
Experiences Porting a Molecular Dynamics Code to
GPUs on a Cray XK7

Don Berry1 Joseph Schuchart2 Robert Henschel1

1Indiana University

2Oak Ridge National Laboratory

May 9, 2013

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 1 / 23

Overview

1 Introduction

2 Molecular Dynamics of Dense Nuclear Matter

3 High Level View of IUMD 6.3.x

4 NVIDIA K20 GPU

5 OpenACC Kernel

6 PGI CUDA Fortran Kernel

7 OpenACC vs. CUDA vs. OpenMP performance

8 Conclusion

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 2 / 23

Introduction

IUMD

IUMD is a code for molecular dynamics simulations of dense nuclear
matter in astrophysics.

Developed at Indiana University by Prof. Charles Horowitz, and Don
Berry (UITS)

Different from typical MD codes such as NAMD, AMBER,
GROMACS used in chemistry and biology

Currently running version 6.2.0 in production on Kraken and (old) Big
Red

Hybrid MPI+OpenMP
Main MPI call is to MPI Allreduce across all processes
Scales well to 128-MPI × 6-OpenMP = 768 cores on Kraken

This talk is about a new version, 6.3.0 that will scale to higher MPI
process counts and use the GPUs on Big Red II (XE6/XK7)

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 3 / 23

Molecular Dynamics of Dense Nuclear Matter

White Dwarf Stars (WD)

End stage of sun-like stars (≈ 1M�)

Composed of completely ionized atoms, mostly C, O, Ne

Ions interact via screened Coulomb potential

V (r) =
ZiZje

2

r
e−r/λ

Corresponding force is

f(r) =
ZiZje

2

r3

(
1 +

r

λ

)
e−r/λr

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 4 / 23

Molecular Dynamics of Dense Nuclear Matter

Neutron Stars (NS)

End stage of ≈ 8M� stars

Most mass is ejected in a
Type II Supernova
Remaining mass ≈ 1.4M�
is the NS
Radius ≈ 10km

Interior is neutrons

Ocean and crust consist of
many heavy ion species

Screened Coulomb
interaction still applies to
ocean and crust material

Between crust and interior is
“Nuclear Pasta”

Odd phase where nucleons
form long strings and sheets
IUMD can simulated this
matter too, but not discussed
here

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 5 / 23

Molecular Dynamics of Dense Nuclear Matter

Uses of MD in Physics of Compact Stellar Matter

MD has an important role to play in the study of dense stellar matter in
white dwarfs, neutron stars and supernovas.

WD,NS: Phase diagram (freezing temperature vs. composition)

WD,NS: Electric and thermal conductivity (related to cooling time)

NS: Insight into pycnonuclear fusion reactions

NS: Stress-strain diagram of solid crust

Important for estimating maximum size of mountains
Mountains on rotating neutron stars radiate gravitational waves that
may be detectable

NS,SN: Nuclear pasta formation

SN: Neutrino transport

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 6 / 23

High Level View of IUMD 6.3.x

Particle-Particle (PP) Algorithm

Range of force ≈ box
edge length

Methods for short range
interactions not useful

Cannot use FMM for
long-range Coulomb

It is specific to 1/r
potential

Simply sum force of
every particle on particle
i :

Fi =
N−1∑
j=0

j 6=i

fij

Force Matrix

Convenient to think of source particles
acting on target particles

fij

T
ar

ge
ts

i

Sources
j

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 7 / 23

High Level View of IUMD 6.3.x

MPI Algorithm

Computation

Partition force matrix into a
P ×Q Cartesian grid of MPI
processes

M = N/P targets/proc

N = N/Q sources/proc

Process (p, q) applies N
sources to M targets

Fq
i =

∑
j∈Sq

fij , i ∈ Tp

Communication

MPI Allreduce across rows to
get total force

Fi =
∑Q−1

q=0 Fq
i

MPI Allreduce along columns to
get new source postions

P

Q

M

N

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 8 / 23

High Level View of IUMD 6.3.x

Newton Subroutine

Over 99% of runtime every time step is spent executing the newton
subroutine. It updates target positions and velocities, and calls the force
kernel. Our benchmark results measure average time to complete one call.

ri = ri + vi∆t + 1
2ai∆t2

call MPI Allreduce to distribute rT as new rS

vi = vi + 1
2ai∆t

call force kernel to get new ai , i = 0 . . .M − 1

vi = vi + 1
2ai∆t

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 9 / 23

NVIDIA K20 GPU

NVIDIA K20 GPU

13 Streaming Multiprocessors (SMX)

192 single precision cores
64 double precision cores
32 special function units

16KB/48KB, 32KB/32KB or 48KB/16KB Shared/L1

max 1024 threads per thread block

max 16 thread blocks per SMX

5 GB GDDR3 device memory

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 10 / 23

OpenACC Kernel

OpenACC

In main program, copyin charges and positions:
!$acc data copyin(ztii,zsii,xs,xt) create(at)

In subroutine newton:
!$acc update device(xt) async
!$acc update device(xs) async

In force kernel:
!$acc wait
!$acc kernels present or copyin(xt,xs,at)
do i=0,ntgt-1

!Calculate force on i from all sources.
!Divide by mass to get acceleration at(i).

end do
!$acc end kernels
!$acc update host(at)

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 11 / 23

PGI CUDA Fortran Kernel

Partition M × N Submatrix

Each M × N submatrix is
assigned to a GPU

A× B grid of submatrices
A× B grid of thread blocks

A, B determined by:

C = number of source chunks
(m, l) = thread block dims.

Each submatrix will have:

m targets
n = lm/4 sources

Thus matrix is partitioned
into,

A = M/m block rows
B = N/(nC) block columns

A

B B B

m

n

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 12 / 23

PGI CUDA Fortran Kernel

PGI CUDA Fortran Kernel:
How threads read target data

Example

Thread block dimensions:
(m, l) = (32, 2)

Force submatrix dimensions:
(m, n) = (32, 16)

Each thread column is one
warp.

Data order matches thread
ID order

Reads are coalesced.

Threads keep (xT , yT , zT) in
registers

Circles represent threads.

xT31 - txT30 - txT29 - txT28 - t
... · · ·

xT7 - txT6 - txT5 - txT4 - txT3 - txT2 - txT1 - txT0 - t
Global

Memory

tt
tt
tt
tt
tt
tt

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 13 / 23

PGI CUDA Fortran Kernel

PGI CUDA Fortran Kernal:
How threads read source data

Source data stored in transpose
order to target data in global
memory.

Four data items per source:
(ZS , xS , yS , zS)

Each warp reads 8 sources.

Data order again matches
thread ID order

Reads are coalesced.

Threads write
S = (ZS , xS , yS , zS) to shared

memory.

zS7 - tyS7 - txS7 - tZS7
- t

... · · ·

zS1 - tyS1 - txS1 - tZS1
- tzS0 - tyS0 - txS0 - tZS0
- t

Global
Memory

Shared Memory

6

S0

6

S1

6

S2

6

S3

6

S4

6

S5

6

S6

6

S7

6

S8

6

S9

6

S10

6

S11

6

S12

6

S13

6

S14

6

S15

tt
tt
tt
tt
tt
tt

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 14 / 23

PGI CUDA Fortran Kernel

Calculation of Partial Forces by Thread Block (a, b)

Thread (i , k) in thread block (a, b) applies its sources to its target

Fk
i =

C−1∑
c=0

(k+1)m/4−1∑
j=km/4

fam+i ,(cB+b)n+j

Threads use shared memory to combine their results.

Fs(i) =
l−1∑
k=0

Fk
i

Thread columns share work of writing block’s results to private area
in global memory

F′g (am + i , b) = Fs(i)

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 15 / 23

PGI CUDA Fortran Kernel

Sum Forces Over All Blocks in Row a

Last block to write its results to F′g sums over all blocks in row a.
Thread columns share reduction work.

Fk
i =

(B−1)/l∑
b=0

F′g (am + i , bl + k)

Threads again use shared memory to combine results

Fs(i) =
l−1∑
k=0

Fk
i

Thread columns share work of writing final results to global memory

Fg (am + i , b) = Fs(i)

Host reads Fg and finishes newton subroutine

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 16 / 23

OpenACC vs. CUDA vs. OpenMP performance

Benchmark Runs

Only single-node runs using N = 27648 particles. No MPI.

OpenACC, CUDA Fortran vs. 32-thread OpenMP

Effect of P × P MPI process grid simulated by partitioning N particles
into P sets.

P 27648/P P2

1 27648 1
2 13824 4
4 6912 16
8 3456 64

16 1728 256
18 1536 324
24 1152 576

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 17 / 23

OpenACC vs. CUDA vs. OpenMP performance

Run Times for Newton Subroutine

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 18 / 23

OpenACC vs. CUDA vs. OpenMP performance

Overhead for Newton Subroutine

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 19 / 23

OpenACC vs. CUDA vs. OpenMP performance

Speedup of Newton Subroutine

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 20 / 23

OpenACC vs. CUDA vs. OpenMP performance

Performance of CUDA kernel vs. l for fixed C , m

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 21 / 23

OpenACC vs. CUDA vs. OpenMP performance

Performance of CUDA kernel vs. C for fixed (m, l)

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 22 / 23

Conclusion

Conclusion

OpenACC provides a quick, easy way to enter GPU computing.
Provides good speedup and experience with the hardware.

For production codes used for your multi-million SU allocation take
the time to learn GPU architecture, and the CUDA programming
environment!

Don Berry (IU) Porting IUMD to a Cray XK7 May 9, 2013 23 / 23

	Introduction
	Molecular Dynamics of Dense Nuclear Matter
	High Level View of IUMD 6.3.x
	NVIDIA K20 GPU
	OpenACC Kernel
	PGI CUDA Fortran Kernel
	OpenACC vs. CUDA vs. OpenMP performance
	Conclusion

