
Improving Task Placement for Applications with 2D, 3D, and 4D Virtual
Cartesian Topologies on 3D Torus Networks with Service Nodes

Robert A. Fiedler and Stephen Whalen

Cray, Inc.

St. Paul, MN, USA

rfiedler@cray.com

Abstract— We describe two new methods for mapping

applications with multidimensional virtual Cartesian process

topologies onto 3D torus networks with randomly distributed

service nodes. The first method, “Adaptive Layout”, works for

any number of processes and distributes the MILC (lattice QCD,

4D topology) workload to ensure communicating processes are

close together on the torus. This scheme reduces the run time by

2.7X compared to default placement. The second method,

“Topaware”, selects a prism of nodes slightly larger than the

ideal prism one would select if there were no service nodes. The

application’s processes are ordered to group neighboring

processes on the same node and to place groups of neighbors onto

nodes which are no more than a few hops apart. Up to 40% run

time reductions are obtained for 2D and 3D virtual topologies. In

dedicated mode, using Topaware with MILC reduces the run

time by 3.7X compared to default placement.

Keywords—topology awareness, task placement, torus

interconnect

I. INTRODUCTION

We consider the problem of mapping applications that
define 2D, 3D, and 4D Cartesian grid virtual process
topologies onto Cray systems that have 3D torus networks with
service nodes (used for IO and other non-compute functions)
randomly distributed among the compute nodes. Since finding
a near-optimal mapping for such applications (which perform
mainly nearest-neighbor communication) can be difficult even
on a dedicated system, simple approaches that are often
adopted prescribe rank orders that place separate groups of
neighboring processes onto each node [1]. Although this
strategy can help reduce off-node communication, it does not
ensure that groups of processes that are neighbors in the
application’s virtual topology are assigned to nodes that are
actually near each other on the torus. This can result in layouts
with much longer than necessary communication paths that
cause a high degree of contention for links between nodes, and
can thereby significantly increase communication times
compared to a near-optimal layout.

Node selection is very important for minimizing actual
communication path lengths on the torus between processes
(tasks) that are virtual nearest neighbors [2]. Unfortunately,
there is a tradeoff between requiring a near-optimal set of
nodes on which to run each application and the overall
utilization of the system. In shared batch mode, users typically
accept whichever sufficiently large set of nodes is selected by

the resource manager to run their job as soon as possible.
Moreover, as jobs of different sizes and durations execute and
complete, the set of nodes allocated to any new large job is
likely to be rather irregular in shape, and it may be fragmented
into multiple non-contiguous groups, rather than comprising a
regular prism [3]. The presence of service nodes (typically at
random locations throughout the system) and the simple fact
that there are many nodes in each torus dimension on the
largest Cray XE/XK systems can exacerbate this effect.
Irregular and (especially) non-contiguous node allocations
increase the likelihood that messages may pass through gemini
routers that are not attached to nodes in that job’s reservation,
which in turn makes more probable a significant performance
degradation due to job-job interference.

In this paper we describe two new methodologies for
placing groups of processes that are nearest neighbors in the
virtual Cartesian grid topology onto nearby nodes in a 3D torus
interconnect, and compare application performance when using
these approaches to runs made using the default placement
scheme as well as to runs made using Cray’s grid_order tool
[1]. We discuss in our concluding section several ways a
typical user might obtain the kind of prism-shaped node
allocations in shared batch mode that we were able to get easily
on a dedicated system. The main objective of this work is to
quantify the performance improvement that can be obtained for
various applications with different virtual topologies when one
can choose which nodes to use, or when one at least has access
to a prescribed regular box-shaped section of the torus, and can
place tasks on those nodes as desired.

A. Applications Studied

As part of the acceptance testing for Blue Waters, a wide
variety of benchmarks representing realistic, complete science
problems on 4k to 8k nodes were run to measure the sustained
petascale performance (SPP) for the expected workload [4].
The WRF, VPIC, and MILC applications in this benchmark
suite define virtual Cartesian mesh task topologies in 2D, 3D,
and 4D, respectively, and are candidates for performance
improvement through careful node selection and task
placement.

In general, it is much more difficult to find a near-optimal
placement for virtual topologies whose dimensionality is
higher than that of the torus interconnect. When using default
placement with applications with 4D virtual topologies on a 3D
torus, even in dedicated mode many communication paths are

This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award

number OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort

of the University of Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications.

long and cross each other. From a network-traffic viewpoint,
for any virtual topology, unless neighboring tasks are on
nearby nodes in the torus, the communication pattern appears
to be between randomly located-pairs rather than among
nearest neighbors on the torus. With such poor placement, it
would be beneficial to use a node allocation scheme that
maximizes bisection bandwidth per node [5]. However, if one
can control the node allocation to this extent (i.e., select a
regular box-shaped torus section of desired dimensions), one
should also be able to place tasks on the nodes so that virtual
neighbors are close to each other on the torus.

1) WRF
WRF [6] is a weather prediction application used on Blue

Waters to study phenomena such as tornadoes and hurricanes.
WRF uses a hybrid MPI/OpenMP parallel programming
model. Although the computational domain includes the
vertical dimension, each task contains all grid points in that
direction, and therefore the nearest-neighbor communication
pattern is 2 dimensional. The stencil for approximating spatial
derivatives in the evolution equations requires numerous layers
of ghost cells around each task’s portion of the full grid, which
can result in halo exchanges that involve a considerable
fraction of the working data set on each task. Therefore, the
communication time typically comprises a significant fraction
of the total run time.

2) VPIC
VPIC [7] is a space/plasma physics application that uses the

particle-in-cell method. The virtual topology is 3-dimensional,
and the amount of data involved in its halo exchanges is
limited by the number of particles that move from one task’s
portion of the computational mesh to another task’s portion in
a single time step, which is typically only a small fraction of
the total number of particles in the system. Using default node
allocation and task placement on 2k nodes, the communication
time is only ~8% of the total run time, and therefore
communication times at such scales would have to improve
significantly in order to have a noticeable impact on the total
run time.

3) S3D
S3D [8], which uses a 3D virtual topology and simulates

fluid flows with combustion, was not part of the NCSA
acceptance test suite, but it was an acceptance benchmark for
the Titan XK7 system at Oak Ridge National Laboratory. S3D
was also run at larger scales on Titan than were most of the
SPP benchmarks on Blue Waters. For most applications at
larger scales, the benefits of near-optimal node selection are
expected to become more apparent [9].

4) MILC
MILC [10] is a quantum chromodynamics application

whose 4D lattice includes 3 spatial dimensions plus time. Our
initial benchmark runs showed that the halo exchanges took
much longer than expected from our performance model and
dominated the run time. We and others [11] have observed that
this application is extremely sensitive to placement and job-job
interference on Cray systems with 3D torus interconnects,
presumably due to the difficulty in keeping 4D virtual nearest-
neighbors together, even on a regular prism of geminis in a 3D
torus.

B. Gemini Interconnect

Implementing schemes for near-optimal node selection and
task placement requires a basic understanding of the
interconnect in question. Here we describe the key aspects of
the Blue Waters Cray XE6/XK7 system [12].

The Blue Waters interconnect is a 3D torus with 23 gemini
[13] routers in the x direction, 24 in y, and 24 in z, with two
nodes attached to each gemini. There are 3072 XK7 compute
nodes with 8x8x24 geminis embedded in this fabric. Each XK7
node has one 2.3 GHz AMD Interlagos processor with 8
“Bulldozer” compute units and one nVidia Kepler GPU. The
rest of the ~22752 compute nodes are XE6, each with two
Interlagos processors like the one in the XK7 nodes. There are
also ~672 service nodes in various locations throughout the
torus that perform functions such as IO, job launching, etc. The
service nodes are not directly allocated to user jobs, but they do
relay messages between compute nodes on behalf of user jobs.

User jobs are assigned on a per-node basis, i.e., different
batch jobs do not share nodes. For optimum performance, it is
best if a given job is running on both nodes attached to each
gemini in the batch job reservation. If one of the nodes on a
gemini is down or assigned to another job, a load imbalance is
likely to result. A user can avoid this situation by requesting
more nodes than are needed to run the job and using our
placement tools or other means to avoid actually running on
such nodes. On Blue Waters, another advantage of having a
few extra nodes in the allocation is that they could be used to
continue a run within the same batch job in the event of a node
failure. When the run restarts, a new optimal layout of the same
size can be obtained by using one or more of the previously
idle nodes.

Although the two nodes attached to a given gemini use the
router to exchange messages, that traffic does not traverse the
links between geminis, and therefore is not considered to use
the interconnect. We estimate that the application-realizable
All-to-All bandwidth between same-gemini nodes ~ 12 GB/s
[14], which is greater than the bandwidth of any of the
individual links to neighboring nodes.

Links in the x direction of the torus consist of cables
connecting different rows of cabinets. The z direction runs
across the 24 boards in any given cabinet. Each cabinet has 3
cages containing 8 boards on a backplane with higher
bandwidth than the cables connecting the backplanes together.
These cables are the same capacity as those used for the x
direction, and they determine the effective bandwidth across
any set of nodes that spans more than one cage. In the y
direction, the connections between different boards have only
half the bandwidth of the cables used in the x and z directions.
There are two geminis on each board, and the bandwidth
between geminis on the same board is much higher than the
bandwidth along y between boards. Good task placement
strategies take advantage of the faster links in the x and z
directions in order to reduce communication times for a given
node count.

II. STRATEGIES FOR REDUCING COMMUNICATION TIMES

A. Tile Size Selection

Often the application user has some degree of control over
the problem decomposition, namely, the per-node or per-
gemini grid can be sized to take advantage of faster links along
the x and z dimensions of the gemini interconnect. For
example, consider an application that performs the same
amount of communication per grid point on the surface of each
per-task grid in halo exchanges along each dimension in a 3D
virtual topology. In this case, the communication time for any
dimension is proportional to the number of surface grid points
divided by the link bandwidth. On a torus with identical link
speeds in all directions, halo exchange communication times
can be minimized by minimizing the surface-to-volume ratio of
the group of partitions on each node pair, and so the most
efficient configuration occurs for groups of partitions forming
a perfect cube of grid points on each node pair.

The asymmetry of the gemini interconnect makes cube-
shaped grids on each node pair less than optimal. Instead, the
per-node-pair grid should have 2X less surface area normal to
y than the surface areas normal to x and to z in order to make
the communication times equal for each dimension. This is
particularly important if the halo exchanges are performed in
all dimensions at once, rather than in only one dimension at a
time.

To quantify the above assertion, suppose the per-node-pair
computational grid has Mx by My by Mz points. If the halo-
exchange communication is performed in all three dimensions
at once (and all messages are actually passed at the same time
by the interconnect), then the total communication time
Tcomm_tot would be:

Tcomm_tot = max(MyMz/Bx, MxMz/By, MxMy/Bz),

where Bx is the bandwidth of an x link, and so on for y and z. If
the per-node-pair grid is cubic, so that it has M points in each
dimension, then Tcomm_tot equals the communication time for
the y dimension:

Tcomm_tot = M
 2
/ By = 2M

 2
/Bx.

If we reshape the per-node-pair grid, keeping the total
number of points equal to M

 3
, but setting Mx = Mz = My/2 so

that the surface normal to y has half the area of the surfaces
normal to x and to z, then Mx = M/2

(1/3)
 and Tcomm_tot is reduced

by a factor of 2
(2/3)

 ~ 1.6.

Again, the above analysis assumes that the interconnect
perfectly overlaps the passing of messages in all three
dimensions. This requires sufficiently large messages so that
the non-blocking sends/receives actually do not block in
practice (i.e., large enough for the Block Transfer Engine to be
used), and the number of senders needs to be 8 or less (e.g.,
using the MPI/OpenMP programming model to limit the
number of communicating tasks per node).

Now suppose the halo exchanges are performed one
dimension at a time. For a cubic per-node-pair grid, since By =
Bx/2 and Mx = My = Mz = M:

Tcomm_tot = MyMz/Bx + MxMz/By + MxMy/Bz = 4M
 2
/Bx.

For the reshaped per-node-pair grid, communication for all
three dimensions takes the same amount of time, and therefore

Tcomm_tot = 3(2Mx
 2
/Bx) = [6/2

(2/3)
] M

 2
/Bx.

Thus, when performing halo exchanges one dimension at a
time, the total communication time for the reshaped per-node-
pair grid is only ~ 1.06X shorter than it is for a cubic per-node-
pair grid.

B. Placing Groups of Neighbors on the Same Node

The Cray Programming Environment offers two useful
tools for placing groups of neighboring tasks on the same node:
the Craypat performance tool suite and the grid_order tool [1].
When used to profile an MPI application, Craypat tries to
detect Cartesian grid communication patterns. For detected
grid patterns, Craypat creates a rank order file called
MPICH_RANK_ORDER, which can be used at run time by
setting the MPICH_RANK_REORDER_METHOD
environment variable to 3 (for custom ordering). This rank
order is suitable for running the application on the same
number of nodes that were used when the profiling was done,
provided the communication pattern and decomposition remain
the same. Craypat also computes the fraction of on-node
communication for the generated rank order as well as other
rank order options and estimates how much of a difference the
custom order will make in the communication time.

The grid_order tool generates custom rank orders based on
user-provided specifications pertaining to the virtual topology
and desired per-node task layout. This tool enables a user who
knows the application virtual topology to generate a rank order
that places neighboring tasks on the same node without first
having to make a Craypat run for that node count. It also
enables the user to more quickly try different per-node task
layouts (other than the one suggested by Craypat, for example)
in a sometimes fruitful effort to find a more optimal one.

We have successfully used both Craypat and grid_order to
improve communication times, and highly recommend them to
users as a first step in obtaining better scaling. No code
changes are required to use the rank orders they generate, and
performance is often somewhat better than it is when using the
default placement (which puts groups of consecutive tasks on
each node), even if the job’s node allocation has a less than
optimal geometry. Another advantage these tools offer is that
they can be used with somewhat irregular topologies, such as a
“cubed-sphere” grid (an unstructured mesh with quadrilateral
elements used in the SPECFEM3D_GLOBE [15] seismology
code and in some climate/weather applications). For the SPP
SPECFEM benchmark, Craypat was able to detect the
predominant underlying communication pattern even though it
does not apply to all tasks [16].

C. Adaptive Layout

MILC can use a variety of domain-decomposition
geometries, which the developers refer to as layouts, for the
several applications supported by that software package. The
default layout for the Blue Waters benchmark decomposes the
4D lattice into uniformly-sized hypercubes, and assigns one
such hypercube to each task. However, decompositions with

partitions of varying size are allowed, which enables us to
implement a task placement strategy specifically for MILC that
we refer to as “Adaptive Layout” (AL). AL creates a layout
that adapts itself automatically to the geometry of the nodes
allocated to the job in a manner that balances the workload
among tasks while keeping communicating partners nearby in
the 3D torus.

AL begins by using the Cray RCA library interface to
determine the maximum extent of the set of nodes allocated to
the job in each dimension of the torus, and the maximum
number of tasks per node. We label these extents Sx, Sy, Sz, and
St, respectively. The layout then acts as though the tasks
completely fill a grid of size Sx by Sy by Sz by St, and
distributes each of the four lattice dimensions over these
extents, whether or not this task grid evenly divides the lattice
size. The result is a possibly non-uniform lattice
decomposition, wherein each lattice block dimension may vary
by 1 from block to block. The t dimension fits entirely on each
node, and the remaining 3 spatial dimensions are treated as a
3D virtual Cartesian mesh topology.

At this point, more lattice blocks exist than there are actual
tasks to claim them: some blocks may correspond to torus
coordinates lying outside the allocation bounds, and some
blocks may correspond to locations of service nodes. Any
block whose position in the Sx by Sy by Sz by St grid
corresponds to the location of an actual application task is
assigned to that task. Unassigned blocks are then assigned to
tasks that own neighboring blocks.

Searching for new task locations for unassigned blocks is
done preferentially in the x and z directions. If a block location
corresponds to a service node, it is likely that three adjacent
blocks along the y direction will correspond to the other
service nodes on that service blade. One is therefore more
likely to find nearby neighbors in the x and z directions.

To reduce the severe load imbalance implied by this
strategy, unclaimed blocks are divided, and the sub-blocks are
assigned to different neighboring tasks. The specific strategy
that was found to perform best for the Blue Waters benchmark
subdivided each lattice block into four sub-blocks along their y
dimensions only. The four sub-blocks were then dealt to the
four nearest processes in the ±x and ±z directions. Such a
subdivision results in tasks having fewer communication
partners than would result from subdividing in either of the x
or z directions. A final rebalancing step identifies those tasks
holding the largest numbers of blocks, and reassigns a block
from each of these overloaded tasks to another nearby process
that has a lighter load.

The implementation of this layout strategy is written in
UPC, using a hierarchy of shared arrays of Sx by Sy by Sz by St
integers to store the MPI rank that owns each block. The layout
algorithm executes fully in parallel, with the various
application tasks searching for unclaimed sub-blocks in such a
way that no two tasks will be able to claim the same sub-block
simultaneously. Layout creation completes in just a few
seconds for up to 68,528 tasks.

D. Topaware

The “Topaware” node selection and task placement tool
provides a method for selecting a near-optimal set of nodes for
jobs with a known virtual topology, taking into account the
presence of unavailable nodes (IO nodes, MOM nodes, failed
nodes, nodes in use by other jobs, and compute nodes not of
the desired type) in the torus. Topaware generates a list of
nodes on which the job is to run. The set of node pairs that
Topaware selects is roughly a regular prism, but with a
somewhat bumpy surface normal to z and possibly to x due to
unavailable nodes in the interior. Fig. 1 shows the set of 2058
node pairs selected to run the MILC benchmark, for which the
maximum distance between virtual nearest-neighbors as
actually placed on the torus is just 3 hops.

The Topaware user specifies the number of node pairs to
use along each torus dimension (Nx, Ny, Nz), as well as the
number of partitions in each virtual dimension to place on each
node pair. Topaware finds nodes to use by first selecting
starting values for the x, y, and z coordinates in the torus. As
depicted schematically in Fig. 2, in the starting XZ plane,
beginning at the starting x coordinate, Topaware counts
available compute node pairs along the z direction. If there are
at least Nz compute node pairs along z for that value of x, then
that x value is a candidate for inclusion in the node pair list.
Topaware advances to the next value of x and again counts
available node pairs along z. This process is repeated until
either every x value in that XZ plane has been examined or the
desired number of nodes (Nx Nz) has been found in that XZ
plane. If Topaware finds sufficiently many available compute
nodes, then the nodes in that XZ plane are to be included in the
node pair list. Topaware then advances to the next XZ plane
and repeats the compute node counts. If it finds Ny XZ planes
to be included in the node pair list, it declares success and
generates the node list.

By construction, Topaware selects a set of node pairs with
the desired numbers of compute nodes along z at every x value,
and the desired number of node pairs in each XZ plane.

Fig. 1. Visualization of 14x7x21 XE Node pairs selected

by Topaware for MILC (cyan spheres) on the Blue Waters

interconnect. The red spheres represent XK hubs and the

yellow spheres represent service nodes.

Although the selected set of node pairs has some internal
“dislocations” due to the presence of unavailable nodes, and
these dislocations add a small number of extra hops for many
of the communication paths, the longest communication path in
the selected node set is never more than a small number of
hops (e.g., in Fig. 2, 3 hops between pair 41 and 34).
Moreover, as we request larger numbers of node pairs for
larger jobs, the longest path length increases little, if at all, and
therefore the increase in the communication time due to
contention grows very slowly with the number of nodes. As a
result, jobs run on nodes selected by Topaware should scale
nearly as well as if there were no service nodes in the system.

Topaware may occasionally have to skip an x value in an
XZ plane if Nz available compute node pairs are not found
along z for that x value, as in the 6

th
 row of Fig. 2. This could

leave dozens of nodes idle in the interior of the allocation.
Rarely, Topaware may have to skip one or two entire XZ
planes, which could leave hundreds to thousands of nodes idle
in the interior of a large allocation. Doing so in shared batch
mode would invite job-job interference if other jobs are placed
on these idle nodes. This problem can usually be avoided either
by changing the starting value of y (via an environment
variable), or by reducing the number of requested compute
node pairs along one or more dimensions of the torus.

After the node list is generated, Topaware creates a custom
rank order file to place the job tasks onto the nodes in the list as
directed by the user in the Topaware command line arguments.
Some experimentation may be required to obtain the best
possible performance for a particular application and input
deck. For example, if the virtual topology is 3D, one specifies
that each node pair gets nx by ny by nz partitions, and also
which dimension is to be divided between the two nodes on the
same gemini. This can allow a more optimal per-node-pair task
placement than the grid_order tool provides, but that requires
Topaware to avoid using compute nodes whose partner on the
same gemini is unavailable.

The rank order generated by the placement tools must be
consistent with the virtual topology in the application. In

particular, Topaware and grid_order need to know (through
environment variables or command line arguments) which
virtual topology dimension changes fastest with increasing
rank. If the first (leftmost) dimension changes fastest, the
ordering is called “Row major”, and if the last (rightmost)
dimension changes fastest, the ordering is called “Column
major” (as with Fortran and C language array memory layouts,
respectively).

If the nearest-neighbor communication is periodic along
any given dimension, it is best to use all geminis in that
dimension. Otherwise, if the node allocation spans up to half of
the geminis in a periodic dimension, traffic from the geminis
on opposite surfaces must pass through all geminis in the
interior, sharing bandwidth with the rest of the nearest-
neighbor pattern. If the node allocation spans more than half of
the geminis along that dimension, then communication
between geminis on opposite surfaces will wrap around the
torus through geminis that are not assigned to the job,
potentially impacting (and being impacted by) other jobs using
those nodes. The worst case occurs when a periodic dimension
in the virtual topology aligns with the y dimension of the torus,
since those links have half the bandwidth of the links in the
other two torus dimensions and are therefore more often driven
at full capacity by the interior traffic of each application.

1) 2D Virtual Topologies
Topaware maps 2D virtual topologies onto a 3D torus by

dividing the virtual domain into N1 by N2 “super-tiles” (as
specified by the user) and placing each super-tile onto a
different plane of the torus. The resulting prism has N = N1 N2
planes, each of which has just enough node pairs for one super-
tile. In order to keep communication paths short, it is important
that the 2D domain is placed onto the torus without “tearing” it
along any of the super-tile boundaries. Instead, the 2D domain
is folded like a sheet of paper [2] accordion style, first across
the dimension with the fewest super-tiles, and then in the other
dimension, as depicted in Fig. 3. The rank order Topaware
generates reverses direction at each fold to keep neighbors
together.

Folding the 2D domain along both dimensions often leads
to super-tiles (and therefore per-node grids) that are more
nearly square than those resulting from folding along only one
dimension. The main disadvantage of folding along both
dimensions is that some super-tiles that should be neighbors
have 2 or more other super-tiles between them. Not only are
the communication paths longer, but some links are used for

Fig. 2. Topaware hub selection for 7x7 hubs in an 8x8-hub

XZ plane. The z axis points to the right. Green squares

represent service nodes, and blank white squares represent

available compute nodes that are not selected by Topaware

for the specified hub layout.

Fig. 3. Mapping a 2D virtual topology to a 3D torus by

dividing the domain into 8 “super-tiles” and folding once

in z and then 3 times in x. The ordering of the super-tiles

as stacked onto the 3D torus is indicated (far right).

communication between multiple pairs of super-tiles. Since
only the links on super-tile edges are used at all, it should be
advantageous to have Topaware displace pairs of super-tiles
sharing the same links along their surfaces by one gemini to
avoid contention. For example, in Fig. 4 we displaced super-
tiles 4 & 5 (and 6 & 7) with respect to the remaining super-
tiles, so that the communication between super-tiles 0 & 1 (and
2 & 3) uses a different set of y links than do the displaced
super-tile pairs. However, this displacement technique was not
yet implemented for the runs described below for WRF.

2) 4D Virtual Topologies
Topaware places 4D virtual topologies onto a 3D torus by

mapping one of the 4 dimensions entirely onto each node-pair.
While this does not minimize the amount of off-node traffic, it
does enable us to treat the remaining 3 dimensions in the
manner described above for 3D virtual topologies. As a result,
the longest communication paths are much shorter than they
are when one does not specify a node list (e.g., when using
grid_order), and the reduction in congestion significantly
outweighs the cost of the extra off-node traffic.

III. RESULTS

A. MILC

Off-node communication for MILC can be reduced by a
factor > 2 using the grid_order tool to generate a rank order
that puts 2x2x2x2 blocks of neighboring tasks onto each node.
The benchmark on 4116 nodes with an 84x84x84x144 global
lattice results in 6x6x6x6 lattice points per task. Using this rank
order improves the run time by 1.9X compared to using default
placement on a dedicated system. Using grid_order in shared
batch mode is as easy and often as effective as using it in
dedicated mode, although widely varying run times have been
observed due to the shape of the node allocation and
interference from other jobs on the system.

Given a dedicated 23x4x24 set of geminis (in a node list or
in a set of reserved nodes in a list generated by the cnselect

command, for example), using the Adaptive Layout scheme
reduces the overall execution time by 2.7X compared to default
placement. Some of the speedup of this run compared to the
run with the grid_order rank order and default node allocation
undoubtedly derives from the shape of this node allocation,
since it has optimal bisection bandwidth per node (up to 2X
higher than a typical default node allocation, even in dedicated
mode [5]). We did not measure separately the impact of this
node allocation for the grid_order rank order, however.

Using Topaware with MILC, we specified that it should run
on 14x7x21 geminis (node pairs) with 1x2x1x16 tasks per
node pair. We assigned 1x2x1x8 tasks to each node, and the
per-task lattice was 6x6x4x9. Note that there are 144 lattice
points in the fourth (time) dimension on each node, so that no
off-node communication needs to be done for this dimension.
We rely on having both nodes on each gemini available to us
for running MILC. Each node pair has only 1 partition in x and
z, and 2 in y, compared to 2 in each dimension for grid_order,
and therefore the Topaware layout has more off-node
communication. The benefit from the near-optimal layout for
the 3 spatial dimensions far outweighs the extra
communication, since using Topaware results in an overall run
time reduction of 3.7X compared to default placement (i.e.,
1.9X shorter total run time than using grid_order with a default
node allocation in dedicated mode).

B. VPIC

The VPIC SPP benchmark ran on 4608 nodes in dedicated
mode. The computational grid was 1536

3
, with 48x48x32

partitions in the 3D virtual topology. We used Topaware to
place the 73,728 MPI tasks onto 12x12x16 geminis, which
made the per task grid 32x32x48. Each node pair had 4x4x2
partitions (2x4x2 partitions per node). The overall run time was
reduced by 5% compared to the default placement in dedicated
mode. This improvement is relatively small because the
communication time for default placement was only a modest
fraction of the total run time.

Further reduction in the communication time could be
expected for this input deck by orienting the z dimension of the
virtual topology along the y dimension of the torus, so that the
dimension with the least amount of communication would use
the y links. However, this capability was not yet implemented
in the Topaware 3D rank order generation routine when the
benchmark results were due.

C. S3D

Craypat-style rank reordering was used successfully with
S3D on hopper at NERSC, but the reported performance gains
were a modest 4% [17]. S3D was run on Titan in weak scaling
studies (fixed work per task) using from 2000 to 12900 nodes
[18]. For default node selection, run times increased
significantly with the number of nodes. When Topaware was
used, near-linear weak scaling was obtained on up to 12900
nodes. On 2000 nodes, the run with Topaware placement
completed in 1.32X less time than the run with default
placement, and on 6000 nodes, the Topaware run was 1.61X

Fig. 4. 2D virtual topology mapped to 12x8x10 gemini

section of torus with 8 super-tiles staggered in the x

direction to avoid overloading y links at super-tile edges.

faster. A comparable run with default placement on 12900
nodes was not made.

D. WRF

For WRF, one benchmark problem has a 6075x6075 cell
grid in longitude and latitude. For this application on 4560
nodes with 16 MPI tasks per node, Craypat indicates that with
the default placement, 40% of the communication goes off
node. If Craypat’s custom rank order with 2x8 partitions per
node is used, only 20% of the communication goes off node.
The total run time using the custom rank order is 1.18X shorter
than a run using the default rank order [19]. Since the
communication time should be reduced by 2X using the
custom rank order, the communication time for the custom
rank order must be about 18% of the total run time.

A near-optimal layout for this benchmark on 4864 nodes
was obtained using Topaware. The 2D virtual topology was
divided into 8 super-tiles, and each super-tile was placed on
16x19 geminis in an XZ plane of the torus. The domain was
folded in half along z, and then 3 times in accordion fashion in
x to arrange the 8 super-tiles along the y torus dimension as in
Fig. 3. There were 6x5 partitions on each node pair (3x5 per
node), leaving one idle compute module per Interlagos
processor. The Cray “core specialization” feature [20] was
used to assign OS-related tasks to the idle compute modules,
which would reduce any load imbalance caused by system
interrupts occurring on cores running WRF. Since this run used
more nodes than the Craypat rank order run, we compare
performance in terms of the number of sustained
GFLOPS/node, which was 3% higher for the run using
Topaware placement. The use of core specialization helped
reduce communication times, possibly by reducing the impact
of Lustre pings [21], while the squarer aspect ratio of the per
task grid (compared to the Craypat rank order run) appears to
increase the computational work time due to WRF’s loop
structure and our use of 2 OpenMP threads per MPI task. We
believe that better efficiency for the Topaware placement could
be obtained by displacing pairs of super-tiles that share links,
as described earlier.

IV. CONCLUSIONS AND FUTURE WORK

We presented several strategies for reducing the
communication time on 3D torus interconnects with
asymmetrical link speeds and randomly distributed service
nodes for a number of applications that perform nearest-
neighbor communication within multidimensional Cartesian
grid virtual topologies. If the users have no control over the set
of nodes allocated by the system for their jobs other than the
number and their type (e.g., XE vs. XK), they can reduce off-
node communication by using Craypat or the grid_order tool to
group tasks that are virtual neighbors onto the same node. We
obtained significant reductions in off-node communication for
several Blue Waters SPP applications without making any
changes to the codes. In addition, users can take advantage of
the faster links in the x and z dimensions of Cray genimi
networks by carefully choosing the aspect ratio of a per-node
or per-node-pair chunk of the domain such that the
communication time for each dimension is nearly equal, in
order to take advantage of the faster x and z links. While these

strategies often improve communication performance
somewhat in practice, they are incapable of ensuring that
neighboring groups of tasks are placed onto nearby nodes in
the torus, and therefore often fail to improve performance to
the level expected from theoretical models based on link
speeds and the number and sizes of messages on each link

If users are able to specify the nodes on which their jobs are
to run and the communication pattern in their application has a
2D, 3D, or 4D Cartesian virtual topology, then they may be
able to place tasks that should be neighbors onto nodes that are
close together in the torus, either by developing an application-
specific topology-aware module in the spirit of Adaptive
Layout for MILC, or by using Topaware (without any changes
to the application). While Topaware provides the best possible
performance for MILC, Adaptive Layout can be used with
fairly regular prism-shaped batch job node allocations that do
not conform well to the virtual topology, and it should enable
significantly better MILC performance than Craypat/grid_order
on such allocations.

Topaware can also be used in principle in shared batch
mode. The most straightforward way of doing so would be to
submit the job with the restriction that it must run on the
specific nodes selected by Topaware, and then let it wait in the
queue until all of the required nodes become available. One
could make this strategy more palatable by requesting a
reservation restricted to the nodes in the list at a particular time
in the future, so that one can plan to be ready to monitor the job
when it runs. Another approach would be for the site to create
two or more separate node pools with desirable shapes, so that
“right-sized” jobs requiring placement by Topaware could
request all nodes in the appropriate pool and select a prism of
node pairs from that pool. Any resulting reduction in system
utilization under those circumstances could be mitigated to
some extent by the improved performance of those jobs
requiring careful placement.

In the near future, we plan to extend Topaware to place
neighboring groups of tasks onto nearby nodes in the torus for
the set of nodes assigned to the job by the resource manager.
Given the virtual topology, Topaware would for example place
ranks with larger virtual y values onto nodes with larger y
values in the torus, and then use a space-filling curve to ensure
a reasonably good layout for the x and z dimensions, at least
for a reasonably regular prism of nodes. This approach would
reduce the lengths of the longest communication paths
(especially in the y torus dimension) and therefore reduce the
contention for certain links, but it would not be able to
minimize contention to the extent possible for a list of nodes
generated by Topaware for a specified prism of geminis. This
approach would be less general than that of Hoefler and Snir
[9], but it would not be limited like the current Topaware
implementation to Cartesian virtual topologies.

REFERENCES

[1] Cray, Inc., “Using Cray performance measurement and analysis tools”,
docs.cray.com/books/S-2376-60//S-2376-60.pdf, 2012.

[2] H. Yu, I.-H. Chung, and J. Moreira, “Topology mapping for Blue
Gene/L supercomputer”, in SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 116, New York, NY, USA.

[3] Carl Albing, Norm Troullier, Stephen Whalen, Ryan Olson, Joe Glenski,
Howard Pritchard and Hugo Mills, "Scalable Node Allocation for
Improved Performance in Regular and Anisotropic 3D Torus
Supercomputers", Lecture Notes in Computer Science, Volume 6960,
Recent Advances in the Message Passing Interface, Pages 61-70, 2011.

[4] G. Bauer, T. Hoefler, W. Kramer, and R. Fiedler, “Analyses and
Modeling of Applications Used to Demonstrate Sustained Petascale
Performance on Blue Waters”, CUG 2012, April 29 - May 3, 2012,
Stuttgart, Germany,

https://cug.org/proceedings/attendee_program_cug2012/includes/files/pa
p168.pdf.

[5] R. Fiedler, N. Wichmann, S. Whalen, and D. Pekurovsky, “Improving
the performance of the PSDNS pseudo-spectral turbulence application
on Blue Waters using coarray Fortran and task placement”, CUG 2013,
May 6-9, 20123 Napa, CA, USA.

[6] W. C. Skamarock, et al, ”A description of the Advanced Research WRF
version 3“, NCAR Technical Note TN-475+STR, June 2008,
http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.

[7] K. J. Bowers, B. J. Albright, L. Yin, W. Daughton, V. Roytershteyn, B.
Bergen, and T. J T. Kwan, “Advances in petascale kinetic plasma
simulation with VPIC and Roadrunner”, J. Phys.: Conference. Series
180 012055, 2009.

[8] J. M. Levesque, R. Sankaran, and R. Grout, “Hybridizing S3D into an
exascale application using OpenACC”, SC12, November 10-16, 2012,
Salt Lake City, UT, USA,

http://conferences.computer.org/sc/2012/papers/1000a040.pdf.

[9] T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for
Large-scale Parallel Architectures”,CS’11, May 31 – June 4, 2011,
Tuscon, Arizona, USA,

http://www.unixer.de/publications//img/hoefler_snir_topology_mapping
.pdf.

[10] MIMD Lattice Computation (MILC) Collaboration code page,
http://www.physics.utah.edu/~detar/mil

[11] D. Wang, “Application performance variability on Hopper”, NERSC
user Web page, 2012, http://www.nersc.gov/users/computational-
systems/hopper/performance-and-optimization/application-performance-
variability-on-hopper.

[12] Blue Waters main Web page, http://www.ncsa.illinois.edu/BlueWaters/.

[13] R. Alverson, D. Roweth, and L. Kaplan, "The gemini system
interconnect," in International Symposium on High Performance
Interconnects, Aug. 2010, pp. 83 -87.

[14] Nathan Wichmann, Cray, Inc., private communication, 2012

[15] L. Carrington, et al,. “High-Frequency Simulations of Global Seismic
Wave Propagation Using SPECFEM3D_GLOBE on 62K Processors“,
SC08 Nov. 15-20, 2008, Austin, TX, USA,
http://www.sdsc.edu/~allans/specfem3D_161TF.updated.pdf.

[16] Sarah Anderson, Cray, Inc., 2012, private communication.

[17] Y. He and K. Antypas, “Running large scale jobs on a Cray XE6 system,
CUG 2012, April 29 - May 3, 2012, Stuttgart, Germany,
https://cug.org/proceedings/attendee_program_cug2012/includes/files/pa
p162.pdf

[18] R. Sankaran, Oak Ridge National Laboratory, 2012, private
communication.

[19] Peter J. Johnson, Cray, Inc., 2012, provate communication.

[20] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging the
Cray Linux environment core specialization to realize MPI
asynchronous progress on Cray XE systems”, CUG 2012, April 29 -
May 3, 2012, Stuttgart, Germany,

https://cug.org/proceedings/attendee_program_cug2012/includes/files/pa
p115.pdf.

[21] C. Sptiz, N. Henke, D. Petesch, and J. Glenski, “Minimizing Lustre ping
effects at scale on Cray systems”,

https://cug.org/proceedings/attendee_program_cug2012/includes/files/pa
p166.pdf.

http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
http://conferences.computer.org/sc/2012/papers/1000a040.pdf
http://www.unixer.de/publications/img/hoefler_snir_topology_mapping.pdf
http://www.unixer.de/publications/img/hoefler_snir_topology_mapping.pdf
http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/application-performance-variability-on-hopper
http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/application-performance-variability-on-hopper
http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/application-performance-variability-on-hopper
http://www.sdsc.edu/~allans/specfem3D_161TF.updated.pdf

