
Jack Deslippe and 
Zhengji Zhao

Compiler and 
Library 
Performance in 
Material Science 
Applications on 
Edison

- 1 -



Materials Science Application Support at NERSC



The Top 6 Material Science + Chemistry Codes at NERSC



Question:

How do compilers and libraries affect performance in 
these apps??



Methodology

Test: Intel, GNU and Cray Compilers.

Test: FFTW2&3, LibSci, MKL and internal libraries.

-Test each application across a range of MPI tasks and OpenMP threads (if 
applicable)

-Run out of Lustre scratch. Minimize IO at runtime when possible.

-Ru each test twice. Keep fastest value.

-Threaded applications use:

% aprun -S <even number per numa> -cc numa_node -ss ...



Methodology Continued

-Compiler Options:

GNU: -O3 -fast-math
Cray: (default)
Intel: -fast -no-ipo

-Since there is no Cray specific MKL library. For Cray compiler we link against 
the MKL GNU libs.



BerkeleyGW GNU Compiler Summary

BAD

BETTER

BEST

Cray Built libfftw3-threads doesn't play 
nice with other OpenMP in code.

Jack Built libfftw-omp works better
with threads. Still not as good as MKL.

Poor
Multi-thread 
Performance

BGW 1.1 (Beta) – (8,0) Carbon Nanotube 
Example



BerkeleyGW Cray Summary

BAD
Default fftw3_threads doesn't play nice with 
other OpenMP in code. Single thread 
performance worse than MKL.

BOTH BETTER AND WORSE
Cray OMP + MKL (linked against GNU 
version) causes very poor performance with 
more than 1 thread.



BerkeleyGW Cray Summary

Cray + MKL (linked against GNU version) performs well with 1 thread. Poor 
multi-threaded performance.



BerkeleyGW Intel Summary

BEST

BAD

Default cray 
libfftw_threads

Intel built
libfftw_omp is 
better. Still slower than
MKL.

BETTER



BerkeleyGW Intel Summary

MKL FFTs perform better than FFTW in BerkeleyGW.



BerkeleyGW Library Summary

MKL beats FFTW. And MKL beats LibSci. ZGEMM's in LibSci ~ 50% slower than 
MKL. DGEMMs are within a couple percent.  Cray will likely close this Gap.



BerkeleyGW Compiler Summary

Intel + MKL is Clear Winner! Cray + MKL is best with 1 Thread.



BerkeleyGW Hopper Vs. Edison

~ 3x Improvement on core per core comparison.



QE GNU Summary

Again, MKL is Faster that FFTW+LibSci

QE 5.0.2. (8,0) Single Walled Carbon 
Nanotube Example



QE Cray Summary

Cray+MKL (linked with GNU MKL) Performs well for 1 Thread. Poorly with 
multiple threads.



QE Intel Summary

MKL FFTs one again are superior.



QE Compiler Summary

Cray + MKL fastest combination for 1 thread. GNU + MKL & Intel + MKL are 
the best overall combinations.



QE Hopper Vs. Edison

~ 3X Speedup on core-per-core comparison



VASP Summary

Intel + MKL again the best compiler. Cray + MKL for linear algebra yields 
runtime problems.

Version 5.3.3

154 Atoms

Hybrid 104 
Atoms



LAMMPS Summary

Intel and GNU compilers have the highest performance for LAMMPs. See paper 
for benchmark descriptions.

Version 22Mar13



NAMD Summary

Intel once again is the highest performing compiler. See paper for 
benchmark description.

STMV 1,066,628-atom system



NWCHEM Summary

Used armci-mpi with GA 5.0. Intel again is highest performing compiler.

Version 6.1.1



Summary

1. MKL outperforms LibSci and FFTW on Edison.

2. Additional performance problems observed in 
libfftw3_threads and MKL when using multiple thread 
implementations.

3. Intel was the best overall compiler on all codes. In large 
part due to library support and compilation success rate.



National Energy Research Scientific Computing Center

- 26 -


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	National Energy Research Scientific Computing Center

