The Evolution of Cray Management Services

Tara Fly, Alan Mutschelknaus, Andrew Barry and Jblawvitsky
0S/10

Cray,

Inc.

Seattle, WA USA
e-mail: {tara, alanm, abarry, johnn}@cray.com

Abstract— Cray Management Services is quickly evolving to
address the changing nature of Cray Systems. Nodekes adds
advanced features to support gang scheduling, resation and
application level health checking. Reservation leveode health
improves node availability by allowing administratas to move
tests between application and reservation boundarge
Lightweight Log Manager provides more complete and
standardized log collection. Configuration hooks dbw
administrators to extend Lightweight Log Management for
third-party logs, and to aggregate logs to externalog hosts.
Modular xtdumpsys will provide an extensible framevork for
system dumping. Administrators can quickly extend pugins,
and define plugin sets that allow them to target da gathering
and collection based on classes of failures. ResoarUtilization
Reporting provides a scalable, extensible frameworkor data
collection, including power management, GPU utilizaon, and
application resource utilization data. This paper pesents these
new features: covering configuration and benefits.

Resource Utilization Reporting, Lightweight Log Manager, Node
Health Checker, xtdumpsys, SEC

. INTRODUCTION

Today's Cray XE6 and XK7 systems provide petbesc
performance to customers to support real-world reeie
System uptimes and resiliency are better than eveay
Linux Environment (CLE) now supports shared libeari
and Independent Service Vendor (ISV) applications
Scientific users can compile and run applicatiordeso
without porting. As the availability and number o$ers
increase, the need for improved monitoring, managgm
accounting and fault diagnosis increases. To addiais
change, Cray System’s Management team has prodded
number of foundational features in CLE4. The fundatal
architecture of all of these features is the sasnatable data
collection and launch mechanisms,
collection, and customer-extensible,
architectures. Cray can provide a core set of phjgivith
easy, online methods for
capabilities.

This paper will
enhancements in
improvements for

review infrastructure
CLEA4.

diagnosis

the key
Significant
include:

lightweight log

manager, modular xtdumpsys, and enhancements te Nod

Health Checker. It will also present an introductim the

centralized data .] !
plugin-based

the sites to extend these

infrastructure

accounting Resource Utilization Reporting (RUR)choap
and architecture. RUR provides a scalable, plugin
architecture for data collection.

. FEATURE OVERVIEW

This section provides an overview of new feasuin
Cray Management Services. CMS has adopted aniverat
development model, providing critical infrastrueumore
quickly, and then adding capabilities on a pureasé basis.
Capabilities leverage scalable framework, core tionality
provided through plugins, and hooks to allow cuszation
if desired.

A. Lightweight Log Manager

Lightweight log manager (LLM) provides an easy,
reliable and resilient mechanism to gather CLE wveati
system messages (logs) from service nodes and emtbed
cabinet controllers. The LLM infrastructure proesd
filtering (discarding), persistent logging, and iopally
forwarding to a site log host. The infrastructurgél wnly
queue to persistent storage on the XE if it tenyilgra
cannot forward to the SMW. LLM is built on top &yslog,
and formats all messages using the RFC-5424 stdndar
Figure 1 illustrates a redundant LLM implementation
including external log forwarding.

The log collection on the SMW places logs in a LSB-
compliant name-spaced directory corresponding te th
current boot session with the format shown in Fegur

SMW

—Tsyslogd

Figure 1. Lightweight Log Management Architecture

Aaropicrayiicg/pi-2UT U2 TU208

! . I) 1
base dir session id logname chunk &

- ; =

Py f‘; =

. /g

= ¢ =
<partition>-<yyyy><mm><dd>{<hh><mm><ss> <yyyyr<mmz><dd> =

Figure 2. Log message format

Logs are compressed after a configurable timevateand
can be configured to be deleted. By default, casgion
happens after 30 days, and logs are always retaidgd
default, LLM allows rotates all logs daily. Howeyé can
also be configured to rotate logs more frequentty,a
granularity of one minute location. Different Idiges can
use different rotation frequencies.

LLM utilizes rsyslog as its delivery mechanisnThis
decision was made because SuSE announced depneahtio
syslog-ng, with migration to rsyslog in SLES12. e@all
scalability of rsyslog to the existing syslog-ngr@&5424
support, and transaction queuing support also flayeole
in the decision. LLM provides in-order messagewveey
under normal operating conditions.

1) Controller Log Forwarding

SMW 7.0UPO1 also includes controller log fordiag.
Currently log files from the controllers are stomda tmpfs
files system. Because of space limitations withtthpfs file
system, only a limited number of files can be slor€his
means that when the number of files exceeds atpigse
older log data is lost. With syslog files, thisesfthappens,
and when a problem condition occurs, informatioat th
would be useful in determining the cause of thebfmm is
lost before it can be viewed. Also, because coleirdbg
files are stored on a tmpfs files system, thess fdre lost
whenever the controller is rebooted.

LLM consolidates these controller logs into thain log
repository. Doing so insures that the logs arelabls on
the SMW in case of a system failure. The base LiiMs
for forwarding CLE and SMW log files are provided &
turn-key fashion, which provides ease of deploynterdite
personnel. Sites can, additionally, implement austo
extensions to the LLM system through site local
customizations. These extensions include the wbiiit
read/monitor any arbitrary file, including thoseoywided by
3“-party software, and forward that log to the sitg host,
or add it to the existing log stream. These logs tten be
post-processed, allowing improved fault diagnosis.

2) LLM Scalability

The default LLM configuration file separatesgihni
volume logs into multiple streams. Rsyslog creatéistener

for each port, preventing network bottlenecks tsiragle

port. During development, we ran two tests on abekst
SMW containing 4-core 2.4 GHz AMD processors, 16GB
total ram, 512KB cache, writing to a 7200 RPM SATA
drive. Two different loads were generated: 72K ragss /
second and 200K messages per second. The CPU
utilization was compared to a simple program whicbte a
RFC-5424 message to a single log file, at the sae®sage
rates.

At 72K messages/sec. the CPU is 80% idle apslag
accumulated 17 seconds of total CPU time vs 10rgkcfor
the C program, cloop. Rsyslog seems to handldahe
efficiently and without a large impact on the systeEach
approach wrote 4GB of data. At 200K messages/tiee.,
CPU is 54% idle and rsyslog accumulated 46 secafids
total CPU time vs 30 seconds for cloop. Each apgproa
wrote 11GB of data.

In real world situations, LLM has handled amdgessed
data rates of more than 200 GB/day with succedsiul
delivery.

3) LLM Resiliency and Fault Tolerance

The LLM implementation also provides delivergseage
delivery, even if the syslog agent becomes unadailaThe
LLM libraries first attempt to contact the syslogsh If the
host cannot be reached, messages are written tm-an
memory message queue, and then to out to disk. An
intermediate agent, lImrd, monitors for recoveryyfslogd,
and then delivers the queued messages. Figuresréltes
LLM delivery paths including the resiliency agent.

LLM does not guarantee that the queued messaitjdse
delivered in order time during a recovery period, the
application thread may be delivery new messagete e
limrd is replaying the messages from disk, resgltmsome
interspersing of logs. When considering the altéveaof
dropped message, this was considered a reasonatidoff.
Lastly, all LLM system processes (rsyslogd, limrahe
automatically monitored, and the system will restdre
services if they are not running.

‘ Next Host rsyslogd

Cray Application

P
0'777«3/
%,
4

Iarispoolirsysiog

Figure 3. LLM Resiliency Model

B. System Dump Enhancements

Centralized log management provides infrastmectfor
improved failure analysis in a centralized locatiom the
SMW. Delivery of LO and L1 controller messagesvles
much needed data to isolate failures in embeddattaiter
hardware and software components. Systems are gawi
overall size, and total system uptime is increasiig a
result, the total amount of log data gathered foy given

boot session has grown significantly. Successful an:

efficient fault analysis requires gathering andvidimg all
data relevant to the fault, and only the data ®@ié\o the
fault. The goal is to provide the smallest possisbmplete
data package to service and engineering personnel.
The existing xtdumpsysdata collection tool was
developed first for the original XT3 system deliest The
program included a large core, implemented in TClLhe
original
locations. These hook locations occur at the begiof
processing the core logic of the script, after hane level
data and available controller logs are gathered,ater all
of the core script logic has executed. These phulive in a
single file. There are a number of tuning optitmst have
been added over the years to improve scalabiliyyever,
the result is an increasingly unwieldy invocatiorel
Today, the total number of cabinets in the datgXE
install is approximately three times as large as lHrgest

XT3 machine. In addition, Cray XE modules are dual-

socket, resulting in six times as many processdvéth the
additional log data provided by LLM, the total aggate
logs size for a single boot session can easilyiré80GB or
more on our largest machines.

1) System Dump Architecture

xtdumpsys includes some extensibility hook

Gather Launch (n)

Plugin (n)1 ‘ ‘ Plugin (n)2 ‘ ‘ Plugin (n)3 ‘ Plugin (n)4 ‘ :

T

Reap

ol

~
COLLECTION

Figure 4. System Dump Execution

This logic repeats until all plugins have been exed, and
have completed execution. Finally, xtdumpsys fiiélize
the system dump, and notify the administrator o it
location.

2) Configurability and Extensibility

Site administrators can extend the functiopalaf
xtdumpsys with site specific plugins. These agcedl in a
global directory, /etc/opt/cray/dumpsys/local. $a@lugins
are preserved between upgrades. Administratorsatsm
specify default settings and system parameters @sch
plugin timeout and concurrency.

To provide a framework for the future, Cray has

developed a new, modular xtdumpsys architecturaéctwh
deploys all plugins relevant to the current exexufphase.
The core logic is responsible for determining tlessson
context, handling any user specified command lip&oas,
actual execution of the system dump, and overaltgss
cleanup. System dump occurs in four
initialization, (ii) analyze, (iii) gather and (ivjnalization.
Figure 4 depicts xtdumpsys execution flow.

During the initialization phase, the xtdumpsgere

determines the overall session context for the dumpd

processes and validates any user specified optioas
starts the system dump. System dumping occursvin t
phases: an analyze phase and a gather phase. ndlyeea
phase analyzes system logs and current contradigitthto
determine what nodes logs of interest. It thematts
through a series of data collection plugins. Thbection
plugins are grouped by numerical precedence. Aljipls at
a given precedence level are eligible to run irafel

stages: (|}

3) Performance

There are three significant performance enhaecés in
the updated xtdumpsys. The first is that plugias be run
in parallel. The default configuration file speesf that four
processes at the given precedence level can rarsiigle
ime. Administrators can modify that default numbr
concurrent plugin processes on a system wide basisfor
a specific dump invocation.

The second major performance feature is théyatn run
ump scenarios. Dump scenarios provide the abtlity
perform a dump that contains only specific datawvaht to a
given failure mode. These scenarios are simply
configuration files listing plugins corresponding ta
particular failure mode. The first release progideenarios
for five common failure modes: HSN congestion,
admindown node(s), down node(s), panicked nodefs],
power and cooling failures.

The final performance enhancement is providedugh
the ability to specify log windows, which specifatering
only a portion of the current boot logs. There Hree

related runtime options: log_window, log_window rstnd
log_window_end. The log_window option indicateswho
far to look back from the current time when gathgriogs.
The log_window_start and log_window_end optionsseau
xtdumpsys to gather logs only within the specifiediod of
time. Note though that xtdumpsys correlates logsato
system dump through symbolic links, so it will apphis
granularity as best as it can based on the frequémat
LLM rotates its logs, and will only reduce sized IfM is
configured on for the system. Use of these scesauitl
greatly reduce the size of system dumps, espediatlye
system has been up for a long time since the ddstat.

The updated xtdumpsys is implemented in pyti@nay
Management Services is standardizing on the pyfioon
new complex tools development, as it has a broader
base, and is easy to read. At the original timsedéction,
there were also a number of language deficienciethé
distribution version of TCL/TK which exhibited was
comparative performance to either perl or pythome T
majority of these have been significantly improwedr CL
8.5, however, diminishing the weight of
performance when choosing the implementation laggua
The distribution includes a template plugin thaé@xes a
shell script, which can be easily modified by adstiators
who are not familiar with the python programming
languages.

C. NodeKares

With 4.1 UPO01, NodeKares (otherwise known adeno
health checker) introduced support for reservatievel
node health. Reservation level
administrators to set up a test to run on eithegsarvation
level boundary or a batch job boundary. Certagtstesuch
as the free memory test are better fit for a jobrigary. A
given problem may involve multiple application stepFor
many ISV applications, each of these job stepselakata in
memory or tmpfs, to be used be used in a subsegolent
step. Checking available free memory on job ste
boundaries could result in false Admindown of nodas
certain workloads. As a result, many sites set nmgrests
to notify only of the state. By moving the test tioe
reservation level, Node Health Checker (NHC) distiis
false positives, and allows improved hands-off ngemaent
of the system.

1) Configuration Changes

Figure 5 shows the changes in node health corafiipn
file syntax, including the ‘Sets’ and ‘advanced téeas’
aspects. The CLE installer will convert existinglachealth
configuration files to the new syntax on an upgrade

NHC Configuration file has moved to an ‘ini-&ty
formatting on the service node and compute nodegémna
Tests may have a “Sets” option. Sets provide a wohy
assigning tests to logical groupings.

node health allows

nhcon: on [Options]

dunpdon: of f advanced_features: on
suspect enabl e: y nhcon: on

Menory: Log 20 30 30 600 dunpdon: of f

suspectenabl e: y

[Menory]

Action: Log

War nTi ne: 20

Ti meout: 30
Restart Del ay: 30
Threshol d: 600
Sets: Reservation

Figure 5. Node Health Configuration Enhancements (old and) new

Typically the sets will be grouped into the “applion” and
“reservation” sets. If no “Sets” option is used, SHwill
default to the “application” set. New Sets can beated by
using them. Tests are now separate binaries ooaimpute
node and can be run manually if needed.

language

2) Node Health Check Operational Modes

This section describes the various NHC invacati
modes, with the introduction of reservation levelstt
support.

a) Application NHC: By ALPS after application exits

Application NHC can be configured based on the
application's exit code. Typically set to non-zexit codes,
such that NHC will run tests if the program enceustany
errors or exits because of a signal. AlternativBIlC can

be set to always run after application exit. Dgrthis run

of NHC a set of tests are performed relevant tot-pos
application health checking. Note that tests may b
F5;onfigured differently depending on machine typstvgare
release, etc. Typically tests run during ApplicatiNHC
include:

Application test
Filesystem test
Alps test
Accelerator test
ugni test

b) Reservation NHC: By ALPS at the end of a
reservation

Reservation mode will always run regardlesthefexit
code from the application. Reservation NHC operait
the end of the reservation so that NHC can runtihealecks
and ensure the next time the node is used in avedm it
is healthy and cleaned-up.

Default tests run in reservation mode are: The following diagrams illustrate how NHC can
guarantee CNCU on all nodes in a reservatissume that

. Memory test the final application in a reservation has finisloedNID1-3.
. Reservation test ALPS will then call anApplication NHC first, followed by
a Reservation NHC. Also assume that NIDO1 is urthgal
) Recent Test Additions and will fail NHC tests. Because it is unhealthy, this
Recent additions to the node health test saite ©Xa@mple NHC is configured to reboot nodes that fail

described in this section. Application NHC and dumpades that fail Reservation

NHC. The state is communicated to nhcdbd. The nhcbd
daemon resides on the sdb and is used to coordinttms

Tests the ugni interface on compute nodes, Bynd between separate instances of NHC
extension the proper operation of parts of the @Giarrently In Figure 6, application node health checknigidted at

ugni_nhc_plugins only performs one test, where st te the end of a job due to non-zero exit status of the
datagram packet is sent out to the node’s nic aok &gain. application.

UGNI TEST

RESERVATIONTEST
The reservation test checks that the reservdtamnbeen Login Node Compule Nodes
cleaned-up. If it is still present, NHC will attpbto end the —_——
reservation by invoking the kernel's Compute noéarap ‘ T~ NIDOEGR ‘
utilities. Note that in most cases, Alps is aldere¢quest _, [‘
kernel cleanup first and NHC only checks that clgan I-_ 1
occurred. _\w - ‘

d) NHC on Boot NHC on Boot: By init.d scripts

A local instance of NHC to the compute nodehgt is ;
launched to perform basic checkups. This uniquedation "- -
of NHC does not follow the usual paradigm of NHC -
anatomy. There is no fanout tree and no xtched#thés
used for coordination. If the tests are succes8fHIC will

send an event that alerts xtdbsyncd to set the twthee UP Figure 6. Application NHC Invoked on NID01-NIDO3
state. It is important to note that this versiémNeIC uses a] o .
configuration file local to the compute node, l@chtat Figure 7 shows Application NHC sets NID1's stéde

Jetclopt/cray/nodehealth/nodehealth.conf. Chamgede to ~ Suspect because it failed a health check. Bechisedde
the shared root copy of the NHC configuration fildl not ~ 9€ts set to a non-Up state, ALPS will not requés€O for
pertain to NHC on boot. this node. NID2-3 pass health checks and have CNCU
It is important to note that when the last Apation of a Performed on them via an ALPS call to the kernel.
reservation occurs, ALPS will launch an Applicatinipic ~ Application NHC stores a reboot request for NID1a&n
as well as a Reservation NHC. In some cases, sinedus NHC database for nhedbd to track.
instances of NHC may occur on the same node. Stppo
was built into NHC to facilitate the coordinatiohraultiple
instances of NHC. This support is labeled as o
Login Node Compute Nodes

'‘advanced_features' in the configuration file. i }
7& NIDO1: Suspect

D. Node Health Checker and Compute Node Cleanup > NiDO2UP
In certain cases, NHC must attempt to perfoomute |
node cleanup (CNCU). Typically ALPS can requesiGCN
and NHC simply checks that cleanup occurred cdyrect
However, if an Application NHC sets the node toca#JP
state, ALPS will not schedule jobs on the node, widir it o |
perform CNCU. It is then up to Reservation NHQl&dect -'/—-
that CNCU did not occur and then NHC will requese t e /X /
kernel to perform CNCU.

sdb \ SMW

Figure 7. Application NHC Invoked on NID01-NID03

Login Node Compute Nodes

NIDO1: Suspect

Figure 8. Application NHC Invoked on NIDO1-NID03

In Figure 8, Reservation NHC is called on NIB1#
detects that CNCU has not occurred on NID1 andkis ghe
kernel to cleanup the reservation. NID2-3 pass Ratien
NHC. Assume that even though the reservation ianeld-
up on NID1 it still fails a health check and Resgion
NHC would like to dump the node.

Figure 9 illustrates Application NHC has mark#t
node Unavail in preparation to be rebooted. Reserva
NHC adds a NHC database entry requesting a dump.

Finally, in Figure 10 nhcdbd reads both entiiesthe
database and sees that no instances of NHC aranguan
NID1. A single request for a dump and reboot anm $e

Compute Nodes

Login Node

-

Figure 10.Dump and Reboot of Node

E. Resource Utilization Reporting

Cray is currently in the development phasesaafiew
accounting framework, Resource Resource Ultilization
Reporting (RUR). The most robust tool availableapds
Comprehensive System Accounting (CSA). CSA cdilect
and provides job-based data sufficient for per aset per
group customer billing. The implementation has salve
limitations: it is not easily extensible, kernelskd, and it
does frequent small file 1/0. It is necessary &ihpthe
compute kernel image to deliver new functionalitithwa

dumpd on the SMW. The node is then dumped an@ternel based solution, requiring system interruptio

rebooted.

Login Node \ (Compute Nodes

=
__

N a B

SMW

N ¥ € J

sdb

Figure 9. Reservation NHC Marking Node Unavailable

Frequent small file I/O to Lustre can cause degitad®
performance, impacting other jobs on the systermddes

are developing libraries to provide GPU utilizatwstatistics.
Utilization metrics are critical in developing efiént codes
using new programming models for GPUs. Resource
Utilization Reporting addresses this need, by mhog a
framework and roadmap for system accounting.

1) Goals

Resource Utilization Reporting provides a dolda
framework for data collection. RUR will providecare set
of utilities and a plugin infrastructure for sitgtensible
customizations. Administrators can add and conéigur
additional plugins on running systems, as well ascip
existing functionality without a system reboot. agrwill
continue to add functionality for both data colientand the
core infrastructure using an iterative roadmap rhode
Longer term roadmap will include providing multiptiata
stream formats to facilitate post-processing.

2) Architecture

Mom Node Compute Nodes

1
=1
1

App Launch

I
Aprun/Apsched —
-—

-{ Apinit '7: Application

|

RUR Staging +
Plugins

Exit Message

Data Gather

plug-in models, sites can easily extend to hankiégr tuse
cases. These models allow facilitate iterative naeas,
where features can be delivered as incremental
functionality.

Standardization of data format, and centraliztata
collection allow better failure diagnosis, and ioyed
system monitoring. Improving fault analysis ultirsigt
results in increased ability to resolve customeués more
quickly.

RUR Post-

processing §~.

+ Plugins / O .
hAA SMW

R RUR Log File
RUR Backing LLM
Store + Plugins

Figure 11 illustrates the overall software dmsatture.
RUR will perform multi-stage data collection. Alft
application run, data is aggregated locally on ¢cbenpute
node. Once the application fully terminates, annageill
pull data off of compute nodes, onto the MOM node.
Finally, the agent will post process the data amshgt into
a backing store such as a syslog stream or spekbifigfile.
Post process capabilities will include, but arelmoited to:

« providing a single number for each data type such
as maximum value

e providing a data histogram (e.g.. mean, standard
deviation, maximum outlier)

e presenting all data

F. Smple Event Correlation

Cray is currently working on providing a refece
implementation of Simple Event Correlation (SEGEC is
an administrative tool for correlates events indbenain of
log analysis, system monitoring, network managenagak
system security. SEC is an active Sourceforge proje
developed by Risto Vaarandi, and is currently widesed
by a number of sites. Cray Service will providetétiation
instructions and a reference set of rules. SEC lgan
configured on the SMW, where it will watch specifiag
files, and trigger rules through pattern matchingich then
can notify administrators of important systems ésstsuch
as downed nodes. The reference rules support vath b
LLM and non-LLM based logs formats. Cray Service is
working on a plan to provide updates to these egiee
rules for customers.

Ill. CONCLUSIONS

Cray is just completing development on infrasture
foundations for flexible, extensible systems managat.
These foundations provide the benefit both the
administrative and user communities. The framewats

