
The State of the Chapel Union

Bradford L. Chamberlain, Sung-Eun Choi, Martha Dumler
Thomas Hildebrandt, David Iten, Vassily Litvinov, Greg Titus

Cray Inc.
Seattle, WA 98164

chapel info@cray.com

Abstract—Chapel is an emerging parallel programming
language that originated under the DARPA High Productivity
Computing Systems (HPCS) program. Although the HPCS pro-
gram is now complete, the Chapel language and project remain
very much alive and well. Under the HCPS program, Chapel
generated sufficient interest among HPC user communities to
warrant continuing its evolution and development over the next
several years. In this paper, we reflect on the progress that was
made with Chapel under the auspices of the HPCS program,
noting key decisions made during the project’s history. We also
summarize the current state of Chapel for programmers who
are interested in using it today. And finally, we describe current
and ongoing work to evolve it from prototype to production-
grade; and also to make it better suited for execution on next-
generation systems.

Keywords-Chapel; parallel languages; project status

I. INTRODUCTION

Chapel is a parallel programming language that has been
developed by Cray Inc. under the DARPA High Productivity
Computing Systems (HPCS) program over the past decade.
Our primary goal for Chapel under HPCS was to improve
programmer productivity on high-end parallel systems. At
the same time, we have worked to make Chapel a portable
programming model that is attractive for commodity clus-
ters, desktop computing, and parallel programmers outside
of the traditional High Performance Computing (HPC) com-
munity.

While the success of any new language can never be
guaranteed, Chapel has succeeded in making a very positive
impression on the parallel programming community. Most
programmers who have invested the time to learn about
Chapel are very interested in using it once its implementation
becomes more robust and optimized. Perhaps more than any
previous parallel language, there is a strong desire among
a broad base of users to see Chapel succeed and evolve
from its current prototype status to become product-grade.
Chapel has been downloaded over 6,000 times since its first
public release in November of 2008, and it is also available
as a standard module on most Cray systems. It has been
experimented with by typical HPC users in government
and industry, nationally and internationally, as well as by
research and educational groups within Computer Science
departments.

Cray’s entry in the DARPA HPCS program concluded
successfully in the fall of 2012, culminating with the launch
of the Cray XC30TM system. Even though the HPCS pro-
gram has completed, the Chapel project remains active and
growing. This paper’s goal is to present a snapshot of Chapel
as it stands today at the juncture between HPCS and the
next phase of Chapel’s development: to review the Chapel
project, describe its status, summarize its successes and
lessons learned, and sketch out the next few years of the
language’s life cycle. Generally speaking, this paper reports
on Chapel as of version 1.7.01, released on April 18th, 2013.

The rest of this paper is organized as follows: Section II
provides a brief history of the Chapel project under HPCS
for background. A short introduction to the language’s
features is given in Section III, for those unfamiliar with
Chapel. It is followed by a summary of Chapel’s status in
Section IV. In Section V, we report on Chapel’s greatest
successes and lessons learned under the HPCS program. In
Section VI, we describe the next steps in Chapel’s design
and implementation before wrapping up in Section VII.

II. CHAPEL’S ORIGINS

This section provides a historical overview of the Chapel
project. For a more detailed history of Chapel, please refer
to [1].

A. A Brief History of Chapel

In 2002, at the outset of the HPCS program, the Cray
team (codenamed Cascade) began considering ways to im-
prove user productivity across the entire system stack: from
processor and memory architecture, to network technology
and topology, to operating system and runtime responsi-
bilities, to programming environment features. As part of
this investigation, the team wrestled with whether or not to
develop a new programming language, considering the status
quo to be far from ideal from a productivity perspective.
Initially, there was concern that a language developed by
a lone hardware vendor could not possibly be successful
and was therefore not worth the effort; however, we soon
realized that many of the most successful languages had been
developed in precisely this way and had simply transitioned

1Available for download at https://sourceforge.net/projects/chapel/.



to a consortium-based model as they grew in maturity.
Having overcome that initial hesitancy, the Chapel project
was initiated during the first half of 2003. From the outset,
it was determined to be a portable, open-source effort that
would also support the ability to leverage Cray architectural
features.

From 2003 through 2006, Chapel existed in a reasonably
molten state. The team at that time was simultaneously
working to define the language and kick off the imple-
mentation effort. Much of this period was characterized
by wrestling with different language concepts and design
philosophies, striving to find a set of features that would
work well together. In early summer 2006, a turning point
was reached when the current type inference semantics
and compiler architecture were formulated. From that point
on, progress became much more monotonic and stable. In
December 2006, the first Chapel release (version 0.4) was
made available on a by-request basis and included support
for multitasking in a single-locale (shared memory) setting.

In July 2007, the first multi-locale (distributed memory)
Chapel programs began running, and by March 2008, this
support was stable enough to be included in the fourth
and final request-only release of Chapel (version 0.7). From
there, the implementation began focusing on Chapel’s data
parallel features, both in single- and multi-locale settings.
That fall, Chapel was mature enough to run versions of
the HPCC Stream and Random Access (RA) benchmarks
written with a user-defined Block distribution that scaled to
hundreds of compute nodes. This milestone earned Chapel
a place in the three-way tie with Matlab and UPC/X10
for “most elegant” language in the 2008 HPC Challenge
competition. That fall also saw our first public release of
Chapel (version 0.8) and our first tutorial at SC08.

The following several years saw Chapel increase in
maturity and prominence. In April 2009, Chapel’s source
code repository moved from being hosted in an invite-
only manner at the University of Washington to an open
repository at SourceForge, where it continues to be hosted
today. A few months later, the Chapel website was launched
at http://chapel.cray.com. At that year’s HPC Challenge
competition, Chapel emerged from the pack and was named
the “most productive” language—a title that it has retained
each year it has participated since then (2011 and 2012).

From 2009 onward, the number of collaborations and
user interactions undertaken around Chapel increased signif-
icantly, resulting in the first signs of a broader open-source
Chapel community outside of Cray [2], [3], [4], [5], [6].
Chapel also came of age this year in that it began to be
considered an expected participant within the HPC space
rather than yet another contender doomed to failure. At
SC10, the Chapel community met for the first in a series
of annual CHUG (Chapel Users Group) happy hours. In
August 2011, the Chapel logo was unveiled, based on the
winning entry in a contest held amongst Cray employees and

the broader Chapel community. At SC11, the first Chapel
“swag” was developed—a USB stick bearing the Chapel
logo. SC11 also saw the first in a series of “Chapel Lightning
Talks” sessions, highlighting work being done on Chapel by
a half dozen groups outside of Cray.

In October 2012, Chapel completed its final deliverables
for the DARPA HPCS program: a scalable execution of the
SSCA#2 benchmark on the prototype Cray XC30 system
and a final productivity report. In the ensuing time, the
team has continued working on improvements to Chapel
while simultaneously planning for the next phase in Chapel’s
development (described in Section VI).

B. Chapel By the Numbers

The following list provides some numbers characterizing
aspects of Chapel’s history at the time of this writing:

21,334: Commits against the Chapel public repository
6116: Downloads of Chapel releases from SourceForge
1024: Messages sent to the chapel-users mailing list
192: Unique, non-Cray subscribers to Chapel mailing

lists hosted at SourceForge
154: Chapel talks given by the Cray team

80 at conferences and workshops
32 at milestone reviews
18 at universities
16 at government labs
8 in industry settings

24: Notable collaborations external to the Cray team
10 with national labs
10 with academic groups
4 with international teams

17: Number of Chapel tutorials given
6 at SCxy
5 in Europe
3 at government labs
3 at CUG

14: Major releases of Chapel
10 public releases
4 by request only

0: Language modifications due to changes in the
Cascade architecture during the HPCS program

This last item is notable because Chapel was designed to be a
very general, portable parallel programming language; so the
fact that it did not need to change as the Cascade architecture
evolved can be considered an indicator of success in that
regard.

III. CHAPEL OVERVIEW

For readers who are unfamiliar with Chapel, this section
provides a brief summary of the language features. Those
who are familiar with Chapel can safely skip to the following
section. This overview is necessarily high-level and not in-
tended to be a replacement for a thorough introduction to the



language. More specifically, this paper refrains from Chapel
code excerpts due to space constraints and the desire to avoid
repetition with previous publications. For a more thorough
introduction to Chapel’s feature set, please refer to previous
papers, tutorials, and the language specification [1], [7], [8],
most of which can be found at http://chapel.cray.com.

We typically characterize the Chapel language as having
features related to the base language, task parallelism, data
parallelism, and locality. The locality features can further
be thought of as providing both higher- and lower-level
abstractions for mapping data and computations to machine
resources. Each of the following sections provides a brief
summary of the features in each concept area.

A. Base Language Features

Chapel’s base language features can be thought of as
those which are completely unrelated to issues of large-
scale parallel computing. In essence, they can be thought
of as forming the C-, Fortran-, or Java-level language on
which Chapel is based; except that rather than extending an
existing language, Chapel was designed from scratch (albeit
with influences from a number of successful practical and
academic languages).

Chapel’s base language features were designed very much
around the theme of providing the productivity-oriented
conveniences of a scripting language, like Matlab or Python,
while also providing the analysis and optimization benefits
afforded by a traditional HPC scalar language, like Fortran
or C. As an example of this theme, Chapel supports type
inference, permitting the programmer to optionally omit
type specifications for convenience in most contexts. This
capability supports the user’s ability to sketch out code
quickly, as in a dynamically typed scripting language. How-
ever, to avoid the execution time overheads associated with
such languages, Chapel is statically typed, meaning that the
compiler will determine a single type for each variable,
argument, and function, possibly by cloning code to deal
with multiple type signatures. This compromise between the
two traditional approaches provides much of the convenience
available in a scripting language while also supporting the
compiler’s ability to generate optimized scalar code as in C
and Fortran. Moreover, it provides a natural means of writing
generic code without incurring the syntactic overhead of
C++ templates.

Another key feature of the base language is its support
for ranges, which represent regular sequences of integers.
Chapel supports bounded and unbounded ranges, as well as
a number of operators and methods on ranges that permit
single-dimensional iteration spaces to be represented clearly.
Ranges also serve as a crucial building block for higher-
dimensional computations using features described in the
data parallelism section below.

A third base language feature worth mentioning here
is Chapel’s support for iterators, inspired by the CLU

language [9]. Unlike traditional procedures which return a
single time during their execution, iterator functions have the
ability to yield values back to the callsite while logically
continuing execution until their return point. Iterators are
typically used to drive loops, and can be thought of as
providing analogous software engineering benefits for loops
as traditional procedures do for straight-line code.

Other Chapel base features include zippered iteration, in
which multiple iterators (or iterable values) may be traversed
simultaneously; tuples, which support a lightweight means
of passing and returning groups of values from procedures;
compile-time computation and configuration features; rank-
independent loop and array syntax; value- and reference-
based object-oriented features; rich function call semantics
including overloading, default arguments, and name-based
argument matching; features for generic programming; and
modules for namespace management.

B. Task-Parallel Features

Chapel’s task-parallel features permit users to specify
explicit concurrency within their programs. Task parallelism
can be defined in an unstructured manner by identifying
statements that should be executed concurrently with the
originating task. This provides an arbitrary fire-and-forget
style of task parallelism. Alternatively, tasks may be defined
in a more structured manner, via stylized forms of compound
statements or loops.

Synchronization between Chapel tasks is typically ex-
pressed in a data-centric manner, using synchronization
variables or atomic variables. The former store a full/empty
state along with the variable’s value; this state prevents
reads and writes of the variable from occurring until the
full/empty state is in the appropriate mode, supporting
producer-consumer synchronization in a natural manner.
Chapel’s atomic variables are similar to those recently added
to C++11, providing support for common atomic operations
supported by hardware. These provide support for opera-
tions such as mathematical and bitwise operators as well
as compare-and-swap-style operations that safely execute
instantaneously with respect to other tasks.

C. Data-Parallel Features

Chapel’s data-parallel features provide users with a way to
specify parallel computations at a higher level, by expressing
operations on logical data sets such as arrays and iteration
spaces. The core concept for Chapel’s data parallel features
is the domain, a language-level representation of an index
set based on the region concept in ZPL [10]. Domains are
used in Chapel to define iteration spaces and to describe the
index sets of arrays.

Chapel’s standard rectangular domains provide support
for Fortran 90-style multidimensional rectangular arrays;
they are defined using lists of ranges. Chapel also supports
strided domains whose arrays are stored densely in memory;



sparse domains that represent an arbitrary subset of its
parent domain’s indices; associative domains that provide a
hash table-like capability by supporting arbitrary index value
types; and opaque domains that are designed to support data
parallel operations on unstructured data.

Data parallelism within Chapel can be introduced in
a number of ways: Explicit data parallelism is typically
expressed via forall loops, commonly used to iterate over
domains and arrays. An implicit form of data parallelism
can be achieved by applying scalar functions and operators
to array arguments whose element types match the expected
scalar argument types. This results in a parallel execution of
the operation that is semantically equivalent to a forall loop,
yet with a more concise and elegant notation.

In addition to these operations, Chapel’s data parallel
features also include user-defined reductions and scans [11];
domain slicing to refer to array sub-expressions; and reshap-
ing/reindexing/reallocation operations that modify the size,
shape, or indices that define an array.

D. Locality Features

Locality features in Chapel are those used to map com-
putations and data down to the target hardware. The core
concept for reasoning about locality in Chapel is the locale,
a primitive type used to represent locality within the target
architecture. For example, on a Cray system, each compute
node is typically represented as a locale. Chapel users
specify the number of locales to use on the generated
executable’s command line. Programmers can refer to these
locale values and query them symbolically within their pro-
gram text as a means of referring to the machine resources.

Locales can be targeted in higher- and lower-level ways.
The low-level way is to prefix statements with an on-clause,
which is a means of specifying where the statement should
execute. On-clauses can either name a specific locale value
directly, or they can use a data-driven form as a means of
moving the task to execute wherever the variable in question
is stored.

The other concept for mapping Chapel computations to
locales is the domain map. Domain maps provide a recipe
for mapping a domain’s indices to the machine resources
to be used in storing and computing on its indices. Domain
maps also specify how array elements should be mapped
to locales and stored in memory, as well as how loops
over domains and arrays should be parallelized. An end
result of using domain maps is that data parallel operations
can be expressed in a manner that is independent of the
policies used to map the operations down to the target
architecture. This supports a user’s ability to switch between
vastly different implementation strategies without rewriting
their code or thwarting compiler optimizations (the LULESH
implementation described in Section V-A4 provides a com-
pelling example of this).

IV. CHAPEL STATUS

By and large, the features described in the previous
section are implemented and available for use in the cur-
rent Chapel release. The base language, task-parallel, data-
parallel, and locality features have been used to write
numerous benchmarks and mini-applications that span a
wide variety of computational styles, targeting shared- and
distributed-memory execution. The features have also been
used extensively within the Chapel implementation itself,
constituting over 21,000 Source Lines of Code (SLOC)
within Chapel’s standard and internal modules.

While the central features of the language are quite solid,
a few dark corners remain. In most cases, these represent
areas of the language or implementation that failed to receive
sufficient attention within the HPCS program due to our need
to move on to the next demonstration or milestone. In other
cases, they represent feature areas that were intentionally
left as future work during HPCS, with the knowledge that
we had more than enough on our plate already. In still other
cases, user-provided feedback has suggested changes and
improvements that we have not yet had time to incorporate.

The following subsections describe incomplete items in
Chapel’s current implementation and definition. In each
section, items are listed in an approximate priority ordering.
While this list of outstanding work is nontrivial, it is worth
noting that the list of working features is significantly larger.

A. Implementation Issues

1) Performance: In most discussions about Chapel’s like-
lihood of practical adoption within the HPC community,
the elephant in the room tends to be the performance of
its generated code. While Chapel generates competitive and
scalable performance for many benchmarks and computa-
tions, in most cases it is not yet a suitable replacement for
performance-critical C/Fortran + MPI code.

Many in the HPC community are of the belief that moving
to a higher-level language like Chapel necessarily implies
a compromise in performance. As argued in more detail
elsewhere, we do not agree with this perspective [12], [13].
In most cases, lacks in Chapel’s performance today are
related less to inherent limitations in its design, and more
due to lack of maturity in its implementation. Throughout
the HPCS program, the Chapel team focused primarily on
making Chapel as correct and feature-complete as possible
in order to get early feedback from users and ensure that
we were creating a language whose features they would
find useful and productive. This focus proved to be the
right one, as the feedback we received was quite valuable
and has helped make the language far more viable than
it otherwise would be. As we often argue, it is easier to
improve the performance of a productive parallel language
designed for performance than it is to add productivity to
one that performs well today yet was not initially designed
with productivity in mind.



None of this is to say that achieving competitive per-
formance with Chapel is a lost cause. In many cases,
shared-memory parallel performance is competitive with
technologies like C and OpenMP today [14], [15]. Dis-
tributed memory programs that communicate infrequently
or in very unstructured ways can also perform and scale
reasonably [16]. Where the current Chapel implementation
tends to suffer most today is in distributed memory settings
that are amenable to programmer optimization of communi-
cation, as that is an area where we have not yet focused.

In any new language, the inherent challenge to achieving
optimal performance is that, by nature, it has a multiplicative
property in which one poorly implemented feature can
undermine the code’s performance as a whole. Thus, as
one strays from the code paths that received the most
attention during the HPCS program, it is often the case that
performance falls off as well. As a specific example, stencil
codes are a key idiom for many HPC computations, yet were
not at all a focus for the HPCS program or HPC Challenge
competition. For this reason, Chapel performance is far from
optimal for stencils, in spite of the fact that members of our
group have achieved stellar results for stencils in higher-level
languages in previous work, even beating Fortran+MPI in
some cases [17], [10].

We assert that achieving good performance for a broad
range of Chapel programs is a question of when, not if. To
this end, we regularly challenge skeptics to identify aspects
of Chapel’s design that are inherent barriers to achieving
Fortran/C levels of performance; the response is typically
silence.

It is also worth noting that each user’s definition of ac-
ceptable performance is relative. To someone currently using
Fortran+MPI, Chapel performance is not yet sufficient to be
a viable replacement. Yet for a traditional Python or Matlab
user, Chapel can represent a dramatic leap forward, by
moving from an interpreted, serial environment to one that
is compiled and capable of distributed memory parallelism.

Arguments and rationalizing aside, it’s important to note
that Chapel performance and scalability are improving over
time—sometimes dramatically. As an example, our 2012
HPC Challenge entries improved upon our 2011 results
by 2.6× for STREAM EP, 103× for Global RA, 1741×
for HPL, and 600, 000× on a 16, 384× larger graph for
SSCA#2 [16]. Continual performance improvements remain
a primary goal for our team, and will be an area of increasing
focus going forward.

2) Memory Leaks: Another way in which Chapel can
result in suboptimal performance in the current implemen-
tation is through compiler-introduced memory leaks. The
most common leaks in Chapel programs come from strings,
which were implemented hastily with the knowledge that
most HPCS demonstrations would only make modest use of
strings for things like filenames, output, and error messages.
As a result, the current compiler takes some simplifying

shortcuts in the implementation of strings and leaks them as
a side-effect. Not surprisingly, real-world programmers often
have greater computational demands for strings, and for such
programs, the memory used by Chapel’s leaked strings can
be detrimental to performance and long-running programs.
We are currently working on re-implementing strings to plug
these leaks as we move away from an HPCS focus.

A second source of memory leaks comes from our
implementation of distributed arrays. Again, simplifying
assumptions were made within the HPCS program given that
distributed arrays in the programs we studied tended to be
created at program start-up and to live for the entire program;
such leaks are not an issue because they are cleaned up by
the operating system when the program is torn down. Again,
in a production code, it’s likely that a user would want to use
local-scope distributed array variables. For such programs,
these memory leaks clearly need to be plugged in order to
avoid problems.

3) Compiler Checks and Error Messages: Another im-
plementation issue that’s particularly frustrating to new
Chapel programmers relates to the quality of the compiler’s
semantic checks and error messages. While correct Chapel
code compiles and executes as expected, incorrect code can
often result in confusing error messages or internal compiler
errors, which are not helpful to the novice user. In other
cases, semantic checks are not yet fully implemented, such
as checking to make sure that constant fields are not re-
assigned by a user. These types of problems are common to
new languages, but represent areas where greater effort is
required to make Chapel viable for adoption by new users.

4) Unimplemented Features: A final category of lacks
in the current implementation consists of features that are
defined for Chapel, but which have never been implemented.
For example, the language syntax cleanly supports the defi-
nition of skyline arrays—arrays of arrays where the size and
shape of the array elements may vary from one to the next—
but these have never been implemented. Another example
involves applying an on-clause to a variable declaration as a
means of allocating data remotely without introducing a new
lexical scope. These are features that we anticipate adding
in the next phase of Chapel’s development.

B. Language Design Improvements

Where the previous subsection described issues with
Chapel’s current implementation, this one enumerates as-
pects of the current language design that need to be fleshed
out better or revisited. Language changes that are more
forward-looking in nature are described in Section VI-B.

One area where Chapel’s initial design fell short can be
seen in its support for user-defined constructors, particularly
in the face of generic class hierarchies. The original Chapel
design took a fairly lightweight approach to constructors
that was sufficient for the HPCS program’s needs, but is
ultimately a bit simplistic for what an expert object-oriented



programmer would want. Somewhat related, Chapel’s defini-
tion of copy semantics with respect to records (value classes)
was similarly simplistic. This design will also need to be
revised for optimal performance and management of user-
defined types. At the time of this writing, we have working
notes that revise the definitions of these features, and we
intend to start implementing them this year.

Another general area for improvement relates to Chapel’s
definition of iterator functions. While basic serial and par-
allel iterators work well in the language, a number of
extensions are in order that would benefit performance and
language semantics. Such changes include: capturing an
iterator instance in order to advance it manually; supporting
iterators that can generate specific result shapes and index
sets; and extending Chapel’s parallel iterator interface [18]
to support improved performance and semantics.

Other minor areas for improvement in the current lan-
guage definition include: adding support for fixed-length
strings to support in-place allocation of string data; and
improvements to Chapel’s interoperability features to more
easily support additional data types and languages. We
are also investigating changes to the semantics of variable
references that cross task creation boundaries to help avoid
race conditions and improve performance in common cases.

C. Standard Library Improvements

A final area for improvement in the current implemen-
tation can be found in Chapel’s standard libraries, imple-
mented via Chapel modules. The main area for improvement
here is simply that the standard libraries are not particularly
extensive compared to other productive languages such as
Java, Matlab, and Python. To some extent, this situation will
improve as the language continues to grow in popularity,
permitting the broader community to more easily contribute
library code to back to the implementation. In addition, many
of the language improvements described in the previous
section will be useful in writing new Chapel libraries and
wrapping existing libraries in Chapel interfaces.

One specific area in the standard libraries that would
benefit from further Chapel-specific work is to expand the
set of standard domain maps to include more options, such
as: irregular distributions of rectangular domains, multi-
locale implementations of sparse and associative domains,
and optimized implementations of opaque domains.

V. CHAPEL TAKEAWAYS

The Chapel experience during the HPCS program was
a valuable one, with lessons that are worth sharing. This
section recaps some of Chapel’s greatest successes in HPCS,
along with some valuable lessons learned.

A. Greatest Hits

1) Multiresolution Language Philosophy: Chapel’s
biggest achievement was perhaps the successful

implementation of its multiresolution philosophy [19].
This was a major theme in Chapel’s design, intended to
simultaneously support higher-level ZPL- and HPF-like
concepts for productivity while also supporting lower-level,
more explicit concepts for the purposes of generality or
programming closer to the target architecture.

As part of its multiresolution philosophy, Chapel took the
approach of defining higher-level features in terms of the
lower-level ones, and of permitting advanced end-users to
provide such implementations themselves [20], [21], [18].
This has the benefit of guaranteeing that Chapel’s features
are compatible between levels, permitting users to move
between them within a single program or statement as
needed or desired. It also means that any perceived gap in the
language’s standard set of data structures, memory layouts,
distributions, or parallelization strategies can be filled by a
motivated user. To ensure that these features were practically
useful, the Chapel team used the same framework that an
end-user would to implement default and standard features.
To that end, the C-style 1D dynamic array built into the
Chapel compiler is only used to implement a single array
layout: Chapel’s default, local rectangular array. All other
local and distributed array implementations are built strictly
in terms of Chapel arrays.

Chapel’s use of the multiresolution approach had some
nice benefits beyond those described above. One impact
is that data- and task-parallelism are very well-unified
in Chapel, particularly in contrast with previous parallel
languages that typically only supported one or the other,
or grafted the two styles together in an awkward manner.
Another impressive result was the addition of OpenMP-style
dynamic iterators to the implementation without requiring
any changes to the compiler or language [18].

Of course, our adherence to the multiresolution philos-
ophy could also be blamed for some of Chapel’s current
performance issues: if we had built a small set of array types
directly into the compiler and runtime, we would have been
able to achieve better performance faster, as in previous work
like ZPL [10], [17]. But to be successful in the long-term,
we believe that it’s far more important to support a flexible
parallel framework that supports long-term optimization than
to optimize an inflexible approach for the benefit of short-
term gains.

2) Distinct Concepts for Parallelism and Locality: An-
other key philosophical decision in Chapel was to use dis-
tinct language concepts for parallelism—”what should exe-
cute concurrently?”—versus locality—”where should things
be allocated and executed?” While Chapel is certainly not
the first language to make this distinction, it has become one
of the more successful ones; and in any case, the philosophy
deserves much more widespread adoption than it has had,
especially given emerging compute node architectures.

In contrast, most adopted distributed memory models uti-
lize a Single Program, Multiple Data (SPMD) programming



and execution model. This has the downside of conflating
parallelism and locality, since the executable constitutes the
basic unit of both properties. As a result, new parallelism
cannot be injected into a program without involving an
additional parallel programming model or creating a new
locality domain. Other approaches, like OpenMP, support
much more general parallelism, yet without providing any
direct control over locality (a situation that the OpenMP
community is presently working to address).

The downside of these traditional approaches is that they
tend to require mixing multiple programming models in
order to express all the parallelism and locality within an
algorithm in a manner that maps well to the parallelism
available in the target hardware. In contrast, we believe
that languages like Chapel which tease these two concerns
apart are much better suited for expressing general parallel
programs that target arbitrary parallel hardware within a
single, unified language.

3) Portable Design and Implementation: Another of
Chapel’s successes was its goal of portability, both in
the language’s design and implementation. It goes with-
out saying that a non-portable language is unlikely to be
broadly adopted, particularly given the current diversity of
parallel architectures. In spite of this, our programming
models tend to embed more assumptions about the target
architecture than ideal from a portability perspective. As
a result, while programming models tend to be portable
within an architectural class, they tend to be limited once too
much changes, necessitating the use of hybrid programming
models, as discussed previously. A recent example can be
seen in the failure of MPI and OpenMP to adequately
address GPU programming, necessitating the emergence of
new programming models like CUDA (also non-portable,
regrettably) and OpenACC [22]. In contrast, we believe
that Chapel is far better suited for portability across scales,
classes, and generations of machines than its predecessors,
through the separation of concerns supported by its multires-
olution design and the generality enabled by distinguishing
parallelism from locality.

Chapel is portable not only philosophically, but also in
its implementation. We have strived very intentionally to
build our default implementation upon portable technologies
such as C99, POSIX threads, and GASNet [23]. We have
also architected our runtime libraries in a modular fashion
in order to simplify the support of alternative technologies.
It is precisely this design that has permitted us to create
custom runtime implementations which take advantage of
Cray-specific hardware features [24], [25] for optimized
performance [16]. In this sense, Chapel achieves the best
of both worlds: portable in design and implementation, yet
able to be optimized to a specialized target platform.

4) User Feedback and Interactions: A final Chapel suc-
cess to note in this report has been its continual interaction
with, and responsiveness to, the user community. From the

earliest days, we knew that Chapel’s practical success would
be tied to how useful and compelling users found it. To
that end, we have made it a priority to speak publicly
about Chapel, to make releases as broadly available as we
can manage, and to solicit and act on user feedback to
the best of our ability. The net result has been a better
language design, with a continual uptick in user interest
as the project has progressed. At the outset of the HPCS
program, there was a great degree of skepticism in the
ability of any language to improve productivity or excite
the user community, primarily due to the high-profile failure
of HPF during the 1990’s [26]. Through good design and
continual user interaction, we believe that Chapel has played
a significant role in reducing this skepticism and revitalizing
the HPC community’s interest in novel parallel languages.

As a specific anecdote relating to user interactions, in late
2011–early 2012, we began working with computational sci-
entists at Lawrence Livermore National Laboratory (LLNL)
on their LULESH mini-application—an Unstructured La-
grangian Shock Hydrodynamics computation [27]. While the
actual computation that LULESH represents is completely
unstructured, the benchmark itself uses a structured cubic
input in order to simplify the problem setup and verification;
however, the implementation is not supposed to take advan-
tage of this fact. The original port of LULESH to Chapel
failed to abide by this principle, and so represented the data
set using 3D Chapel domains and arrays, reflecting the cubic
nature of the problem.

In March of 2012, one of LULESH’s originators visited
the Chapel group to pair-program with us and help convert
the structured implementation into a more general, unstruc-
tured one. This goal was achieved in a short afternoon’s
work, requiring only a few dozen lines of declarations and
supporting code to change. This was an eye-opener for the
LLNL application expert. While he had heard Chapel’s plat-
itudes about separating computation from implementation
details before, to see it firsthand on a code of personal im-
portance dramatically improved his impressions of Chapel.

Since that original session, we have gone on to make our
LULESH implementation highly configurable: Via compile-
line settings, the current implementation can compute the
input data set or read it from disk, compile for a shared-
or distributed-memory setting, store the data set using struc-
tured 3D or unstructured 1D arrays, and represent material
subsets using sparse or dense arrays. To support these
variations, only a few lines of declarations are involved; the
physics computations are completely independent of such
details, due to Chapel’s successful use of domain maps to
support a true separation of concerns. LLNL led a cross-
language comparison paper for LULESH in the fall of 2012
which was awarded the “best software paper” distinction for
IPDPS 2013 [28].



B. Lessons Learned

While we consider Chapel under HPCS to have been a
success, there are also lessons learned along the way that
are worth passing along for consideration by future efforts.
Among them are the following:

From a language design perspective, if there is something
that the development team wants to do, it is likely simply a
matter of time before an end-user wants to do it as well.
In many respects, we made good choices here, such as
permitting users to define array implementations and parallel
iteration strategies. And it was precisely these choices that
permitted us to implement so much of Chapel within Chapel
itself and take advantage of its productivity benefits. But in
other respects, we did not open features up to the user and
have ultimately regretted it. A primary example is Chapel’s
lack of support for user-defined coercions and casts. This is
something we plan to add to Chapel in the future, both to
give users more power and to simplify our implementation
by moving these features out of the compiler and into the
internal Chapel modules.

While we anticipated that compute nodes would become
increasingly hierarchical at the outset of HPCS, we under-
estimated how soon Chapel would be adversely impacted
by these trends. We anticipated an eventual need to make
Chapel’s locale types hierarchical, but did not correctly
anticipate how soon such a feature would be valuable.
Once compute nodes began to contain multiple non-uniform
memory access (NUMA) domains within a shared memory
segment, Chapel’s performance for simple benchmarks like
STREAM Triad was significantly compromised due to our
inability to map tasks and memory to specific NUMA
domains at the Chapel level. This is a situation we are still
affected by in today’s implementation, and which we are
addressing via the work described in Section VI-B3.

A few prioritization challenges are worth stating, though
we have no easy answers: The first relates to the need, in
a program like HPCS, to sprint toward various demonstra-
tions and milestones, often necessitating code to be thrown
together quickly in order to meet a compressed schedule.
Over time, that rapidly written research prototype becomes
something you end up living with for an extended period of
time. While Chapel’s software engineering practices have
been quite good compared to many research projects, the
fact remains that many aspects of the implementation are
less ideal than they ought to be due to lack of time to re-
architect and improve certain aspects of the implementation.
At times, we have found the opportunity to catch our breath
and refactor things into a better state, but other aspects of the
implementation continue to betray the rapid way in which
they were originally written. This is a situation that we will
improve upon during the next phase of Chapel’s evolution.

The second tension relates to the HPC community’s
insatiable need for performance, which can be difficult to

meet while pursuing research objectives that could be met
more quickly via less specialized solutions. The tension here
is to avoid putting off performance optimization for too
long while trying to demonstrate advanced capabilities that
can be more easily implemented in less optimal ways. It
could be argued that Chapel should have focused less on
advanced capabilities and productivity in favor of improved
performance in order to have a bigger impact on traditional
HPC users; however, as argued previously, we believe that
our design is better suited for ultimately achieving great
performance and productivity than if we had compromised
the productivity features simply to get good performance
earlier.

The final lesson for this report relates to underestimating
the effort required to support early users and collaborators.
While both of these communities have been invaluable for
Chapel’s success so far, we noted a significant change in
the rate of our progress in the Chapel implementation once
members of the community began taking a more active role
in the project as users or developers. The lesson here is to
be sure to support early users and collaborators for the value
that they bring; but to avoid fooling yourself into believing
that the added effort will be negligible.

VI. NEXT STEPS

Having exited the HPCS program, the Chapel team at
Cray has turned its attention to the next phase of Chapel’s
development. In considering future activities, we have been
thinking in terms of a five-year timeframe, where the main
goal is to evolve Chapel from the prototype implementation
developed under HPCS to a product-grade implementation.
To this end, we plan to focus on the following areas.

A. Performance Improvements

As noted in Section IV-A, Chapel’s performance is con-
sistently cited as the major impediment to the community’s
faith in Chapel as a practical long-term solution. To this
end, it is one of our foremost priorities looking forward.
The main areas in the Chapel implementation that require
improvement from a performance perspective are:

• Generating cleaner C code to better enable optimiza-
tions in the back-end C compiler. Generating cleaner
loop structures to enable vectorization is particularly
important.

• Generating better code for multidimensional loop nests
and array access idioms.

• Optimizing compiler-generated communication to sim-
plify scalar code paths, hide latency, and amortize over-
heads, similar to our work in the ZPL language [29],
[30].

• Plugging compiler-introduced memory leaks.
Our intention is to take a benchmark- and proxy application-
based approach to identifying and prioritizing performance
fixes, as driven by customer codes of interest. We also intend



to focus on high-profile benchmark suites and demonstra-
tions that may help attract users from outside of the tradi-
tional HPC space in order to grow the Chapel community.

B. Language Improvements

Sections IV-A and IV-B listed language features in the
current design that are in need of improvements. These will
be focus areas in the implementation effort going forward.
In addition, we also anticipate more significant changes to
the language which we consider necessary for its long-term
success. This section describes some of those additions.

1) Base Language: In the base language, one of the
biggest lacks in the original language design is support for
error-handling, whether through exceptions or some other
mechanism. As a result of this lack, when error cases are
encountered in Chapel programs today, the most frequent
response is to print an error message and halt the program.
This approach is obviously heavy-handed and does not
permit users to respond to errors in a more resilient fashion,
as would be necessary for larger-scale software projects in
Chapel.

A second major area, under investigation with the Univer-
sity of Colorado, Boulder, is support for adding concepts to
the language to support improved type checking of classes
and specification of their interfaces. This work is informed
by some of the design work that took place for C++11, but
extends it to better fit with Chapel’s other base language and
productivity features.

Other areas for improvement include adding support for
namespace control—in particular by supporting declarations
as being public or private, and for filtering module ’use’
statements to restrict or rename the symbols that are im-
ported into the current scope. We also plan to add the
aforementioned support for user-defined casts and coercions
between types in Chapel code.

2) Task and Data Parallelism: Within the task parallelism
features, one of the main faults in the current design is the
lack of a capability to organize tasks into logical teams, in
order to talk about operations on, or policies for, a subset of
tasks without involving every task in the program. Without
some means of sorting tasks into sub-groups, the current
language works well for small or reasonably homogenous
uses of tasking, but tends to fall apart in larger codes that
make use of independently-developed coupled components
or asynchronous libraries.

Another feature that we have found ourselves wanting
is Chapel support for task-private variables and reduction
variables, to provide programmability benefits in loop-based
idioms, as in OpenMP. While it is possible to program
around these features in most cases, built-in support for them
would simplify things, both for end-users and optimizing
compilers.

A more modest change to the task parallel features
that we have discussed and are investigating jointly with

Rice University, involves adding support for expression-level
tasks and/or futures in the language. Again, this represents
an area where the current support does not limit the user’s
ability to express various parallel patterns, but at times it
is less natural or efficient than it could be. Adding support
for expression-level tasking would simplify certain idioms
while providing the runtime environment with important se-
mantic information that can be useful in optimizing runtime
scheduling.

Finally, we are interested in ensuring that Chapel’s in-
teroperability features are sufficient to support a productive
parallel interoperability story. Traditionally, most interoper-
ability work has focused on single-threaded interoperability;
we would like to ensure that it is possible to call from an
MPI application out to Chapel and vice-versa as a means of
ensuring that HPC users can incrementally transition their
existing codes to Chapel. Our hypothesis is that Chapel’s
user-defined domain map capability should be sufficient to
refer to MPI-based data structures as global-view Chapel
arrays in situ, without copying or redistribution, but this has
yet to be demonstrated.

3) Locality Improvements: In the area of locality features,
the primary lack that we have identified, and have been
working on addressing over the past few years, is support
for hierarchical locales. This feature is motivated by the
observation that compute nodes on parallel machines are
becoming increasingly heterogeneous and/or hierarchical (or
at least, locality-sensitive) over time. Chapel’s current locale
concept is great at expressing horizontal locality (between
compute nodes), but insufficient for talking about vertical
locality (within a compute node). To that end, we are
working on an extension to the locale concept that permits
locales to be nested to describe such compute nodes. More
importantly, we are permitting these locale structures to be
defined using Chapel, as a means of moving the role of
modeling and targeting an architecture out of the compiler
and runtime, and increasingly into Chapel code.

C. Portability Improvements

One key application of hierarchical locales over the next
few years will be to target compute nodes containing GPUs
or Intel MIC processors [31]. In addition to the work
required to model these architectures using the hierarchical
locale framework, we will also need to extend the Chapel
compiler’s back-end to generate code and idioms that can
effectively use these architectures, for example by gener-
ating OpenACC or CUDA. A previous collaboration with
UIUC demonstrated the possibility of targeting GPUs with
Chapel [2]; over the next few years, we intend to merge
these ideas with the hierarchical locales work in order to
support accelerator-based node architectures as first-class
citizens within Chapel.



D. Community Engagement and Development

Over the next several years, we plan to continue support-
ing and expanding the Chapel community through ongoing
talks, tutorials, user interactions, and collaborations. As
mentioned earlier, one focus area will be to seek ways
of growing the Chapel community to engage non-HPC
communities interested in parallelism, such as mainstream,
open-source, and big data programmers. Another aspect of
community development will involve exploring plans for
moving Chapel from a Cray-dominated effort to one that
utilizes a collaborative, community model of governance and
development.

E. Research Directions

In addition to work items related to making the cur-
rent definition of Chapel more robust, there are numer-
ous research topics that could expand Chapel’s utility and
applicability, if successful. Examples include: support for
predicated task creation and conveying that information to a
runtime task scheduler; investigation of work-stealing/load-
balancing tasking runtimes; resilience features including
fault-tolerant domain maps; extending Chapel domain maps
to support out-of-core computations; energy-aware language
features; tool support for Chapel, including debuggers and
performance analysis tools; use of Chapel for non-HPC
parallel computations such as big data calculations; and
investigations into supporting parallel domain-specific lan-
guages (DSLs), either by targeting Chapel as a back-end
language, or by embedding DSLs within it directly. While
most of these topics are not part of our short-term roadmap,
each of them suggests a direction that could potentially in-
crease Chapel’s utility, given the appropriate funding vehicle
or collaboration.

VII. SUMMARY

To summarize, Chapel has had a good run under DARPA
HPCS and has benefitted greatly from the long-term na-
ture of the program. Through its design, development, and
demonstrations to date, it has served to overcome much of
the skepticism within the HPC community about the poten-
tial value and utility of new parallel programming languages.
As it currently stands, Chapel is a useful prototype, yet one
that requires additional work in order to be valuable to real
users. Our intention is to address these shortcomings over the
next several years by improving Chapel’s performance, fill-
ing in features that are incomplete or missing, ensuring that
Chapel works on the next generation of node architectures,
and continuing to grow the Chapel user and developer com-
munities. With these improvements, we believe that Chapel
has an excellent chance of becoming the language to break
the historical streak of parallel languages that are intriguing
yet ultimately unsuccessful. A big part of this challenge
will involve changing the tone of the conversation from
“How will Cray ever manage to make Chapel successful?”

to “How will we, as a community, do so?” As always, we
welcome collaborations and supporting activities from like-
minded teams with an interest in contributing to the success
of the effort.

ACKNOWLEDGMENTS

The Chapel team at Cray Inc. would like to thank the
external and past members of the project over its history
and to acknowledge the role that they have played in helping
Chapel reach its current state. We’d also like to thank the
Chapel user community for its ongoing support of the lan-
guage and role in helping to improve its utility. Finally, we’d
like to thank DARPA for creating a program as long-term
and visionary as HPCS to permit a language like Chapel
to be developed; the program’s consistent stability played a
huge role in advancing Chapel in ways that smaller, shorter-
term programs would not have been able to as effectively.

REFERENCES

[1] B. L. Chamberlain, “Chapel,” in A Brief Overview of
Parallel Programming Models, P. Balaji, Ed. MIT
Press, 2014 (expected), (draft preprint available as A
Brief Overview of Chapel at http://chapel.cray.com/papers/
BriefOverviewChapel.pdf).

[2] A. Sidelnik, S. Maleki, B. L. Chamberlain, M. J. Garzaran,
and D. Padua, “Performance portability with the Chapel
language,” in 2012 IEEE 26th International Parallel and
Distributed Processing Symposium (IPDPS), 2012, pp. 582–
594.

[3] S. Sridharan, J. S. Vetter, B. L. Chamberlain, P. M. Kogge,
and S. J. Deitz, “A scalable implementation of language-
based software transactional memory for distributed memory
systems,” Future Technologies Group, Computer Science and
Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, TN, USA, Tech. Rep. FTGTR-2011-02, May 2011.

[4] K. B. Wheeler, R. C. Murphy, D. Stark, and B. L. Chamber-
lain, “The Chapel tasking layer over Qthreads,” in Cray User
Group (CUG) 2011, Fairbanks, AK, USA, May 2011.

[5] A. Sanz, R. Asenjo, J. Lopez, R. Larrosa, A. Navarro,
V. Litvinov, S.-E. Choi, and B. L. Chamberlain, “Global
data re-allocation via communication aggregation in Chapel,”
in 2012 IEEE 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD),
2012, pp. 235–242.

[6] B. Ren, G. Agrawal, B. Chamberlain, and S. Deitz, “Trans-
lating Chapel to use FREERIDE: A case study in using
an HPC language for data-intensive computing,” in 2011
IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011, pp.
1242–1249.

[7] The Chapel Team, Productive Programming in Chapel:
a Next-Generation Language for General, Locality-Aware
Parallelism, University of Bergen, Bergen, Norway, April
2013, tutorial slides, available at: http://chapel.cray.com/
tutorials-archives.html.



[8] ——, Chapel Language Specification (version 0.93), Cray
Inc., Seattle, WA, USA, April 2013, http://chapel.cray.com/
spec/spec-0.93.pdf.

[9] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, “Ab-
straction mechanisms in CLU,” Communications of the ACM,
vol. 20, no. 8, pp. 564–576, August 1977.

[10] B. L. Chamberlain, “The design and implementation of a
region-based parallel language,” Ph.D. dissertation, University
of Washington, November 2001.

[11] S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder,
“Global-view abstractions for user-defined reductions and
scans,” in Eleventh ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming (PPoPP’06). ACM
Press, 2006, pp. 40–47.

[12] B. L. Chamberlain, “Myths about scalable parallel program-
ming languages part 1: Productivity and performance,” IEEE
Technical Committee on Scalable Computing (TCSC) blog,
April 2012, https://www.ieeetcsc.org/activities/blog/myths
about scalable parallel programming languages part1.

[13] ——, “Myths about scalable parallel programming languages
part 6: Performance of higher-level languages,” IEEE
Technical Committee on Scalable Computing (TCSC) blog,
September 2012, https://www.ieeetcsc.org/activities/blog/
Myths About Scalable Parallel Programming Languages
Part 6: Performance of Higher-Level Languages.

[14] H. Burkhart, M. Sathe, M. Chisten, M. Rietmann, and
O. Schenk, “Run, stencil, run! HPC productivity studies in the
classroom,” in 6th Conference on Partitioned Global Address
Space Programming Models (PGAS’12), Santa Barbara, CA,
USA, October 2012.

[15] N. Dun and K. Taura, “An empirical performance study
of Chapel programming language,” in 2012 IEEE 26th In-
ternational Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2012, pp. 497–506.

[16] B. Chamberlain, S.-E. Choi, M. Dumler, T. Hildebrandt,
D. Iten, V. Litvinov, G. Titus, C. Battaglino, R. Sobel,
B. Holt, and J. Keasler, Chapel HPC Challenge Entry:
2012, Salt Lake City, UT, USA, November 2012, presenta-
tion slides available at http://hpcchallenge.org/presentations/
sc2012/ChapelHPCC2012.pdf.

[17] B. L. Chamberlain, S. J. Deitz, and L. Snyder, “A com-
parative study of the NAS MG benchmark across parallel
languages and architectures,” in Proceedings of the 2000
ACM/IEEE conference on Supercomputing (Supercomputing
’00)). Washington, DC, USA: IEEE Computer Society, 2000.

[18] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, and A. Navarro,
“User-defined parallel zippered iterators in Chapel,” in Fifth
Conference on Partitioned Global Address Space Program-
ming Models (PGAS 2011), Galveston Island, TX, USA,
October 2011.

[19] B. L. Chamberlain, “Multiresolution languages for portable
yet efficient parallel programming,” October 2007, http://
chapel.cray.com/papers/DARPA-RFI-Chapel-web.pdf.

[20] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, D. Iten, and
V. Litvinov, “Authoring user-defined domain maps in Chapel,”
in Cray User Group (CUG) 2011, Fairbanks, AK, USA, May
2011.

[21] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi,
“User-defined distributions and layouts in Chapel: Philosophy
and framework,” in 2nd USENIX Workshop on Hot Topics in
Parallelism (HotPar’10), June 2010.

[22] The OpenACC Application Programming Interface (version
1.0), November 2011.

[23] D. Bonachea, “GASNet specification v1.1,” U.C. Berkeley,
Tech. Rep. UCB/CSD-02-1207, 2002, (newer versions also
available at http://gasnet.cs.berkeley.edu).

[24] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese,
B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and
J. Reinhard, “Cray Cascade: a scalable HPC system based
on a Dragonfly network,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2012, pp. 103:1–103:9.

[25] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini system
interconnect,” in Proceedings of the 2010 18th IEEE Sym-
posium on High Performance Interconnects, ser. HOTI ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp.
83–87.

[26] K. Kennedy, C. Koelbel, and H. Zima, “The rise and fall
of High Performance Fortran: an historical object lesson,”
in Proceedings of the third ACM SIGPLAN conference on
History of Programming Languages, ser. HOPL III. New
York, NY, USA: ACM, 2007, pp. 7–1–7–22.

[27] “Hydrodynamics challenge problem,” Lawrence Livermore
National Laboratory, Livermore, CA, USA, Tech. Rep.
LLNL-TR-490254, (available at https://computation.llnl.gov/
casc/ShockHydro/LULESH-files/spec.pdf).

[28] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen,
Z. DeVito, R. Haque, D. Laney, E. Luke, F. Wang et al.,
“Exploring traditional and emerging parallel programming
models using a proxy application,” 27th IEEE International
Parallel & Distributed Processing Symposium (IEEE IPDPS
2013), May 2013.

[29] S.-E. Choi and L. Snyder, “Quantifying the effects of commu-
nication optimizations,” in Proceedings of the 1997 Interna-
tional Conference on Parallel Processing, 1997, pp. 218–222.

[30] B. L. Chamberlain, S.-E. Choi, and L. Snyder, “A compiler
abstraction for machine independent parallel communication
generation,” in In Tenth International Workshop on Languages
and Compilers for Parallel Computing (LCPC’97). Springer-
Verlag, 1997, pp. 261–76.

[31] Intel Xeon Phi Coprocessor System Software Developers
Guide, Intel Corporation, May 2013.


