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Abstract— We describe two new methods for mapping 

applications with multidimensional virtual Cartesian process 

topologies onto 3D torus networks with randomly distributed 

service nodes. The first method, “Adaptive Layout”, works for 

any number of processes and distributes the MILC (lattice QCD, 

4D topology) workload to ensure communicating processes are 

close together on the torus. This scheme reduces the run time by 

2.7X compared to default placement. The second method, 

“Topaware”, selects a prism of nodes slightly larger than the 

ideal prism one would select if there were no service nodes. The 

application’s processes are ordered to group neighboring 

processes on the same node and to place groups of neighbors onto 

nodes which are no more than a few hops apart. Up to 40% run 

time reductions are obtained for 2D and 3D virtual topologies. In 

dedicated mode, using Topaware with MILC reduces the run 

time by 3.7X compared to default placement.   

Keywords—topology awareness, task placement, torus 

interconnect 

I. INTRODUCTION 

We consider the problem of mapping applications that 
define 2D, 3D, and 4D Cartesian grid virtual process 
topologies onto Cray systems that have 3D torus networks with 
service nodes (used for IO and other non-compute functions) 
randomly distributed among the compute nodes. Since finding 
a near-optimal mapping for such applications (which perform 
mainly nearest-neighbor communication) can be difficult even 
on a dedicated system, simple approaches that are often 
adopted prescribe rank orders that place separate groups of 
neighboring processes onto each node [1]. Although this 
strategy can help reduce off-node communication, it does not 
ensure that groups of processes that are neighbors in the 
application’s virtual topology are assigned to nodes that are 
actually near each other on the torus. This can result in layouts 
with much longer than necessary communication paths that 
cause a high degree of contention for links between nodes, and 
can thereby significantly increase communication times 
compared to a near-optimal layout. 

Node selection is very important for minimizing actual 
communication path lengths on the torus between processes 
(tasks) that are virtual nearest neighbors [2]. Unfortunately, 
there is a tradeoff between requiring a near-optimal set of 
nodes on which to run each application and the overall 
utilization of the system. In shared batch mode, users typically 
accept whichever sufficiently large set of nodes is selected by 

the resource manager to run their job as soon as possible. 
Moreover, as jobs of different sizes and durations execute and 
complete, the set of nodes allocated to any new large job is 
likely to be rather irregular in shape, and it may be fragmented 
into multiple non-contiguous groups, rather than comprising a 
regular prism [3]. The presence of service nodes (typically at 
random locations throughout the system) and the simple fact 
that there are many nodes in each torus dimension on the 
largest Cray XE/XK systems can exacerbate this effect. 
Irregular and (especially) non-contiguous node allocations 
increase the likelihood that messages may pass through gemini 
routers that are not attached to nodes in that job’s reservation, 
which in turn makes more probable a significant performance 
degradation due to job-job interference. 

In this paper we describe two new methodologies for 
placing groups of processes that are nearest neighbors in the 
virtual Cartesian grid topology onto nearby nodes in a 3D torus 
interconnect, and compare application performance when using 
these approaches to runs made using the default placement 
scheme as well as to runs made using Cray’s grid_order tool 
[1]. We discuss in our concluding section several ways a 
typical user might obtain the kind of prism-shaped node 
allocations in shared batch mode that we were able to get easily 
on a dedicated system. The main objective of this work is to 
quantify the performance improvement that can be obtained for 
various applications with different virtual topologies when one 
can choose which nodes to use, or when one at least has access 
to a prescribed regular box-shaped section of the torus, and can 
place tasks on those nodes as desired. 

A. Applications Studied 

As part of the acceptance testing for Blue Waters, a wide 
variety of benchmarks representing realistic, complete science 
problems on 4k to 8k nodes were run to measure the sustained 
petascale performance (SPP) for the expected workload [4]. 
The WRF, VPIC, and MILC applications in this benchmark 
suite define virtual Cartesian mesh task topologies in 2D, 3D, 
and 4D, respectively, and are candidates for performance 
improvement through careful node selection and task 
placement. 

In general, it is much more difficult to find a near-optimal 
placement for virtual topologies whose dimensionality is 
higher than that of the torus interconnect. When using default 
placement with applications with 4D virtual topologies on a 3D 
torus, even in dedicated mode many communication paths are 
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long and cross each other. From a network-traffic viewpoint, 
for any virtual topology, unless neighboring tasks are on 
nearby nodes in the torus, the communication pattern appears 
to be between randomly located-pairs rather than among 
nearest neighbors on the torus. With such poor placement, it 
would be beneficial to use a node allocation scheme that 
maximizes bisection bandwidth per node [5]. However, if one 
can control the node allocation to this extent (i.e., select a 
regular box-shaped torus section of desired dimensions), one 
should also be able to place tasks on the nodes so that virtual 
neighbors are close to each other on the torus. 

1) WRF 
WRF [6] is a weather prediction application used on Blue 

Waters to study phenomena such as tornadoes and hurricanes. 
WRF uses a hybrid MPI/OpenMP parallel programming 
model. Although the computational domain includes the 
vertical dimension, each task contains all grid points in that 
direction, and therefore the nearest-neighbor communication 
pattern is 2 dimensional. The stencil for approximating spatial 
derivatives in the evolution equations requires numerous layers 
of ghost cells around each task’s portion of the full grid, which 
can result in halo exchanges that involve a considerable 
fraction of the working data set on each task. Therefore, the 
communication time typically comprises a significant fraction 
of the total run time. 

2) VPIC 
VPIC [7] is a space/plasma physics application that uses the 

particle-in-cell method. The virtual topology is 3-dimensional, 
and the amount of data involved in its halo exchanges is 
limited by the number of particles that move from one task’s 
portion of the computational mesh to another task’s portion in 
a single time step, which is typically only a small fraction of 
the total number of particles in the system. Using default node 
allocation and task placement on 2k nodes, the communication 
time is only ~8% of the total run time, and therefore 
communication times at such scales would have to improve 
significantly in order to have a noticeable impact on the total 
run time. 

3) S3D 
S3D [8], which uses a 3D virtual topology and simulates 

fluid flows with combustion, was not part of the NCSA 
acceptance test suite, but it was an acceptance benchmark for 
the Titan XK7 system at Oak Ridge National Laboratory. S3D 
was also run at larger scales on Titan than were most of the 
SPP benchmarks on Blue Waters. For most applications at 
larger scales, the benefits of near-optimal node selection are 
expected to become more apparent [9]. 

4) MILC 
MILC [10] is a quantum chromodynamics application 

whose 4D lattice includes 3 spatial dimensions plus time. Our 
initial benchmark runs showed that the halo exchanges took 
much longer than expected from our performance model and 
dominated the run time. We and others [11] have observed that 
this application is extremely sensitive to placement and job-job 
interference on Cray systems with 3D torus interconnects, 
presumably due to the difficulty in keeping 4D virtual nearest-
neighbors together, even on a regular prism of geminis in a 3D 
torus. 

B. Gemini Interconnect 

Implementing schemes for near-optimal node selection and 
task placement requires a basic understanding of the 
interconnect in question. Here we describe the key aspects of 
the Blue Waters Cray XE6/XK7 system [12]. 

The Blue Waters interconnect is a 3D torus with 23 gemini 
[13] routers in the x direction, 24 in y, and 24 in z, with two 
nodes attached to each gemini. There are 3072 XK7 compute 
nodes with 8x8x24 geminis embedded in this fabric. Each XK7 
node has one 2.3 GHz AMD Interlagos processor with 8 
“Bulldozer” compute units and one nVidia Kepler GPU. The 
rest of the ~22752 compute nodes are XE6, each with two 
Interlagos processors like the one in the XK7 nodes. There are 
also ~672 service nodes in various locations throughout the 
torus that perform functions such as IO, job launching, etc. The 
service nodes are not directly allocated to user jobs, but they do 
relay messages between compute nodes on behalf of user jobs. 

User jobs are assigned on a per-node basis, i.e., different 
batch jobs do not share nodes. For optimum performance, it is 
best if a given job is running on both nodes attached to each 
gemini in the batch job reservation. If one of the nodes on a 
gemini is down or assigned to another job, a load imbalance is 
likely to result. A user can avoid this situation by requesting 
more nodes than are needed to run the job and using our 
placement tools or other means to avoid actually running on 
such nodes. On Blue Waters, another advantage of having a 
few extra nodes in the allocation is that they could be used to 
continue a run within the same batch job in the event of a node 
failure. When the run restarts, a new optimal layout of the same 
size can be obtained by using one or more of the previously 
idle nodes. 

Although the two nodes attached to a given gemini use the 
router to exchange messages, that traffic does not traverse the 
links between geminis, and therefore is not considered to use 
the interconnect. We estimate that the application-realizable 
All-to-All bandwidth between same-gemini nodes ~ 12 GB/s 
[14], which is greater than the bandwidth of any of the 
individual links to neighboring nodes. 

Links in the x direction of the torus consist of cables 
connecting different rows of cabinets. The z direction runs 
across the 24 boards in any given cabinet. Each cabinet has 3 
cages containing 8 boards on a backplane with higher 
bandwidth than the cables connecting the backplanes together. 
These cables are the same capacity as those used for the x 
direction, and they determine the effective bandwidth across 
any set of nodes that spans more than one cage. In the y 
direction, the connections between different boards have only 
half the bandwidth of the cables used in the x and z directions. 
There are two geminis on each board, and the bandwidth 
between geminis on the same board is much higher than the 
bandwidth along y between boards. Good task placement 
strategies take advantage of the faster links in the x and z 
directions in order to reduce communication times for a given 
node count. 



II. STRATEGIES FOR REDUCING COMMUNICATION TIMES 

A. Tile Size Selection 

Often the application user has some degree of control over 
the problem decomposition, namely, the per-node or per-
gemini grid can be sized to take advantage of faster links along 
the x and z dimensions of the gemini interconnect. For 
example, consider an application that performs the same 
amount of communication per grid point on the surface of each 
per-task grid in halo exchanges along each dimension in a 3D 
virtual topology. In this case, the communication time for any 
dimension is proportional to the number of surface grid points 
divided by the link bandwidth. On a torus with identical link 
speeds in all directions, halo exchange communication times 
can be minimized by minimizing the surface-to-volume ratio of 
the group of partitions on each node pair, and so the most 
efficient configuration occurs for groups of partitions forming 
a perfect cube of grid points on each node pair. 

The asymmetry of the gemini interconnect makes cube-
shaped grids on each node pair less than optimal. Instead, the 
per-node-pair grid should have 2X less surface area normal to 
y than the surface areas normal to x and to z in order to make 
the communication times equal for each dimension. This is 
particularly important if the halo exchanges are performed in 
all dimensions at once, rather than in only one dimension at a 
time. 

To quantify the above assertion, suppose the per-node-pair 
computational grid has Mx by My by Mz points. If the halo-
exchange communication is performed in all three dimensions 
at once (and all messages are actually passed at the same time 
by the interconnect), then the total communication time 
Tcomm_tot would be: 

Tcomm_tot = max(MyMz/Bx, MxMz/By, MxMy/Bz),  

where Bx is the bandwidth of an x link, and so on for y and z. If 
the per-node-pair grid is cubic, so that it has M points in each 
dimension, then Tcomm_tot equals the communication time for 
the y dimension: 

Tcomm_tot = M
 2
/ By = 2M

 2
/Bx. 

If we reshape the per-node-pair grid, keeping the total 
number of points equal to M

 3
, but setting Mx = Mz = My/2 so 

that the surface normal to y has half the area of the surfaces 
normal to x and to z, then Mx = M/2

(1/3)
 and Tcomm_tot is reduced 

by a factor of 2
(2/3)

 ~ 1.6. 

Again, the above analysis assumes that the interconnect 
perfectly overlaps the passing of messages in all three 
dimensions. This requires sufficiently large messages so that 
the non-blocking sends/receives actually do not block in 
practice (i.e., large enough for the Block Transfer Engine to be 
used), and the number of senders needs to be 8 or less (e.g., 
using the MPI/OpenMP programming model to limit the 
number of communicating tasks per node). 

Now suppose the halo exchanges are performed one 
dimension at a time. For a cubic per-node-pair grid, since By = 
Bx/2 and Mx = My = Mz = M: 

Tcomm_tot = MyMz/Bx + MxMz/By + MxMy/Bz = 4M
 2
/Bx. 

For the reshaped per-node-pair grid, communication for all 
three dimensions takes the same amount of time, and therefore 

Tcomm_tot = 3(2Mx
 2
/Bx) = [6/2

(2/3)
] M

 2
/Bx. 

Thus, when performing halo exchanges one dimension at a 
time, the total communication time for the reshaped per-node-
pair grid is only ~ 1.06X shorter than it is for a cubic per-node-
pair grid. 

B. Placing Groups of Neighbors on the Same Node 

The Cray Programming Environment offers two useful 
tools for placing groups of neighboring tasks on the same node: 
the Craypat performance tool suite and the grid_order tool [1]. 
When used to profile an MPI application, Craypat tries to 
detect Cartesian grid communication patterns. For detected 
grid patterns, Craypat creates a rank order file called 
MPICH_RANK_ORDER, which can be used at run time by 
setting the MPICH_RANK_REORDER_METHOD 
environment variable to 3 (for custom ordering). This rank 
order is suitable for running the application on the same 
number of nodes that were used when the profiling was done, 
provided the communication pattern and decomposition remain 
the same. Craypat also computes the fraction of on-node 
communication for the generated rank order as well as other 
rank order options and estimates how much of a difference the 
custom order will make in the communication time. 

The grid_order tool generates custom rank orders based on 
user-provided specifications pertaining to the virtual topology 
and desired per-node task layout. This tool enables a user who 
knows the application virtual topology to generate a rank order 
that places neighboring tasks on the same node without first 
having to make a Craypat run for that node count. It also 
enables the user to more quickly try different per-node task 
layouts (other than the one suggested by Craypat, for example) 
in a sometimes fruitful effort to find a more optimal one. 

We have successfully used both Craypat and grid_order to 
improve communication times, and highly recommend them to 
users as a first step in obtaining better scaling. No code 
changes are required to use the rank orders they generate, and 
performance is often somewhat better than it is when using the 
default placement (which puts groups of consecutive tasks on 
each node), even if the job’s node allocation has a less than 
optimal geometry. Another advantage these tools offer is that 
they can be used with somewhat irregular topologies, such as a 
“cubed-sphere” grid (an unstructured mesh with quadrilateral 
elements used in the SPECFEM3D_GLOBE [15] seismology 
code and in some climate/weather applications). For the SPP 
SPECFEM benchmark, Craypat was able to detect the 
predominant underlying communication pattern even though it 
does not apply to all tasks [16]. 

C. Adaptive Layout 

MILC can use a variety of domain-decomposition 
geometries, which the developers refer to as layouts, for the 
several applications supported by that software package. The 
default layout for the Blue Waters benchmark decomposes the 
4D lattice into uniformly-sized hypercubes, and assigns one 
such hypercube to each task. However, decompositions with 



partitions of varying size are allowed, which enables us to 
implement a task placement strategy specifically for MILC that 
we refer to as “Adaptive Layout” (AL). AL creates a layout 
that adapts itself automatically to the geometry of the nodes 
allocated to the job in a manner that balances the workload 
among tasks while keeping communicating partners nearby in 
the 3D torus. 

AL begins by using the Cray RCA library interface to 
determine the maximum extent of the set of nodes allocated to 
the job in each dimension of the torus, and the maximum 
number of tasks per node. We label these extents Sx, Sy, Sz, and 
St, respectively. The layout then acts as though the tasks 
completely fill a grid of size Sx by Sy by Sz by St, and 
distributes each of the four lattice dimensions over these 
extents, whether or not this task grid evenly divides the lattice 
size. The result is a possibly non-uniform lattice 
decomposition, wherein each lattice block dimension may vary 
by 1 from block to block. The t dimension fits entirely on each 
node, and the remaining 3 spatial dimensions are treated as a 
3D virtual Cartesian mesh topology. 

At this point, more lattice blocks exist than there are actual 
tasks to claim them: some blocks may correspond to torus 
coordinates lying outside the allocation bounds, and some 
blocks may correspond to locations of service nodes. Any 
block whose position in the Sx by Sy by Sz by St grid 
corresponds to the location of an actual application task is 
assigned to that task. Unassigned blocks are then assigned to 
tasks that own neighboring blocks.  

Searching for new task locations for unassigned blocks is 
done preferentially in the x and z directions. If a block location 
corresponds to a service node, it is likely that three adjacent 
blocks along the y direction will correspond to the other 
service nodes on that service blade. One is therefore more 
likely to find nearby neighbors in the x and z directions. 

To reduce the severe load imbalance implied by this 
strategy, unclaimed blocks are divided, and the sub-blocks are 
assigned to different neighboring tasks. The specific strategy 
that was found to perform best for the Blue Waters benchmark 
subdivided each lattice block into four sub-blocks along their y 
dimensions only. The four sub-blocks were then dealt to the 
four nearest processes in the ±x and ±z directions. Such a 
subdivision results in tasks having fewer communication 
partners than would result from subdividing in either of the x 
or z directions. A final rebalancing step identifies those tasks 
holding the largest numbers of blocks, and reassigns a block 
from each of these overloaded tasks to another nearby process 
that has a lighter load. 

The implementation of this layout strategy is written in 
UPC, using a hierarchy of shared arrays of Sx by Sy by Sz by St 
integers to store the MPI rank that owns each block. The layout 
algorithm executes fully in parallel, with the various 
application tasks searching for unclaimed sub-blocks in such a 
way that no two tasks will be able to claim the same sub-block 
simultaneously. Layout creation completes in just a few 
seconds for up to 68,528 tasks. 

D. Topaware 

The “Topaware” node selection and task placement tool 
provides a method for selecting a near-optimal set of nodes for 
jobs with a known virtual topology, taking into account the 
presence of unavailable nodes (IO nodes, MOM nodes, failed 
nodes, nodes in use by other jobs, and compute nodes not of 
the desired type) in the torus. Topaware generates a list of 
nodes on which the job is to run. The set of node pairs that 
Topaware selects is roughly a regular prism, but with a 
somewhat bumpy surface normal to z and possibly to x due to 
unavailable nodes in the interior. Fig. 1 shows the set of 2058 
node pairs selected to run the MILC benchmark, for which the 
maximum distance between virtual nearest-neighbors as 
actually placed on the torus is just 3 hops. 

The Topaware user specifies the number of node pairs to 
use along each torus dimension (Nx, Ny, Nz), as well as the 
number of partitions in each virtual dimension to place on each 
node pair. Topaware finds nodes to use by first selecting 
starting values for the x, y, and z coordinates in the torus. As 
depicted schematically in Fig. 2, in the starting XZ plane, 
beginning at the starting x coordinate, Topaware counts 
available compute node pairs along the z direction. If there are 
at least Nz compute node pairs along z for that value of x, then 
that x value is a candidate for inclusion in the node pair list. 
Topaware advances to the next value of x and again counts 
available node pairs along z. This process is repeated until 
either every x value in that XZ plane has been examined or the 
desired number of nodes (Nx Nz) has been found in that XZ 
plane. If Topaware finds sufficiently many available compute 
nodes, then the nodes in that XZ plane are to be included in the 
node pair list. Topaware then advances to the next XZ plane 
and repeats the compute node counts. If it finds Ny XZ planes 
to be included in the node pair list, it declares success and 
generates the node list. 

By construction, Topaware selects a set of node pairs with 
the desired numbers of compute nodes along z at every x value, 
and the desired number of node pairs in each XZ plane. 

 
Fig. 1. Visualization of 14x7x21 XE Node pairs selected 

by Topaware for MILC (cyan spheres) on the Blue Waters 

interconnect. The red spheres represent XK hubs and the 

yellow spheres represent service nodes. 



Although the selected set of node pairs has some internal 
“dislocations” due to the presence of unavailable nodes, and 
these dislocations add a small number of extra hops for many 
of the communication paths, the longest communication path in 
the selected node set is never more than a small number of 
hops (e.g., in Fig. 2, 3 hops between pair 41 and 34). 
Moreover, as we request larger numbers of node pairs for 
larger jobs, the longest path length increases little, if at all, and 
therefore the increase in the communication time due to 
contention grows very slowly with the number of nodes. As a 
result, jobs run on nodes selected by Topaware should scale 
nearly as well as if there were no service nodes in the system. 

Topaware may occasionally have to skip an x value in an 
XZ plane if Nz available compute node pairs are not found 
along z for that x value, as in the 6

th
 row of Fig. 2. This could 

leave dozens of nodes idle in the interior of the allocation. 
Rarely, Topaware may have to skip one or two entire XZ 
planes, which could leave hundreds to thousands of nodes idle 
in the interior of a large allocation. Doing so in shared batch 
mode would invite job-job interference if other jobs are placed 
on these idle nodes. This problem can usually be avoided either 
by changing the starting value of y (via an environment 
variable), or by reducing the number of requested compute 
node pairs along one or more dimensions of the torus. 

After the node list is generated, Topaware creates a custom 
rank order file to place the job tasks onto the nodes in the list as 
directed by the user in the Topaware command line arguments. 
Some experimentation may be required to obtain the best 
possible performance for a particular application and input 
deck. For example, if the virtual topology is 3D, one specifies 
that each node pair gets nx by ny by nz partitions, and also 
which dimension is to be divided between the two nodes on the 
same gemini. This can allow a more optimal per-node-pair task 
placement than the grid_order tool provides, but that requires 
Topaware to avoid using compute nodes whose partner on the 
same gemini is unavailable. 

The rank order generated by the placement tools must be 
consistent with the virtual topology in the application. In 

particular, Topaware and grid_order need to know (through 
environment variables or command line arguments) which 
virtual topology dimension changes fastest with increasing 
rank. If the first (leftmost) dimension changes fastest, the 
ordering is called “Row major”, and if the last (rightmost) 
dimension changes fastest, the ordering is called “Column 
major” (as with Fortran and C language array memory layouts, 
respectively). 

If the nearest-neighbor communication is periodic along 
any given dimension, it is best to use all geminis in that 
dimension. Otherwise, if the node allocation spans up to half of 
the geminis in a periodic dimension, traffic from the geminis 
on opposite surfaces must pass through all geminis in the 
interior, sharing bandwidth with the rest of the nearest-
neighbor pattern. If the node allocation spans more than half of 
the geminis along that dimension, then communication 
between geminis on opposite surfaces will wrap around the 
torus through geminis that are not assigned to the job, 
potentially impacting (and being impacted by) other jobs using 
those nodes. The worst case occurs when a periodic dimension 
in the virtual topology aligns with the y dimension of the torus, 
since those links have half the bandwidth of the links in the 
other two torus dimensions and are therefore more often driven 
at full capacity by the interior traffic of each application. 

1) 2D Virtual Topologies 
Topaware maps 2D virtual topologies onto a 3D torus by 

dividing the virtual domain into N1 by N2 “super-tiles” (as 
specified by the user) and placing each super-tile onto a 
different plane of the torus. The resulting prism has N = N1 N2 
planes, each of which has just enough node pairs for one super-
tile. In order to keep communication paths short, it is important 
that the 2D domain is placed onto the torus without “tearing” it 
along any of the super-tile boundaries. Instead, the 2D domain 
is folded like a sheet of paper [2] accordion style, first across 
the dimension with the fewest super-tiles, and then in the other 
dimension, as depicted in Fig. 3. The rank order Topaware 
generates reverses direction at each fold to keep neighbors 
together. 

Folding the 2D domain along both dimensions often leads 
to super-tiles (and therefore per-node grids) that are more 
nearly square than those resulting from folding along only one 
dimension. The main disadvantage of folding along both 
dimensions is that some super-tiles that should be neighbors 
have 2 or more other super-tiles between them. Not only are 
the communication paths longer, but some links are used for 

 
Fig. 2. Topaware hub selection for 7x7 hubs in an 8x8-hub 

XZ plane. The z axis points to the right. Green squares 

represent service nodes, and blank white squares represent 

available compute nodes that are not selected by Topaware 

for the specified hub layout. 

 
Fig. 3. Mapping a 2D virtual topology to a 3D torus by 

dividing the domain into 8 “super-tiles” and folding once 

in z and then 3 times in x. The ordering of the super-tiles 

as stacked onto the 3D torus is indicated (far right). 



communication between multiple pairs of super-tiles. Since 
only the links on super-tile edges are used at all, it should be 
advantageous to have Topaware displace pairs of super-tiles 
sharing the same links along their surfaces by one gemini to 
avoid contention. For example, in Fig. 4 we displaced super-
tiles 4 & 5 (and 6 & 7) with respect to the remaining super-
tiles, so that the communication between super-tiles 0 & 1 (and 
2 & 3) uses a different set of y links than do the displaced 
super-tile pairs. However, this displacement technique was not 
yet implemented for the runs described below for WRF. 

2) 4D Virtual Topologies 
Topaware places 4D virtual topologies onto a 3D torus by 

mapping one of the 4 dimensions entirely onto each node-pair. 
While this does not minimize the amount of off-node traffic, it 
does enable us to treat the remaining 3 dimensions in the 
manner described above for 3D virtual topologies. As a result, 
the longest communication paths are much shorter than they 
are when one does not specify a node list (e.g., when using 
grid_order), and the reduction in congestion significantly 
outweighs the cost of the extra off-node traffic. 

III. RESULTS 

A. MILC 

Off-node communication for MILC can be reduced by a 
factor > 2 using the grid_order tool to generate a rank order 
that puts 2x2x2x2 blocks of neighboring tasks onto each node. 
The benchmark on 4116 nodes with an 84x84x84x144 global 
lattice results in 6x6x6x6 lattice points per task. Using this rank 
order improves the run time by 1.9X compared to using default 
placement on a dedicated system. Using grid_order in shared 
batch mode is as easy and often as effective as using it in 
dedicated mode, although widely varying run times have been 
observed due to the shape of the node allocation and 
interference from other jobs on the system. 

Given a dedicated 23x4x24 set of geminis (in a node list or 
in a set of reserved nodes in a list generated by the cnselect 

command, for example), using the Adaptive Layout scheme 
reduces the overall execution time by 2.7X compared to default 
placement. Some of the speedup of this run compared to the 
run with the grid_order rank order and default node allocation 
undoubtedly derives from the shape of this node allocation, 
since it has optimal bisection bandwidth per node (up to 2X 
higher than a typical default node allocation, even in dedicated 
mode [5]). We did not measure separately the impact of this 
node allocation for the grid_order rank order, however. 

Using Topaware with MILC, we specified that it should run 
on 14x7x21 geminis (node pairs) with 1x2x1x16 tasks per 
node pair. We assigned 1x2x1x8 tasks to each node, and the 
per-task lattice was 6x6x4x9. Note that there are 144 lattice 
points in the fourth (time) dimension on each node, so that no 
off-node communication needs to be done for this dimension. 
We rely on having both nodes on each gemini available to us 
for running MILC. Each node pair has only 1 partition in x and 
z, and 2 in y, compared to 2 in each dimension for grid_order, 
and therefore the Topaware layout has more off-node 
communication. The benefit from the near-optimal layout for 
the 3 spatial dimensions far outweighs the extra 
communication, since using Topaware results in an overall run 
time reduction of 3.7X compared to default placement (i.e., 
1.9X shorter total run time than using grid_order with a default 
node allocation in dedicated mode). 

B. VPIC 

The VPIC SPP benchmark ran on 4608 nodes in dedicated 
mode. The computational grid was 1536

3
, with 48x48x32 

partitions in the 3D virtual topology. We used Topaware to 
place the 73,728 MPI tasks onto 12x12x16 geminis, which 
made the per task grid 32x32x48. Each node pair had 4x4x2 
partitions (2x4x2 partitions per node). The overall run time was 
reduced by 5% compared to the default placement in dedicated 
mode. This improvement is relatively small because the 
communication time for default placement was only a modest 
fraction of the total run time.  

Further reduction in the communication time could be 
expected for this input deck by orienting the z dimension of the 
virtual topology along the y dimension of the torus, so that the 
dimension with the least amount of communication would use 
the y links. However, this capability was not yet implemented 
in the Topaware 3D rank order generation routine when the 
benchmark results were due.  

 

C. S3D 

Craypat-style rank reordering was used successfully with 
S3D on hopper at NERSC, but the reported performance gains 
were a modest 4% [17]. S3D was run on Titan in weak scaling 
studies (fixed work per task) using from 2000 to 12900 nodes 
[18]. For default node selection, run times increased 
significantly with the number of nodes. When Topaware was 
used, near-linear weak scaling was obtained on up to 12900 
nodes. On 2000 nodes, the run with Topaware placement 
completed in 1.32X less time than the run with default 
placement, and on 6000 nodes, the Topaware run was 1.61X 

 
Fig. 4. 2D virtual topology mapped to 12x8x10 gemini 

section of torus with 8 super-tiles staggered in the x 

direction to avoid overloading y links at super-tile edges. 



faster. A comparable run with default placement on 12900 
nodes was not made. 

D. WRF 

For WRF, one benchmark problem has a 6075x6075 cell 
grid in longitude and latitude. For this application on 4560 
nodes with 16 MPI tasks per node, Craypat indicates that with 
the default placement, 40% of the communication goes off 
node. If Craypat’s custom rank order with 2x8 partitions per 
node is used, only 20% of the communication goes off node. 
The total run time using the custom rank order is 1.18X shorter 
than a run using the default rank order [19]. Since the 
communication time should be reduced by 2X using the 
custom rank order, the communication time for the custom 
rank order must be about 18% of the total run time. 

A near-optimal layout for this benchmark on 4864 nodes 
was obtained using Topaware. The 2D virtual topology was 
divided into 8 super-tiles, and each super-tile was placed on 
16x19 geminis in an XZ plane of the torus. The domain was 
folded in half along z, and then 3 times in accordion fashion in 
x to arrange the 8 super-tiles along the y torus dimension as in 
Fig. 3. There were 6x5 partitions on each node pair (3x5 per 
node), leaving one idle compute module per Interlagos 
processor. The Cray “core specialization” feature [20] was 
used to assign OS-related tasks to the idle compute modules, 
which would reduce any load imbalance caused by system 
interrupts occurring on cores running WRF. Since this run used 
more nodes than the Craypat rank order run, we compare 
performance in terms of the number of sustained 
GFLOPS/node, which was 3% higher for the run using 
Topaware placement. The use of core specialization helped 
reduce communication times, possibly by reducing the impact 
of Lustre pings [21], while the squarer aspect ratio of the per 
task grid (compared to the Craypat rank order run) appears to 
increase the computational work time due to WRF’s loop 
structure and our use of 2 OpenMP threads per MPI task. We 
believe that better efficiency for the Topaware placement could 
be obtained by displacing pairs of super-tiles that share links, 
as described earlier. 

IV. CONCLUSIONS AND FUTURE WORK 

We presented several strategies for reducing the 
communication time on 3D torus interconnects with 
asymmetrical link speeds and randomly distributed service 
nodes for a number of applications that perform nearest-
neighbor communication within multidimensional Cartesian 
grid virtual topologies. If the users have no control over the set 
of nodes allocated by the system for their jobs other than the 
number and their type (e.g., XE vs. XK), they can reduce off-
node communication by using Craypat or the grid_order tool to 
group tasks that are virtual neighbors onto the same node. We 
obtained significant reductions in off-node communication for 
several Blue Waters SPP applications without making any 
changes to the codes. In addition, users can take advantage of 
the faster links in the x and z dimensions of Cray genimi 
networks by carefully choosing the aspect ratio of a per-node 
or per-node-pair chunk of the domain such that the 
communication time for each dimension is nearly equal, in 
order to take advantage of the faster x and z links. While these 

strategies often improve communication performance 
somewhat in practice, they are incapable of ensuring that 
neighboring groups of tasks are placed onto nearby nodes in 
the torus, and therefore often fail to improve performance to 
the level expected from theoretical models based on link 
speeds and the number and sizes of messages on each link 

If users are able to specify the nodes on which their jobs are 
to run and the communication pattern in their application has a 
2D, 3D, or 4D Cartesian virtual topology, then they may be 
able to place tasks that should be neighbors onto nodes that are 
close together in the torus, either by developing an application-
specific topology-aware module in the spirit of Adaptive 
Layout for MILC, or by using Topaware (without any changes 
to the application). While Topaware provides the best possible 
performance for MILC, Adaptive Layout can be used with 
fairly regular prism-shaped batch job node allocations that do 
not conform well to the virtual topology, and it should enable 
significantly better MILC performance than Craypat/grid_order 
on such allocations. 

Topaware can also be used in principle in shared batch 
mode. The most straightforward way of doing so would be to 
submit the job with the restriction that it must run on the 
specific nodes selected by Topaware, and then let it wait in the 
queue until all of the required nodes become available. One 
could make this strategy more palatable by requesting a 
reservation restricted to the nodes in the list at a particular time 
in the future, so that one can plan to be ready to monitor the job 
when it runs. Another approach would be for the site to create 
two or more separate node pools with desirable shapes, so that 
“right-sized” jobs requiring placement by Topaware could 
request all nodes in the appropriate pool and select a prism of 
node pairs from that pool. Any resulting reduction in system 
utilization under those circumstances could be mitigated to 
some extent by the improved performance of those jobs 
requiring careful placement. 

In the near future, we plan to extend Topaware to place 
neighboring groups of tasks onto nearby nodes in the torus for 
the set of nodes assigned to the job by the resource manager. 
Given the virtual topology, Topaware would for example place 
ranks with larger virtual y values onto nodes with larger y 
values in the torus, and then use a space-filling curve to ensure 
a reasonably good layout for the x and z dimensions, at least 
for a reasonably regular prism of nodes. This approach would 
reduce the lengths of the longest communication paths 
(especially in the y torus dimension) and therefore reduce the 
contention for certain links, but it would not be able to 
minimize contention to the extent possible for a list of nodes 
generated by Topaware for a specified prism of geminis. This 
approach would be less general than that of Hoefler and Snir 
[9], but it would not be limited like the current Topaware 
implementation to Cartesian virtual topologies. 
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