
Comparing Compiler and Library Performance in Material Sci ence Applications on
Edison

Jack Deslippe and Zhengji Zhao
NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA USA

Email: jrdeslippe@lbl.gov

Abstract—Materials science and chemistry applications are
expected to represent approximately one third of the computa-
tional workload on NERSC’s Cray XC30 system, Edison. The
performance of these applications can often depend sensitively
on the compiler and compiler options used at build-time. For
this reason, the NERSC user services group supplies users
with optimized builds of the most commonly used materials
science applications in order to ensure these cycles are used
as efficiently as possible. The materials science and chemistry
codes in question are written in Fortran, C, C++, or a
combination of these languages, and use MPI or other message
passing libraries, OpenMP, as well as linear algebra and FFT
libraries. In this paper, we compare the performance of various
material science and chemistry applications when built with
the Cray, Intel and GNU compiler suites as well as linked
against the MKL, LibSci and FFTW libraries. We compare the
optimal compilers and libraries on Edison with those previously
obtained on the NERSC Cray XE6 machine, Hopper.

Keywords-component; formatting; style; styling;

I. I NTRODUCTION

Materials science and chemistry represent one of the
largest science areas in NERSC’s workload. Application
codes from these fields typically consume approximately 1/3
of the compute cycles at NERSC every year. These codes are
used in research projects that are at the core of many of the
Department of Energy’s energy science goals: for example,
the development of next generation solar energy and carbon
capture materials. In order to increase the productivity of
our users and increase the scientific output of the center,
NERSC supports a set of pre-compiled materials science
and chemistry programs that are commonly used when
conducting research in materials science and chemistry. This
effort is designed to save time for the researchers (who can
subsequently focus more time on science instead of code
compilation) as well as to save compute cycles by ensuring
that researchers are using an optimized version of each code.

Fully optimizing a given application’s performance often
requires a deep understand of the source, an accurate profile
for a representative run and the ability to have changes
to the source accepted upstream. However, in many cases,
significant performance gains can be achieved by simply
optimizing the code over the matrix of possible compilers,

compiler options and libraries available on a given machine.
In this paper, we explore the performance variability of
six common materials science applications at NERSC with
respect to the compilers and libraries available on Edison,
NERSC’s Cray XC30 [1].

NERSC currently supports compilers from three different
vendors on the XC30 system, Edison: Intel, GNU and Cray.
NERSC’s Cray XE6 system, Hopper, additionally supports
the PGI compilers. On Hopper, it has previously been
shown that each of the above compilers produce distinct
performance results, with variations as large as 20% [2].
Thus, it is of interest to the center to determine the optimal
compiler choices for Edison early in the machine’s life cycle.
Additionally, materials science applications generally rely
heavily on math libraries such as FFTW, BLAS, LAPACK
and ScaLAPACK. NERSC provides several library options
for these routines on Edison: FFTW2, FFTW3, LibSci and
MKL. In this paper, we compare the performance of Berke-
leyGW [3], Quantum ESPRESSO [4], VASP [5] LAMMPS
[6], NAMD [7] and NWChem [8] with the compilers and
libraries listed above.

II. M ETHODS

All compilations, except those done on the XE6 machine
Hopper for comparison purposes, were run on Edison,
NERSC’s Cray XC30 system.

Jobs were run out of directories on the local Lustre scratch
filesystem, where all IO was performed. IO was additionally
minimized through run-time options when available. For the
purpose of checking reproducibility, all computations were
performed at least twice, with the lowest runtime chosen in
each case and subsequent runs performed if the runtimes
differed in a significant way.

We test each application build at a range of MPI tasks and,
when available, OpenMP threads to confirm the performance
characteristics from a set of tests is sustained over different
concurrencies.

There are three different compilers available to build
applications on Edison: Intel, Cray and GNU. The Cray
compiler was excluded from the NWChem tests because
there were irresolvable error messages generated during

Compiler Flags
GNU -O3 -ffast-math
Cray (default)
Intel -fast -no-ipo

Table I
COMPILER OPTIONS USED FOR COMPILERS ONEDISON.

compilation or run time. The GNU compiler was excluded
from the VASP test due also to irresolvable runtime errors.

We chose compiler flags for each of the above compil-
ers based on the recommendation from previous NERSC
studies of compiler optimization options on Edison [9].
The recommendations were based on performance studies
across a benchmark suite covering many application areas.
The used compiler flags are listed in Table I. The compiler
optimizations considered for production builds are limited to
those builds with resulting binaries that pass strict validity
checks and can be used for scientific calculations. These
builds do not necessarily represent the highest optimizations
the compilers can reach.

When running hyrbrid MPI-OpenMP calculations (with
BerkeleyGW and Quantum ESPRESSO) we distribute the
MPI tasks evenly across the NUMA nodes (using the aprun
“-S” option) and use the aprun options “-cc numanode”
and “-ss” which relax thread core binding to binding only
to a NUMA node and restrict memory usage from crossing
NUMA node boundaries.

Hyper-threading was not used in any of the benchmarks.
We list below the math libraries used in the optimization

of the test applications.

A. FFTW (2 & 3)

FFTW [10] is a C subroutine library for computing
the discrete Fourier transform in one or more dimensions,
of arbitrary input size, and of both real and complex
data (as well as of even/odd data, i.e. the discrete co-
sine/sine transforms). FFTW3 may be built with a pthread
library (libfftw3 threads) or an OpenMP threaded library
(libfftw3 omp). The use of the threaded libraries requires
minor modifications the applications source code if threaded
FFTW calls are not already supported (e.g. in Quantum
ESPRESSO). In this paper, we used FFTW3 3.3.0.1 unless
otherwise specified.

B. MKL

MKL contains highly optimized, extensively threaded
math routines for science, engineering, and financial ap-
plications. Core math functions include BLAS, LAPACK,
ScaLAPACK, Sparse Solvers, Fast Fourier Transforms and
more. MKL exposes FFT routines through a variety of
interfaces, two of which are made to match the FFTW2 and
FFTW3 interfaces. Thus, MKL’s FFTW interfaces can be
used as a drop in replacement for codes expecting to link

against FFTW2 or FFTW3. In this paper, we used MKL
from composerxe 2013.1.117.

C. LibSci

The Cray scientific libraries package is a collection of
numerical routines optimized for best performance on Cray
systems. The package includes: BLAS, BLACS, LAPACK,
ScaLAPACK, and more. In this paper, we used LibSci
version 12.0.0.0.

III. A PPLICATIONS

A. BerkeleyGW

Version 1.1 (Beta)
BerkeleyGW [3] is a Fortran 90 material science applica-

tion for calculating the spectroscopic, or excited state, prop-
erties of materials starting with Density Function Theory
(DFT) inputs from a variety of codes, including Quantum
ESPRESSO [4]. We tested the epsilon executable, which
computes the dielectric matrix from a set of input DFT
orbitals. This executable typically represents the bottleneck
in a spectroscopic computation. The epsilon executable is
also ideal for testing library performance, since there are
well-defined regions with computational tasks in which 3D
FFT, BLAS (ZGEMM), and SCALAPACK library calls
dominate the compute cycles.

We tested a pre-release of BerkeleyGW 1.1 which is a
Hybrid MPI-OpenMP code relying both on explicit OpenMP
do loops as well as threaded FFT and Linear Algebra
libraries. We varied the number of MPI tasks, number of
threads per MPI task, as well as the compiler and libraries
across runs.

In the BerkeleyGW benchmark calculation, we consider
the (8,0) single walled carbon nanotube (SWCNT) with an
80 Ry. wavefunction cutoff, 14 Ry. dielectric cutoff and
256 empty states. The nanotube is placed in a supercell of
volume1.1 · 104AU3 leading to a dielectric matrix of size
9770x9770.

When linking MKL libraries with the Cray compiler, the
GNU MKL libs were used.

B. Quantum ESPRESSO

Version 5.0.2
Quantum Espresso [4] is a Fortran 90 material sci-

ence program that performs electronic structure calculations
within Desnsity Functional Theory (DFT) for materials mod-
eling at the nanoscale level. Quantum ESPRESSO utilizes
a plane wave (PW) basis set and supports norm-conserving
and ultra-soft pseudopotentials as well as PAWs. Tests were
run using the default Davidson diagonalization scheme.

FFTs are used extensively in Quantum ESPRESSO for
the application of the Hamiltonian,H , to a wavefunction
ψ. The default FFT library for Quantum ESPRESSO is
FFTW3, with an option to use an internal FFTW2 version.
Despite being, in principle, a hybrid MPI-OpenMP code, by

default Quantum ESPRESSO does not support the threaded
FFTW3 libraries, and contains explicit OpenMP loops only
around FFTs done with the internal FFTW2 version. We
therefore made a small code modification allowing support
for threaded FFTW3. We tested the FFTW3 and MKL FFT
libraries. Threaded linear algebra calls do not require any
code modifications. We tested the MKL and LibSci linear
algebra libraries. Our tests were performed over 16 to 256
cores.

In the QE benchmark, we perform a self-consistent field
(SCF) calculation on the (8,0) single walled-carbon nanotube
(SWCNT) with an 100 Ry wave-function cutoff, 128 bands,
12 kpoints, in an1.1 ·104AU3 unit cell. We vary the number
of MPI tasks and OpenMP threads and use 4 k-point pools
for each run.

When linking MKL libraries with the Cray compiler, the
GNU MKL libs were used.

C. VASP

Version 5.3.3
VASP [5] is a DFT program that computes approximate

solutions to the coupled electron Kohn-Sham equations for
many-body systems. The code is written in Fortran 90
and MPI, and uses FFT and BLAS/Lapack linear algebra
libraries. Plane waves basis sets are used to express elec-
tron characteristics such as electron wavefunctions, charge
densities, and local potentials. Pseudopotentials and PAWs
are used to describe the interactions between electrons and
ions. The VASP benchmark was performed using two test
cases provided by NERSC users. The first test system
contains 154 atoms and used to test a commonly used
diagonalization scheme. The other benchmark test is for a
hybrid calculation for a system containing 105 atoms. We
tested the VASP performance over GNU, Intel and Cray
compilers, the MKL and LibSci BLAS/LAPACK libraries,
and three FFT libraries options, FFTW, MKL and an internal
FFTW library named ”FURTH.” We ran each benchmark
test at different concurrencies. Our tests were designed to
check if the performance sustains itself over the different
concurrencies, computation types and system sizes. For
VASP, we used an additional crayftn flag, “-0 ipa0”, which
disables inter-procedural analysis.

D. LAMMPS

Version 22Mar13
LAMMPS [6] is a C++ classical large-scale molecular

dynamics code. It computes Newtons equations of motion
for systems of particles in a liquid, solid, or gaseous state.
Only the compiler itself was varied in the test, due to
minimal dependence on libraries. Each compiler was tested
using the three LAMMPS benchmark problems described
below:

1) LJ: Atomic fluid, Lennard-Jones potential with 2.5
sigma cutoff (38 neighbors per atom), NVE integration.

2) Chain: Bead-spring polymer melt of 100-mer chains,
FENE bonds and LJ pairwise interactions with a2(1/6)

sigma cutoff (5 neighbors per atom), NVE integration.
3) Rodo: Rhodospin protein in solvated lipid bilayer,

CHARMM force field with a 10 Angstrom LJ cutoff (375
neighbors per atom), particle-particle particle-mesh (PPPM)
for long-range Coulombics, NPT integration.

E. NWCHEM

Version 6.1.1
NWChem [8] is a chemistry application containing many

physical approaches, such as MP2, CCSD and DFT, that is
designed to be scalable and functional on high performance,
parallel compute systems. It is a Fortran code, and its
parallelization is implemented with the Global Array library.
It can perform quantum mechanic functions, classical func-
tions, hybrid functions, potential energy surface analysis, and
electronic structure analysis.

Our NWChem benchmark is a coupled cluster test case
from the standard NWChem distribution, cytosineccsd.nw.
We tested the performance difference when using different
compilers while linked to the 64 bit integer MKL library.
We test performance when run with between 32 and 256
cores.

We used the armci-mpi library with GA-5.0 for our study.
We were unable to produce a successful NWChem exe-

cutable with the Cray compilers.

F. NAMD

NAMD [7] is a C++ chemistry application that performs
molecular dynamic simulations that compute atomic trajec-
tories by solving equations of motion numerically using
empirical force fields. The Particle Mesh Ewald algorithm
provides a complete treatment of electrostatic and Van
der Waals interactions. NAMD is parallelized through a
communication library called Charm++. NAMD uses FFTW
libraries. NAMD uses FFT libraries. However, since the
runtime is not sensitive to the choice of the FFT libraries,
we used FFTW2 single precision libraries in the compu-
tation. In addition, we were unable to produce a working
executable with Cray compilers. Therefore our performance
comparison was limited between Intel and GNU compilers.
The Benchmark used for NAMD was the standard STMV
1,066,628-atom system.

IV. RESULTS

A. BerkeleyGW

BerkeleyGW was tested with all of GNU, Intel and Cray
compilers and FFTW, LibSci and MKL. A summary of the
overall performance of the code on our example benchmark
calculation is shown in Fig. 1.

As seen in the figure, the Intel Compiler + MKL library
result is the best overall combination for both 1 and 4
OpenMP threads per MPI task. For a single thread, the MKL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: 1 Thread/Task, Best Library Chosen Per Compiler

GNU+MKL
Cray+MKL
Intel+MKL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: 4 Threads/Task, Best Library Chosen Per Compiler

GNU+MKL
Cray+FFTW(_threads)+LibSci

Intel+MKL

Figure 1. Summary of compiler performance for BerkeleyGW. See text
for discussion and explanation of labels. The x-axis denotes the number of
cores used via a combination of MPI tasks-OpenMP threads.

library is the best choice for each compiler. The combination
of the Cray compiler + MKL actually outperforms the Intel
+ MKL combination when using a single thread. However,
as we discuss more below, our Cray compiler + MKL build
attempts yielded poor performance when multiple threads
are used. The (threads) label in the figure refers to the use
of the provided libfftw3 threads library. The GNU compiler
results have an approximately 100 second IO overhead when
compared to the Intel and Cray results that we were not able
eliminate - as shown in Fig. 2. This IO overhead occurred
for all libraries used. This overhead is illustrated by the
off-set present in Fig. 1. Thus, the Intel compiler + MKL
combination is the only compiler and Library combination
that performs well across the different number of MPI tasks
and OpenMP threads that we considered.

In order to more fairly compare the FFT and Linear
Algebra library performance it is useful to compare the
library performance for a single compiler. We were only
able to successfully compile and run our benchmark with
all the available libraries for the case of the GNU compiler.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: GNU + MKL

1 Thread/Task
2 Threads/Task
4 Threads/Task
8 Thread/Task

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: GNU + FFTW (_threads) + LibSci

1 Thread/Task
2 Threads/Task
4 Threads/Task
8 Thread/Task

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: GNU + FFTW (_omp) + LibSci

1 Thread/Task
2 Threads/Task
4 Threads/Task
8 Thread/Task

Figure 2. Wall-time vs cores for BerkeleyGW built with the GNU compiler
with several different libraries. See text for discussion and an explanation
of labels. The x-axis denotes the number of cores used via a combination
of MPI tasks-OpenMP threads.

The results are summarized in Fig. 2.
It is seen in Fig. 2 that MKL consistently outperforms

the FFTW + LibSci combinations. The label (threads) in
the figure refers to use of the provided libfftw3threads
library while (omp) refers to the use of our manually

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: Cray Compiler 1 Thread/Task

MKL
FFTW (_threads) + LibSci

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: Cray Compiler 4 Threads/Task

MKL
FFTW (_threads) + LibSci

Figure 3. Wall-time vs cores for BerkeleyGW built with the Cray compiler
with several different libraries. The x-axis denotes the number of cores used
via a combination of MPI tasks-OpenMP threads.

compiled libfftw3 omp library. The plots show there is a
walltime reduction for using multiple OpenMP threads per
MPI Task (for a fixed number of cores) with the MKL build
but a significant overhead when using the libfftw3threads
library. This could potentially be explained by the thread
implementation in libfftw threads library not performing
well when combined with explicit OpenMP in the code,
seemingly even when the threaded regions are distinct from
each other. The use of the libfftw3omp library, which was
built for each compiler individually, and therefore contains
the same OpenMP implementation as the linear algebra
libraries and the rest of the code, appears to mitigate this
conflict.

Figure 3 shows a summary of the BerkeleyGW results
for the Cray compiler. In this case, we show results only for
Cray’s provided libfftw3 threads and for MKL.

From Fig. 3, we see that neither the threaded FFTW
library, nor MKL, perform well with multiple threads with
the Cray compiler in our tests. This might again be attributed
to conflicts arising from multiple OpenMP implementations

when other OpenMP regions exist in the code. The Cray
compiler + MKL library combination proved to be par-
ticularly problematic. It should be noted that Intel does
not provide a Cray compiler specific MKL library. For
the numbers shown, we linked against the threaded MKL
libraries intended for use with the GNU compiler. This
may help explain the particularly poor performance in the
Cray + MKL combination when multiple threads are used.
One may use the sequential MKL libraries, but due to
BerkeleyGW’s heavy use of threaded libraries, the result is
also poor. We additionally tried using MKL with libiomp5
(while removing the cce libomp.a from the build link line)
without better success. We were unable to find an MKL
library fully compatible with the Cray compiler or a suitable
workaround, which limited the applicability of the Cray
compiler for BerkeleyGW, since MKL outperforms FFTW
and LibSci substantially. If a workaround could be found, the
Cray compiler + MKL option could potentially outperform
Intel+MKL.

We next consider the performance of the various libraries
with the Intel compiler for BerkeleyGW. As of the time of
writing, Cray has not released a version of LibSci compatible
with the Intel compiler; so we limited our study to the
comparison of the performance of BerkeleyGW using the
MKL library for linear algebra while varying the FFT
libraries.

From Fig. 4, we see that the code with MKL FFTs
generally outperforms the code with FFTW. This is par-
ticularly evident with 4 threads, where, once again, the
provided libfftw3 threads library performs poorly. While
the manually compiled libfftw3omp library does not gain
significant overhead with the use of threads, it is still
generally outperformed by the MKL library.

In order to provide a clearer picture of library performance
within BerkeleyGW, Fig 5 shows the wall-time spent in FFT
routines and ZGEMM for the various libraries with a single
OpenMP thread per MPI task. The results shown are from
BerkeleyGW compiled with the GNU compiler. However,
the library timings are expected to be insensitive to the
compiler. Because the performance of libfftw3threads and
libfftw omp is nearly identical for a single thread, the FFTW
curves have been combined.

The MKL FFTW interface outperform the FFTW3 in-
terface across all core counts and the MKL ZGEMM out-
performs the LibSci ZGEMM across all core counts. The
latter difference is very significant leading to a reductionin
ZGEMM walltime by nearly a factor of 2.

We are able to reproduce the MKL ZGEMM advantage
over LibSci in a standalone ZGEMM test code. The same
advantage is not present in a standalone DGEMM example,
however, where the difference between the two libraries
is within a few percent. This suggest that the ZGEMM
performance gap is something Cray will likely close in a
future release of LibSci.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: Intel Compiler 1 Thread/Task

MKL
FFTW (_threads) + MKL

FFTW (_omp) + MKL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: Intel Compiler 4 Threads/Task

MKL
FFTW (_threads) + MKL

FFTW (_omp) + MKL

Figure 4. Wall-time vs cores for BerkeleyGW built with the Intel compiler
with several different libraries. The x-axis denotes the number of cores used
via a combination of MPI tasks-OpenMP threads.

B. Quantum ESPRESSO

Quantum ESPRESSO was tested with all of GNU, Intel
and Cray compilers and FFTW, LibSci and MKL. A sum-
mary of the overall performance of the code on our example
benchmark calculation is shown in Fig. 6.

As seen in the figure, the Intel Compiler + MKL library
and GNU Compiler + MKL library result in the best overall
combinations for both 1 and 4 OpenMP threads per MPI
task. The combination of the Cray compiler + MKL slightly
outperforms the other combinations when using a single
thread. However, as was the case in BerkeleyGW, the Cray
compiler + MKL again yielded less performance when
multiple threads were used, again potentially attributable
to conflicting OpenMP implementations (see this discussion
in the BerkeleyGW section). As above, the (threads) label
refers to the use of the provided libfftw3threads.

We note that our benchmark example is dominated by
the FFT step. In order to more fairly compare the library
performance (in this case predominately FFT) it is useful to
compare the library performance for a single compiler. The

 0

 50

 100

 150

 200

 250

 300

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: FFT Time (1 Thread/Task)

MKL
FFTW

 0

 200

 400

 600

 800

 1000

 1200

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: zgemm Time (1 Thread/Task)

MKL
LibSci

Figure 5. FFT and ZGEMM library performance within BerkeleyGW
when compiled with the GNU compiler. Runs were computed witha single
OpenMP thread per MPI-task.

results for the GNU compiler are summarized in Fig. 7.
It is seen in Fig. 7 that MKL consistently outperforms

the FFTW + LibSci library combinations (in this case
dominated by FFTW time). The label (threads) in the
figure again refers to use of the provided libfftw3threads
library while (omp) refers to the use of our manually
compiled libfftw3 omp library. The plots show there is
significant overhead when using the libfftw3threads library.
Once again, this is potentially attributed to that the thread
implementation in the libfftwthreads library not performing
well when combined with explicit OpenMP in the code, even
when the threaded regions are distinct from each other. The
use of libfftw3 omp library, which is built with the same
OpenMP implementation as the linear algebra libraries and
the rest of the code, mitigates this conflict.

Like BerkeleyGW, therefore, in Quantum ESPRESSO,
MKL outperforms competing libraries. Our inability to
find an MKL library fully suitable for the Cray compiler
(and the corresponding poor multi-threaded performance in
Cray+MKL builds using the GNU MKL libs) makes this

 0

 10

 20

 30

 40

 50

 60

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

QE: 1 Thread/Task, Best Library Chosen Per Compiler

GNU+MKL
Cray+MKL
Intel+MKL

 0

 10

 20

 30

 40

 50

 60

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

QE: 4 Threads/Task, Best Library Chosen Per Compiler

GNU+MKL
Cray+FFTW+LibSci

Intel+MKL

Figure 6. Summary of compiler and library performance for Quantum
ESPRESSO. See text for discussion and explanation of labels. The x-axis
denotes the number of cores used via a combination of MPI tasks-OpenMP
threads.

combination un-optimal for Quantum ESPRESSO. Both the
combination of Intel + MKL and GNU + MKL perform
optimally in this case. Once again, if a suitable workaround
could be found for multi-threaded Cray + MKL builds, the
Cray compiler would be an optimal choice as well.

C. VASP

VASP was tested with the Intel and Cray compilers as
well as FFTW, MKL FFTs and an internal FFT library
denoted ”FURTH”. A summary of the overall performance
of the code on our example benchmark calculations is shown
in Fig. 8. The internal ”FURTH” fft library performed the
worst, and is excluded from the figure for simplicity.

The figure shows different combinations of compiler,
linear algebra library and FFT library. As in the case for
BerkeleyGW and Quantum ESPRESSO above, we see that
the best compiler and library combination was the Intel
compiler with MKL used for both linear algebra and FFTs.
Once again, MKL proved to provide the most performant
FFT libs. In the case of VASP, we were unable to achieve

 0

 10

 20

 30

 40

 50

 60

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

QE: GNU Compiler 1 Thread/Task

MKL
FFTW (_threads) + LibSci

FFTW (_omp) + LibSci

 0

 10

 20

 30

 40

 50

 60

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

QE: GNU Compiler 4 Thread/Task

MKL
FFTW (_threads) + LibSci

FFTW (_omp) + LibSci

Figure 7. Wall-time vs cores for Quantum ESPRESSO built withthe
GNU compiler with several different libraries. See text fordiscussion and
an explanation of labels. The x-axis denotes the number of cores used via
a combination of MPI tasks-OpenMP threads.

a working executable with the Cray+MKL linear algebra
combination.

D. LAMMPS

LAMMPS was tested with all of GNU, Intel and Cray
compilers. A summary of the overall performance of the
code on our example benchmark calculations is shown in
Fig. 9. Since the LAMMPs examples described above do
not make significant use of math libraries (the Rodo example
does utilize FFTW, but the fraction of time spent in FFTW
is a small fraction of the total runtime), we did not perform
an extensive analysis of library performance in LAMMPS.

In all the example cases, the Intel compiler had the best
performance, closely followed by the GNU compiler.

E. NWCHEM

NWCHEM was tested with the GNU, Intel compilers,
compiled with the long integer MKL library. A summary
of the overall performance of the code on our example
benchmark calculations is shown in Fig. 10.

 0

 20

 40

 60

 80

 100

 120

 16 32 64 128

W
al

l T
im

e
(S

ec
)

Number of Cores

VASP Compiler/Library Summary. Case A.

Cray+LibSci+FFTW
Cray+LibSci+MKLFFT

Intel+MKL+FFTW
Intel+MKL

 0

 100

 200

 300

 400

 500

 600

 32 64 128

W
al

l T
im

e
(S

ec
)

Number of Cores

VASP Compiler/Library Summary. Case A.

Cray+LibSci+FFTW
Cray+LibSci+MKLFFT

Intel+MKL+FFTW
Intel+MKL

Figure 8. Summary of compiler and library performance for VASP
examples. See text for discussion and explanation of labels.

We were unable to produce a NWChem executable using
the Cray compilers. The figure shows that the Intel compiler
has a small performance advantage over the GNU compiler
for NWChem.

F. NAMD

NAMD was tested with the Intel and GNU compilers as
well as FFTW. A summary of the overall performance of
the code on our example benchmark calculations is shown
in Fig. 11.

From the figure, we once again see that the Intel com-
piler is again provided this highest performing compilation.
The NAMD is benchmark is overall less sensitive to FFT
libraries, so FFT tests are not shown in the figure for
simplicity.

V. COMPARISONS TOHOPPER

In Fig. 12, we compare the best performance (per core)
of BerkeleyGW and Quantum ESPRESSO on the Cray XE6
system, Hopper, to the XC30 system, Edison. As with the
above results, no hyper-threading has been used on Edison.

 0

 50

 100

 150

 200

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

LAMMPS. LJ Example.

GNU
Intel
Cray

 0

 100

 200

 300

 400

 500

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

LAMMPS. Chain Example.

GNU
Intel
Cray

 0

 50

 100

 150

 200

 250

 300

 350

 400

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

LAMMPS. Rhodo Example.

GNU
Intel
Cray

Figure 9. Summary of compiler and library performance for LAMMPS
LJ, Chain and Rodo example. See text for discussion and explanation of
labels.

 0

 100

 200

 300

 400

 500

 600

 700

 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

NWCHEM. Cytosine Example.

GNU+MKL
Intel+MKL

Figure 10. Summary of compiler and library performance for the
NWCHEM example. See text for discussion and explanation of labels.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 16 32 64 128

W
al

l T
im

e
(S

ec
)

Number of Cores

NAMD Compiler/Library Summary

GNU
Intel

Figure 11. Summary of compiler and library performance for the NAMD
example. See text for discussion and explanation of labels.

Edison significantly outperforms Hopper on a core by core
comparison.

VI. CONCLUSION

We tested the performance of the 6 top material science
and chemistry codes at NERSC on the Edison Cray XC30
system as function of the compiler and libraries used at
build time. We found small but significant performance
differences from different compilers for all codes. Even more
significantly, we discovered large variations in performance
(particularly in multithreaded cases) based on FFT and linear
algebra library used. In particular, we found that MKL
outperforms FFTW (both the provided libfftw3threads and
the custom built libfftw3omp) and outperforms LibSci.
Intel was the best overall compiler for the studied codes.
This is in large part due to library support and compilation
success rate. The Cray compiler coupled with MKL provided

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 16 32 64 128 256

W
al

l T
im

e
(S

ec
)

Number of Cores

BGW: 1 Thread/Task, Hopper Best vs. Edison Best

Hoppper
Edison

 0

 10

 20

 30

 40

 50

 60

 16 32 64 128 256

W
al

l T
im

e
(M

in
)

Number of Cores

QE: 1 Thread/Task, Hopper Best vs. Edison Best

Hoppper
Edison

Figure 12. Walltime comparison of the application benchmarks between
Hopper and Edison.

optimal sequential performance, but we failed to achieve
performant builds with the threaded MKL library. If a
suitable work-around could be found, the Cray compiler
could yield optimal or near optimal builds for many of the
codes.

ACKNOWLEDGMENT

The authors would like to thank Michael Stewart and
Brian Austin at NERSC for their useful advice in completing
this work.

Both authors were supported by the ASCR Office in the
DOE, Office of Science, under contract number DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department
of Energy.

Support for BerkeleyGW profiling and OpenMP opti-
mization provided through Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scien-
tific Computing Research and Basic Energy Sciences. Grant

Number DE-FG02-12ER46878 and under contract number
DE-AC02-05CH11231.

REFERENCES

[1] http://www.nersc.gov/users/computational-systems/edison/

[2] Bowling, Megan, Zhengi Zhao, and Jack Deslippe. ”The Ef-
fects of Compiler Optimizations on Materials Science and
Chemistry Applications at NERSC.” Optimization 4: 2.

[3] Deslippe, Jack, Georgy Samsonidze, David A. Strubbe, Manish
Jain, Marvin L. Cohen, and Steven G. Louie. ”BerkeleyGW:
A massively parallel computer package for the calculation
of the quasiparticle and optical properties of materials and
nanostructures.” Computer Physics Communications 183, no.
6 (2012): 1269-1289.

[4] Giannozzi, Paolo, Stefano Baroni, Nicola Bonini, Matteo Ca-
landra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli et
al. ”QUANTUM ESPRESSO: a modular and open-source
software project for quantum simulations of materials.” Journal
of Physics: Condensed Matter 21, no. 39 (2009): 395502.

[5] G. Kresse and J. Furthmller. Efficient iterative schemesfor ab
initio total-energy calculations using a plane-wave basisset.
Phys. Rev. B, 54:11169, 1996. http://www.vasp.at/

[6] http://lammps.sandia.gov/

[7] http://www.ks.uiuc.edu/Research/namd/

[8] http://www.nwchem-sw.org/

[9] http://www.nersc.gov/users/computational-
systems/edison/performance-and-optimization/compiler-
comparisons/

[10] http://www.fftw.org

[11] http://software.intel.com/en-us/intel-mkl

