
The Evolution of Cray Management Services

Tara Fly, Alan Mutschelknaus, Andrew Barry and John Navitsky
OS/IO

Cray, Inc.
Seattle, WA USA

e-mail: {tara, alanm, abarry, johnn}@cray.com

Abstract— Cray Management Services is quickly evolving to
address the changing nature of Cray Systems. NodeKares adds
advanced features to support gang scheduling, reservation and
application level health checking. Reservation level node health
improves node availability by allowing administrators to move
tests between application and reservation boundaries.
Lightweight Log Manager provides more complete and
standardized log collection. Configuration hooks allow
administrators to extend Lightweight Log Management for
third-party logs, and to aggregate logs to external log hosts.
Modular xtdumpsys will provide an extensible framework for
system dumping. Administrators can quickly extend plugins,
and define plugin sets that allow them to target data gathering
and collection based on classes of failures. Resource Utilization
Reporting provides a scalable, extensible framework for data
collection, including power management, GPU utilization, and
application resource utilization data. This paper presents these
new features: covering configuration and benefits.

Resource Utilization Reporting, Lightweight Log Manager, Node
Health Checker, xtdumpsys, SEC

I. INTRODUCTION

 Today’s Cray XE6 and XK7 systems provide petascale
performance to customers to support real-world science.
System uptimes and resiliency are better than ever. Cray
Linux Environment (CLE) now supports shared libraries
and Independent Service Vendor (ISV) applications.
Scientific users can compile and run application codes
without porting. As the availability and number of users
increase, the need for improved monitoring, management,
accounting and fault diagnosis increases. To address this
change, Cray System’s Management team has provided a
number of foundational features in CLE4. The fundamental
architecture of all of these features is the same: scalable data
collection and launch mechanisms, centralized data
collection, and customer-extensible, plugin-based
architectures. Cray can provide a core set of plugins, with
easy, online methods for the sites to extend these
capabilities.
 This paper will review the key infrastructure
enhancements in CLE4. Significant infrastructure
improvements for diagnosis include: lightweight log
manager, modular xtdumpsys, and enhancements to Node
Health Checker. It will also present an introduction to the

accounting Resource Utilization Reporting (RUR) roadmap
and architecture. RUR provides a scalable, plugin
architecture for data collection.

II. FEATURE OVERVIEW

 This section provides an overview of new features in
Cray Management Services. CMS has adopted an iterative
development model, providing critical infrastructure more
quickly, and then adding capabilities on a pure release basis.
Capabilities leverage scalable framework, core functionality
provided through plugins, and hooks to allow customization
if desired.

A. Lightweight Log Manager

 Lightweight log manager (LLM) provides an easy,
reliable and resilient mechanism to gather CLE native
system messages (logs) from service nodes and embedded
cabinet controllers. The LLM infrastructure provides
filtering (discarding), persistent logging, and optionally
forwarding to a site log host. The infrastructure will only
queue to persistent storage on the XE if it temporarily
cannot forward to the SMW. LLM is built on top of rsyslog,
and formats all messages using the RFC-5424 standard.
Figure 1 illustrates a redundant LLM implementation
including external log forwarding.

The log collection on the SMW places logs in a LSB-
compliant name-spaced directory corresponding to the
current boot session with the format shown in Figure 2.

Figure 1. Lightweight Log Management Architecture

Figure 2. Log message format

Logs are compressed after a configurable time interval, and
can be configured to be deleted. By default, compression
happens after 30 days, and logs are always retained. By
default, LLM allows rotates all logs daily. However, it can
also be configured to rotate logs more frequently, to a
granularity of one minute location. Different log files can
use different rotation frequencies.
 LLM utilizes rsyslog as its delivery mechanism. This
decision was made because SuSE announced deprecation of
syslog-ng, with migration to rsyslog in SLES12. Overall
scalability of rsyslog to the existing syslog-ng, RFC-5424
support, and transaction queuing support also played a role
in the decision. LLM provides in-order message delivery
under normal operating conditions.

1) Controller Log Forwarding

 SMW 7.0UP01 also includes controller log forwarding.
Currently log files from the controllers are stored on a tmpfs
files system. Because of space limitations with the tmpfs file
system, only a limited number of files can be stored. This
means that when the number of files exceeds a preset limit,
older log data is lost. With syslog files, this often happens,
and when a problem condition occurs, information that
would be useful in determining the cause of the problem is
lost before it can be viewed. Also, because controller log
files are stored on a tmpfs files system, these files are lost
whenever the controller is rebooted.
 LLM consolidates these controller logs into the main log
repository. Doing so insures that the logs are available on
the SMW in case of a system failure. The base LLM rules
for forwarding CLE and SMW log files are provided in a
turn-key fashion, which provides ease of deployment to site
personnel. Sites can, additionally, implement custom
extensions to the LLM system through site local
customizations. These extensions include the ability to
read/monitor any arbitrary file, including those provided by
3rd-party software, and forward that log to the site log host,
or add it to the existing log stream. These logs can then be
post-processed, allowing improved fault diagnosis.

2) LLM Scalability

 The default LLM configuration file separates high
volume logs into multiple streams. Rsyslog creates a listener

for each port, preventing network bottlenecks to a single
port. During development, we ran two tests on a 4 socket
SMW containing 4-core 2.4 GHz AMD processors, 16GB
total ram, 512KB cache, writing to a 7200 RPM SATA
drive. Two different loads were generated: 72K messages /
second and 200K messages per second. The CPU
utilization was compared to a simple program which wrote a
RFC-5424 message to a single log file, at the same message
rates.
 At 72K messages/sec. the CPU is 80% idle and rsyslog
accumulated 17 seconds of total CPU time vs 10 seconds for
the C program, cloop. Rsyslog seems to handle the load
efficiently and without a large impact on the system. Each
approach wrote 4GB of data. At 200K messages/sec., the
CPU is 54% idle and rsyslog accumulated 46 seconds of
total CPU time vs 30 seconds for cloop. Each approach
wrote 11GB of data.
 In real world situations, LLM has handled and processed
data rates of more than 200 GB/day with successful log
delivery.

3) LLM Resiliency and Fault Tolerance

 The LLM implementation also provides delivery message
delivery, even if the syslog agent becomes unavailable. The
LLM libraries first attempt to contact the syslog host. If the
host cannot be reached, messages are written to an in-
memory message queue, and then to out to disk. An
intermediate agent, llmrd, monitors for recovery of rsyslogd,
and then delivers the queued messages. Figure 3 illustrates
LLM delivery paths including the resiliency agent.
 LLM does not guarantee that the queued messages will be
delivered in order time during a recovery period, as the
application thread may be delivery new messages while the
llmrd is replaying the messages from disk, resulting in some
interspersing of logs. When considering the alternative of
dropped message, this was considered a reasonable tradeoff.
Lastly, all LLM system processes (rsyslogd, llmrd) are
automatically monitored, and the system will restart the
services if they are not running.

Figure 3. LLM Resiliency Model

B. System Dump Enhancements

 Centralized log management provides infrastructure for
improved failure analysis in a centralized location on the
SMW. Delivery of L0 and L1 controller messages provides
much needed data to isolate failures in embedded controller
hardware and software components. Systems are growing in
overall size, and total system uptime is increasing. As a
result, the total amount of log data gathered for any given
boot session has grown significantly. Successful and
efficient fault analysis requires gathering and providing all
data relevant to the fault, and only the data relevant to the
fault. The goal is to provide the smallest possible, complete
data package to service and engineering personnel.
 The existing xtdumpsys data collection tool was
developed first for the original XT3 system deliveries. The
program included a large core, implemented in TCL. The
original xtdumpsys includes some extensibility hook
locations. These hook locations occur at the beginning of
processing the core logic of the script, after hardware level
data and available controller logs are gathered, and after all
of the core script logic has executed. These plugins live in a
single file. There are a number of tuning options that have
been added over the years to improve scalability; however,
the result is an increasingly unwieldy invocation line.
 Today, the total number of cabinets in the largest XE
install is approximately three times as large as the largest
XT3 machine. In addition, Cray XE modules are dual-
socket, resulting in six times as many processors. With the
additional log data provided by LLM, the total aggregate
logs size for a single boot session can easily reach 100GB or
more on our largest machines.

1) System Dump Architecture

 To provide a framework for the future, Cray has
developed a new, modular xtdumpsys architecture, which
deploys all plugins relevant to the current execution phase.
The core logic is responsible for determining the session
context, handling any user specified command line options,
actual execution of the system dump, and overall process
cleanup. System dump occurs in four stages: (i)
initialization, (ii) analyze, (iii) gather and (iv) finalization.
Figure 4 depicts xtdumpsys execution flow.
 During the initialization phase, the xtdumpsys core
determines the overall session context for the dump,
processes and validates any user specified options then
starts the system dump. System dumping occurs in two
phases: an analyze phase and a gather phase. The analyze
phase analyzes system logs and current controller health to
determine what nodes logs of interest. It then iterates
through a series of data collection plugins. The collection
plugins are grouped by numerical precedence. All plugins at
a given precedence level are eligible to run in parallel.

Figure 4. System Dump Execution

This logic repeats until all plugins have been executed, and
have completed execution. Finally, xtdumpsys will finalize
the system dump, and notify the administrator of its
location.

2) Configurability and Extensibility

 Site administrators can extend the functionality of
xtdumpsys with site specific plugins. These are placed in a
global directory, /etc/opt/cray/dumpsys/local. These plugins
are preserved between upgrades. Administrators can also
specify default settings and system parameters such as
plugin timeout and concurrency.

3) Performance
 There are three significant performance enhancements in
the updated xtdumpsys. The first is that plugins can be run
in parallel. The default configuration file specifies that four
processes at the given precedence level can run at a single
time. Administrators can modify that default number of
concurrent plugin processes on a system wide basis, and for
a specific dump invocation.
 The second major performance feature is the ability to run
dump scenarios. Dump scenarios provide the ability to
perform a dump that contains only specific data relevant to a
given failure mode. These scenarios are simply
configuration files listing plugins corresponding to a
particular failure mode. The first release provides scenarios
for five common failure modes: HSN congestion,
admindown node(s), down node(s), panicked node(s), and
power and cooling failures.
 The final performance enhancement is provided through
the ability to specify log windows, which specify gathering
only a portion of the current boot logs. There are three

related runtime options: log_window, log_window_start and
log_window_end. The log_window option indicates how
far to look back from the current time when gathering logs.
The log_window_start and log_window_end options cause
xtdumpsys to gather logs only within the specified period of
time. Note though that xtdumpsys correlates logs to a
system dump through symbolic links, so it will apply this
granularity as best as it can based on the frequency that
LLM rotates its logs, and will only reduce sizes if LLM is
configured on for the system. Use of these scenarios will
greatly reduce the size of system dumps, especially if the
system has been up for a long time since the last reboot.
 The updated xtdumpsys is implemented in python. Cray
Management Services is standardizing on the python for
new complex tools development, as it has a broader user
base, and is easy to read. At the original time of selection,
there were also a number of language deficiencies in the
distribution version of TCL/TK which exhibited worse
comparative performance to either perl or python. The
majority of these have been significantly improved in TCL
8.5, however, diminishing the weight of language
performance when choosing the implementation language.
The distribution includes a template plugin that executes a
shell script, which can be easily modified by administrators
who are not familiar with the python programming
languages.

C. NodeKares

 With 4.1 UP01, NodeKares (otherwise known as node
health checker) introduced support for reservation level
node health. Reservation level node health allows
administrators to set up a test to run on either a reservation
level boundary or a batch job boundary. Certain tests, such
as the free memory test are better fit for a job boundary. A
given problem may involve multiple application steps. For
many ISV applications, each of these job steps leave data in
memory or tmpfs, to be used be used in a subsequent job
step. Checking available free memory on job step
boundaries could result in false Admindown of nodes for
certain workloads. As a result, many sites set memory tests
to notify only of the state. By moving the test to the
reservation level, Node Health Checker (NHC) diminishes
false positives, and allows improved hands-off management
of the system.

1) Configuration Changes

 Figure 5 shows the changes in node health configuration
file syntax, including the ‘Sets’ and ‘advanced_features’
aspects. The CLE installer will convert existing node health
configuration files to the new syntax on an upgrade.
 NHC Configuration file has moved to an ‘ini-style’
formatting on the service node and compute node image.
Tests may have a “Sets” option. Sets provide a way of
assigning tests to logical groupings.

Figure 5. Node Health Configuration Enhancements (old and new)

Typically the sets will be grouped into the “application” and
“reservation” sets. If no “Sets” option is used, NHC will
default to the “application” set. New Sets can be created by
using them. Tests are now separate binaries on the compute
node and can be run manually if needed.

2) Node Health Check Operational Modes

 This section describes the various NHC invocation
modes, with the introduction of reservation level test
support.

a) Application NHC: By ALPS after application exits

 Application NHC can be configured based on the
application's exit code. Typically set to non-zero exit codes,
such that NHC will run tests if the program encounters any
errors or exits because of a signal. Alternatively, NHC can
be set to always run after application exit. During this run
of NHC a set of tests are performed relevant to post-
application health checking. Note that tests may be
configured differently depending on machine type, software
release, etc. Typically tests run during Application NHC
include:

• Application test
• Filesystem test
• Alps test
• Accelerator test
• ugni test

b) Reservation NHC: By ALPS at the end of a
reservation
 Reservation mode will always run regardless of the exit
code from the application. Reservation NHC operates at
the end of the reservation so that NHC can run health checks
and ensure the next time the node is used in a reservation it
is healthy and cleaned-up.

[Options]
advanced_features: on
nhcon: on
dumpdon: off
suspectenable: y

[Memory]
Action: Log
WarnTime: 20
Timeout: 30
RestartDelay: 30
Threshold: 600
Sets: Reservation

nhcon: on
dumpdon: off
suspectenable: y
Memory: Log 20 30 30 600

Default tests run in reservation mode are:

• Memory test
• Reservation test

c) Recent Test Additions
 Recent additions to the node health test suite are
described in this section.

 UGNI TEST

 Tests the ugni interface on compute nodes, and by
extension the proper operation of parts of the nic. Currently
ugni_nhc_plugins only performs one test, where a test
datagram packet is sent out to the node's nic and back again.

RESERVATION TEST

 The reservation test checks that the reservation has been
cleaned-up. If it is still present, NHC will attempt to end the
reservation by invoking the kernel's Compute node cleanup
utilities. Note that in most cases, Alps is able to request
kernel cleanup first and NHC only checks that cleanup
occurred.

d) NHC on Boot NHC on Boot: By init.d scripts

 A local instance of NHC to the compute node, xtnhc, is
launched to perform basic checkups. This unique invocation
of NHC does not follow the usual paradigm of NHC
anatomy. There is no fanout tree and no xtcheckhealth is
used for coordination. If the tests are successful, NHC will
send an event that alerts xtdbsyncd to set the node to the UP
state. It is important to note that this version of NHC uses a
configuration file local to the compute node, located at
/etc/opt/cray/nodehealth/nodehealth.conf. Changes made to
the shared root copy of the NHC configuration file will not
pertain to NHC on boot.
 It is important to note that when the last Application of a
reservation occurs, ALPS will launch an Application NHC
as well as a Reservation NHC. In some cases, simultaneous
instances of NHC may occur on the same node. Support
was built into NHC to facilitate the coordination of multiple
instances of NHC. This support is labeled as
'advanced_features' in the configuration file.

D. Node Health Checker and Compute Node Cleanup

 In certain cases, NHC must attempt to perform compute
node cleanup (CNCU). Typically ALPS can request CNCU
and NHC simply checks that cleanup occurred correctly.
However, if an Application NHC sets the node to a non-UP
state, ALPS will not schedule jobs on the node, nor will it
perform CNCU. It is then up to Reservation NHC to detect
that CNCU did not occur and then NHC will request the
kernel to perform CNCU.

 The following diagrams illustrate how NHC can
guarantee CNCU on all nodes in a reservation. Assume that
the final application in a reservation has finished on NID1-3.
ALPS will then call an Application NHC first, followed by
a Reservation NHC. Also assume that NID01 is unhealthy
and will fail NHC tests. Because it is unhealthy, in this
example NHC is configured to reboot nodes that fail
Application NHC and dump nodes that fail Reservation
NHC. The state is communicated to nhcdbd. The nhcbd
daemon resides on the sdb and is used to coordinate actions
between separate instances of NHC.
 In Figure 6, application node health check is initiated at
the end of a job due to non-zero exit status of the
application.

Figure 6. Application NHC Invoked on NID01-NID03

 Figure 7 shows Application NHC sets NID1's state to
suspect because it failed a health check. Because this node
gets set to a non-Up state, ALPS will not request CNCU for
this node. NID2-3 pass health checks and have CNCU
performed on them via an ALPS call to the kernel.
Application NHC stores a reboot request for NID1 in a
NHC database for nhcdbd to track.

Figure 7. Application NHC Invoked on NID01-NID03

Figure 8. Application NHC Invoked on NID01-NID03

 In Figure 8, Reservation NHC is called on NID1-3. It
detects that CNCU has not occurred on NID1 and it asks the
kernel to cleanup the reservation. NID2-3 pass Reservation
NHC. Assume that even though the reservation is cleaned-
up on NID1 it still fails a health check and Reservation
NHC would like to dump the node.
 Figure 9 illustrates Application NHC has marked the
node Unavail in preparation to be rebooted. Reservation
NHC adds a NHC database entry requesting a dump.

 Finally, in Figure 10 nhcdbd reads both entries in the
database and sees that no instances of NHC are running on
NID1. A single request for a dump and reboot are sent to
dumpd on the SMW. The node is then dumped and
rebooted.

Figure 9. Reservation NHC Marking Node Unavailable

Figure 10. Dump and Reboot of Node

E. Resource Utilization Reporting

 Cray is currently in the development phases of a new
accounting framework, Resource Resource Utilization
Reporting (RUR). The most robust tool available today is
Comprehensive System Accounting (CSA). CSA collects
and provides job-based data sufficient for per user and per
group customer billing. The implementation has several
limitations: it is not easily extensible, kernel-based, and it
does frequent small file I/O. It is necessary to path the
compute kernel image to deliver new functionality with a
kernel based solution, requiring system interruption.
Frequent small file I/O to Lustre can cause degraded I/O
performance, impacting other jobs on the system. Vendors
are developing libraries to provide GPU utilization statistics.
Utilization metrics are critical in developing efficient codes
using new programming models for GPUs. Resource
Utilization Reporting addresses this need, by providing a
framework and roadmap for system accounting.

1) Goals

 Resource Utilization Reporting provides a scalable
framework for data collection. RUR will provide a core set
of utilities and a plugin infrastructure for site-extensible
customizations. Administrators can add and configure
additional plugins on running systems, as well as patch
existing functionality without a system reboot. Cray will
continue to add functionality for both data collection and the
core infrastructure using an iterative roadmap model.
Longer term roadmap will include providing multiple data
stream formats to facilitate post-processing.

2) Architecture

 Figure 11 illustrates the overall software architecture.
RUR will perform multi-stage data collection. After
application run, data is aggregated locally on the compute
node. Once the application fully terminates, an agent will
pull data off of compute nodes, onto the MOM node.
Finally, the agent will post process the data and push it into
a backing store such as a syslog stream or specified log file.
Post process capabilities will include, but are not limited to:

• providing a single number for each data type such
as maximum value

• providing a data histogram (e.g.. mean, standard
deviation, maximum outlier)

• presenting all data

F. Simple Event Correlation

 Cray is currently working on providing a reference
implementation of Simple Event Correlation (SEC). SEC is
an administrative tool for correlates events in the domain of
log analysis, system monitoring, network management and
system security. SEC is an active Sourceforge project,
developed by Risto Vaarandi, and is currently widely used
by a number of sites. Cray Service will provide installation
instructions and a reference set of rules. SEC can be
configured on the SMW, where it will watch specific log
files, and trigger rules through pattern matching, which then
can notify administrators of important systems issues, such
as downed nodes. The reference rules support with both
LLM and non-LLM based logs formats. Cray Service is
working on a plan to provide updates to these reference
rules for customers.

III. CONCLUSIONS

 Cray is just completing development on infrastructure
foundations for flexible, extensible systems management.
These foundations provide the benefit both the
administrative and user communities. The framework plus

plug-in models, sites can easily extend to handle their use
cases. These models allow facilitate iterative roadmaps,
where features can be delivered as incremental
functionality.
 Standardization of data format, and centralized data
collection allow better failure diagnosis, and improved
system monitoring. Improving fault analysis ultimately
results in increased ability to resolve customer issues more
quickly.

