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Abstract—Current HPC architectures are changing drasti-
cally and rapidly as compared to mature scientific applications,
which usually evolve at a much slower rate. Newly introduced
architectures promise to impact the performance of these
heavily used scientific applications. Therefore, it is prudent
to understand how the supposed performance benefits and
improvements of new architectures translate to the applica-
tions. In this paper, we attempt to quantify the differences
between the theoretical performance improvements (due to
changes in architecture) and the “real-world” improvements
in applications by gathering performance data of selected
applications from the fields of chemistry, climate, weather,
materials science, fusion, and astrophysics running on three
different Cray architectures: XT5, XE6, and XC30. Of par-
ticular interest is the fact that these three Cray platforms
spans three different generations of interconnects, namely:
SeaStar2+, Gemini, and Aries, respectively and that all three
platforms (or its variant) are either in active use or coming
online at HPC centers. Therefore, a performance evaluation of
these selected applications on these three different architectures
gives a user some useful perspective into the benefits of
these architectures. These evaluations are done by comparing
the improvements of numerical (micro)-benchmarks to the
improvements of the selected applications when run across
these architectures.
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I. INTRODUCTION

Twice each year the Top500 [1] releases a list of the fastest
machines in the world. The recent Top500 performance lists
show continued steady growth towards exascale. While cur-
rent HPC architectures are changing drastically and rapidly,
scientific applications evolve at a much slower pace. A key
question is whether a particular application would capitalize
on the performance improvement promised by a system
upgrade. In this paper, we attempt to quantify the differences
between the theoretical performance improvements (due to
changes in architecture) and the “real-world” improvements
in applications by gathering performance data of selected
applications from the fields of chemistry, climate, weather,
materials science, fusion, and astrophysics running on three
different Cray architectures: XT5, XE6, and XC30.

The High Performance LINPACK (HPL) [2] benchmark is
the de-facto standard for performance measurement of a su-
percomputer. Service Units (SU), usually measured as core-
hours, are used as currency on many HPC systems. These

SUs are typically consumed by a job according to the node
count and total runtime of the job. An exchange rate of SUs
between two systems may be calculated using core-count-
normalized HPL results using all of the available computing
resources on each of the two systems. An SU conversion
rule can then be implemented to account for the resource
consumption differences between systems. This is especially
important for a cyberinfrastructure provider that has diverse
computing resources. For example, such a conversion rule
is implemented among the resources that XSEDE [3] pro-
vides. XSEDE is a leading distributed cyberinfrastructure for
open scientific research in the United States. It consists of
sixteen systems with different designs and capabilities. In
most cases however, these SU conversion rates do not take
issues such as application scalability and problem size into
consideration. An application’s performance ratio between
two systems may differ greatly from the official one derived
from the HPL benchmark.

As a guideline to evaluate application performance dif-
ferences across these three Cray architectures, this paper
utilizes the conversion system described above. First we
derive the SU conversion rates for XT5, XE6, and XC30
by comparing the HPL benchmark results on these systems.
The conversion rate gives us the expected ideal performance
improvements. Then we compare these conversion rates to
the real-world performance of the selected applications.

The rest of this paper is organized as follows. In section
II we describe the three Cray systems, XT5, XE6 and XC30
used in this study. In section III, we describe applications
and present benchmarking results and our evaluation. We
will discuss SU conversions based on application perfor-
mance results in section IV. Finally, we conclude our work
and discuss future directions in section V.

II. SYSTEM OVERVIEW

National Institute for Computational Sciences located at
Oak Ridge National Laboratory hosts three Cray supercom-
puters: Kraken, a Cray XT5; Ares, a Cray machine com-
posed of XE6 and XK6 (with NVIDIA X2090 accelerator)
nodes1; and Darter, a Cray XC30 (a.k.a. Cray Cascade). The

1In this paper, we will only examine the performance of the XE6 portion
of Ares.



Kraken(XT5) Ares(XE6) Darter(XC30)
Processor 6-core 2.6GHz AMD Opteron 16-core 2.2GHz AMD Opteron 8-core 2.6GHz Intel Xeon

Socket/node 2 2 2
Cores/socket 6 16 8

Memory Interface DDR2-800MHz DDR3-1.3GHz DDR3-1.6GHz
Peak GFLOPS/core 10.4 8.8 20.8

Peak GFLOPS/node 124.8 281.6 332.8
HPL GFLOPS/core 8.14 6.61 16.8

HPL GFLOPS/node 97.68 211.5 268.89
L3 Cache (MB) 1 8 20

Memory Size/node (GB) 16 32 32
Memory Bdwth/node (GB/s) 25.6 83.5 102.4

Table I: Compute node specification.

Comparison Ares/Kraken Ratio Darter/Kraken Ratio
Peak FLOPS/core 0.85 2

Peak FLOPS/node 2.26 2.67
HPL FLOPS/core 0.81 2.06

HPL FLOPS/node 2.16 2.75
Memory Bandwidth 3.26 4.00

Table II: Per node ratios between Kraken, Ares, and Darter.

compute node specifications of each machine are listed in
Table I.

After normalization, Ares and Darter are at least twice
as powerful (in terms of FLOPS/node) as Kraken. The HPL
FLOPS/core ratio in Table II, also serves as the ideal SU
conversion rate between those machines.

1) Kraken: Kraken, a Cray XT5 supercomputer, has a
total of 9,408 compute nodes, each of which has two 2.6
GHz hexa-core AMD Opteron 2435 processors. There are
112,896 cores in total with a peak performance of 1.17
PetaFLOPS. Each compute node has 16 GB memory and
is attached to a Lustre parallel file system. Kraken’s high-
speed low-latency network is made of Cray SeaStar2+ chips
on board plus a scalable 3D torus interconnect fabric.

2) Ares: Ares, a Cray XE6m machine, has 16 XK6
compute nodes, each with 16 GB of memory, a single-socket
16-core AMD 2.2GHz Opteron processor, and an NVIDIA
X2090 GPGPU with 6 GB of memory. It also has 20 XE6
nodes with 32 GB of memory and two sockets of 16 core
AMD 2.2GHz Opteron processor. All nodes are connected
via a Gemini interconnect in a 2D torus configuration. In this
paper, we only examine the performance of the dual-socket
(XE6) opteron portion of Ares.

3) Darter: Darter, a Cray XC30 supercomputer, has a
total of 748 compute nodes, each node has two 2.6GHz octa-
core Intel Sandy Bridge processors. The peak performance
is 248.9 TeraFLOPS with total of 11,968 cores. There is
32GB of memory on each node. A Cray Sonexion Lustre
parallel storage file system is directly attached to this system,
providing high-performance I/O. The newly designed Aries
interconnect has 500GB/s switching capacity and utilizes the
Dragonfly network topology.

III. APPLICATION AND EXPERIMENT RESULTS

In order to provide a fair performance comparison across
these three platforms, we chose representative applications
from a broad spectrum of research areas. We describe each
application and discuss its performance in detail in the
following subsections.

A. HOMME

The High Order Method Modeling Environment
(HOMME) [4] is a highly scalable, global hydrostatic
atmospheric modeling framework based on the spectral
element and discontinuous Galerkin methods. It has been
integrated into the Community Atmospheric Model (CAM),
the atmospheric component of the CCSM. HOMME relies
on a cubed-sphere grid, where the planet Earth is tiled
with quasi-uniform quadrilateral elements, free from polar
singularities. HOMME is the first dynamical core ever that
allows for full two-dimensional domain decomposition in
CAM. HOMME is linked with netcdf and libsci for using
Lapack functions. We compiled with HOMME with Intel
Compiler 13.1.0 on XC30, PGI Compiler 12.3.0 on XE6,
and PGI Compiler 11.9.0 on XT5 respectively. In Figure 1,
we show performance of HOMME in time and total SU
consumption. We can see that HOMME exhibit almost
linear scalability on the three machines. SU consumption
is consistent with different number of nodes on every
platform.

B. WRF

The Weather Research and Forecasting (WRF) model is
a mesoscale numerical weather predicting system used for
both weather research and real-world forecasting needs with
a large world-wide user base. WRF was initially developed



Figure 1: HOMME performance comparison in Time and
SU consumption

by partnership among National Center for Atmospheric
Research (NCAR), the National Oceanic and Atmospheric
Administration (NOAA), the Air Force Weather Agency
(AFWA), the Naval Research Laboratory, the University of
Oklahoma, and the Federal Aviation Administration (FAA).
WRF serves both the forecasting and research needs by
its ability to produce simulations based on observational
data and idealized atmospheric conditions, while continually
incorporating advances in physics and numerics in weather
research.

For this paper we utilized WRF version 3.1.1. Although
this version is OpenMP capable, only MPI is used for our
tests. There are two test cases available: standard case and
large case. These cases are based on a 6025 × 6025 km
domain centered (as close as the resolution will allow) on the
Arctic Region Supercomputing Center in Fairbanks, Alaska.
The standard case has a grid resolution of 675× 675× 28,
while the large case has a grid resolution of 3038×3038×28.

For our experiments, WRF was compiled using PGI
compiler version 11.9 on Kraken, 12.3 on Ares, and 12.10

on Darter. WRF requires NetCDF for reading input and
writing output data files. We use Cray provided (paral-
lel) NetCDF with HDF5 support version 4.1.2 on Kraken
(via module netcdf-hdf5parallel/4.1.2), 4.2.1
on Ares (netcdf-hdf5parallel/4.2.0), and 4.2.1.1
on Darter (cray-netcdf-hdf5parallel/4.2.1.1).
WRF was specified to use the serial NetCDF for our tests,
although parallel NetCDF I/O is also an option. With serial
I/O, for the standard case MPI rank 0 is responsible for
all I/O. For the large case, we used WRF capability of
asynchronous I/O called “quilted I/O” by assigning the last
32 MPI ranks exclusively deal with I/O.

Figure 2 shows the strong scaling of WRF standard case
run on Kraken, Ares, and Darter. The scaling behavior of
WRF on Kraken and Ares matches fairly well for job size
with 64 cores to 256 cores. On Kraken, the strong scaling
trend starts to reverse for job size larger than 256 cores.
This eventually results in worse performance of 512-cores as
compared to the 256-cores jobs. On the contrary, on Ares the
strong-scaling trend continues to 512-cores while maintain-
ing efficiency. Since per-core FLOPS are similar on Kraken
and Ares, the differences in this scaling behavior may be
due to the network architecture differences. Ares with its
Gemini interconnect has higher bandwidth and lower latency
than Kraken with its older generation SeaStar+ interconnect.
Another possible cause for the differences is the per-node
core density. Ares XE nodes has 32 cores per node, while
Kraken only has 12 cores per node. Therefore the same
number of cores requires less inter-node communication on
Ares. On Darter, a similar trend is observed. Strong-scaling
is maintained on Darter all the way up to 512 cores for this
test case with near-perfect efficiency.

Figure 2: WRF strong-scaling plots on Kraken, Ares and
Darter.

One noticeable thing from the plots in Figure 2 is the
speed difference between machines. This is more apparent



in Figure 3 where average SU usage resulting from different
numbers of cores is shown. The minimum and maximum SU
measurements are also shown to give some insight on the
variation of scaling behavior on different machines. If the
code strong-scales well on the machine, the variation (e.g.
min to max of SU) should be fairly small. On Kraken, we
see large variability of SU. This is caused by the reversing
trends of efficiency we have seen on Figure 2. On Ares, the
strong scaling is much better, as indicated by the smaller
variation on the plot. On Darter, this code strong-scaling
is even better than on Ares as indicated by the very small
variation of SU.

Figure 3: WRF SU usage and its variations on Kraken, Ares,
and Darter.

To give better insight of the strong-scalability of WRF
with standard case on these machines, a plot of SU versus
cores is shown in Figure 4. A negative slope indicates
increasing efficiency from previous point, while a positive
slope indicate a decrease in efficiency. From this figure we
can see that Darter is the best machine for this code in
maintaining strong-scaling efficiency. On all three machines,
there is a slight increase in efficiency in going from 64
cores to 128 cores. Possible explanation for this is that the
problem size per core may fit memory hierarchy better with
this number of cores. In fact, it is obvious that on all three
machines 128 cores is the sweet spot for this test case. As
number of cores increases, efficiency decreases on all three
machines, although at different rates.

C. LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Par-
allel Simulator”) is an open-source molecular dynamics code
from Sandia National Laboratories [5]. According to a recent
report on the usage of libraries on HPC systems with ALTD
tool [6], LAMMPS is the second most used software on
Jaguar located at ORNL (with more than 100,000 instances

Figure 4: SU usage versus core on Kraken, Ares, and Darter.

of execution) and 8th on Kraken at NICS. In addition,
LAMMPS has been executed at the full scale of modern,
leadership-class supercomputing systems and it has been
selected one of the six critical codes for applications that
were to be the vanguards of TITAN at ORNL.

For this benchmark, we used LAMMPS version 25Jan12
compiled using PGI compiler version 12.0 with Cray pro-
vided FFTW 3.3.0.0. The LAMMPS atomic fluid with
Lennard-Jones (LJ) potential benchmark was used to per-
form strong scaling studies. LJ is a mathematical model that
approximates the interaction between a pair of neutral atoms.
The description of the benchmark is as follows. The atomic
fluid has:

• 8.4 million atoms for 100 timesteps
• reduced density = 0.8442 (liquid)
• force cutoff = 2.5 σ
• neighbor skin = 0.3 σ
• neighbors/atom = 55 (within force cutoff)
• NVE time integration.
Figure 5 shows the strong-scaling results of LAMMPS on

Kraken (XT), Ares (XE), and Darter (XC30). The LAMMPS
code outputs timings from the main routines. Using these
timings, Figure 6 shows a stacked bar chart with the per-
centage of time spent in each section of the code depending
on the number of cores. This corresponds to the benchmark
with a total of 8.4 million of atoms. Most of the time is
spent in the “Pair Time” which corresponds to the time spent
computing pairwise interactions. Otherwise, the percentage
of time spent computing new neighbor lists (neigh time) is
quasi similar over the number of cores.

D. GYRO

GYRO (General Atomics GACODE Suite) is a code,
developed by General Atomics, which numerically simulates
tokamak plasma microturbulence. It computes the turbu-
lent radial transport of particles and energy in tokamak



Figure 5: LAMMPS strong-scaling for 8.4 millions atoms
on Kraken (XT), Ares (XE), and Darter (XC30)

Figure 6: LAMMPS strong-scaling for 8.4 millions atoms
on Kraken (XT), Ares (XE), and Darter (XC30)

plasmas and solves 5-D coupled time-dependent nonlinear
gyrokinetic Maxwell equations with gyrokinetic ions and
electrons. To do so, it utilizes second-order implicit-explicit
Runga-Kutta integration with a fourth-order, explicit Eule-
rian algorithm. It can operate as a flux-tube (local) code,
or as a global code, with electrostatic or electromagnetic
fluctuations. Libraries utilized by GYRO are netcdf, hdf5,
libsci/tpsl and fftw. We compiled GYRO with Cray Compiler

8.1.5 on XC30, PGI Compiler 12.3.0 on XE6, and PGI
Compiler 11.9.0 on XT5 respectively.

In Figure 7, we show performance of GYRO in time
and total SU consumption. GYRO sees major performance
improvements when run on faster networks, such as the
Aries interconnects on the Darter XC30, since of the 10%
of the execution time spent in communication, 92% is spent
in collective communication. Thus, running this code on
an all-to-all (Dragonfly) network within a cabinet of the
XC30, showed massive performance gains and an order of
magnitude less SUs to achieve the same results. The strong
scaling was acceptable on all three machines, with the best
being on the XC30, not surprisingly.

Figure 7: GYRO performance comparison in Time and SU
consumption

E. MILC

The MILC code was developed by the MIMD Lattice
Computation Collaboration. It consists of several related
applications that perform quantum chromodynamics simu-
lations based on four dimensional SU3 lattice gauge theory.



For our testing we have focused on the ks imp dyn applica-
tion, which is a dynamical simulation using the R algorithm
and involving a variety of staggered fermion actions. The
simulations were each performed using a 32 x 32 x 32 x 36
lattice (x, y, z, t). We performed a strong scaling test using
the same inputs in runs involving three different core counts
on each of the three platforms.

All of our tests use version 7.6.3 of the MILC code. The
code was compiled using the gcc compiler version 4.6.2
on Kraken, 4.6.1 on Ares, and 4.7.2 on Darter. MILC also
uses the FFTW library. We built MILC with FFTW version
3.3.0.0 on Kraken, and 3.3.0.1 on Ares and Darter. The
results of these tests are shown in Figure 8. MILC exhibited
near linear scaling on all three test platforms.

Figure 8: MILC performance comparison in Time and SU
consumption

F. NAMD

The molecular dynamics (MD) application called NAMD
(Not (just) Another Molecular Dynamics program) [7] is
being used to study molecular dynamics, including areas

that define life processes in cells such as protein struc-
ture, folding and function. NAMD simulates a complex
protein with hundreds of millions of atoms over nano to
micro (and toward milli) second time frames. NAMD is a
parallel molecular dynamics application designed for high
performance simulations of large biomolecular systems on
parallel computers, scaling up to 300,000 cores for molecular
systems of 100 millions atoms or more [8], [9].

The adaptive runtime system Charm++ [10] is utilized
in NAMD for parallel computing, which provides scaling
to thousands of processors. Charm++’s parallel objects and
data-driven execution adaptively overlaps communication
and computation and hide communication latency: when an
object is waiting for some incoming data, entry functions of
other objects with all data ready are free to execute. Many
innovative parallel algorithms are implemented in NAMD
for petascale simulations.

NAMD is the most utilized application on XSEDE re-
sources such as Kraken [6]. We compiled NAMD-2.9 using
GNU compiler version 4.6.3 on Kraken and Ares with Cray
provided FFTW 3.3.0.0. We used GNU compiler version
4.7.2 on Darter with Cray provided FFTW 3.3.0.0 to build
NAMD.

We used the Satellite Tobacco Mosaic Virus (STMV)
dataset for NAMD benchmark. It has the following proper-
ties: 1,066,628 atoms, periodic, Particle Mesh Ewald (PME).
We used 5000 steps for our benchmark.

In Figure 9, we show the performance of NAMD in time
and total SU consumption. NAMD sees less than expected
performance improvements when run on the Cray XC30.
We need to do further investigation to find out about why
NAMD uses fewer SUs on Kraken as compared to Ares.

IV. DISCUSSION

In this paper, we examine Service Units (SU) for each
application. For a strong scaling benchmarking case, ide-
ally SU consumption should stay the same when using
different number of cores. In each bar plot of application
SU consumption, we show variance of SU consumption
on each platform. Smaller variance means better scaling.
Moreover, for each application we calculate the observed SU
conversion ratio between two platforms using the following
formula:

Ares/Kraken Ratio =
Kraken SUapp

Ares SUapp

Darter/Kraken Ratio =
Kraken SUapp

Darter SUapp

In Figure 10, we draw bar plots of the observed SU
conversion ratio for each application with its min, max and
average. We also mark the ideal ratio computed by HPL
flops measured on each machine from Table II. We can
see that except NAMD, all applications perform better than



Figure 9: NAMD performance comparison in Time and SU
consumption

expected by HPL ratio and theoretical peak performance
ratio.

V. CONCLUSION

Our benchmarking results show that most applications
achieve better performance than expected on CRAY XC30
and XE6 than on XT5 when a direct conversion using HPL is
used. As future work, we would like to gather a performance
profile for each application on each platform. We plan to
investigate whether the observed performance improvements
for applications were due to improvements in CPU, network,
or other factors.
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