.html

[17] Harshvardhan, Adam Fidel, Nancy M. Amato, Lawrence
Rauchwerger, "The STAPL Parallel Graph Library," In Wkshp. on
Lang. and Comp. for Par. Comp. (LCPC), Tokyo, Japan, 2012.

[18] Douglas Gregor, Matthias Troyer.
http://www.boost.org/doc/libs/1_53_0/doc/html/mpi.html

[19] Vaughan, C., Rajan, M., Barrett, R., Doerer, Do., Pedretti, K.:
Investigating the Impact of the Cielo Cray XE6 Architecture on
Scientific Application Codes. Proc. IEEE Int. Symp. on Parallel
and Distributed Processing Workshops (IPDPSW '11). 2011.

[20] H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur and D. K. Panda,
MVAPICH2-GPU: Optimized GPU to GPU Communication for
InfiniBand Clusters, Int'l Supercomputing Conf. (ISC), 2011.

